MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axsegconlem10 Structured version   Visualization version   GIF version

Theorem axsegconlem10 26720
Description: Lemma for axsegcon 26721. Show that the scaling constant from axsegconlem7 26717 produces the betweenness condition for 𝐴, 𝐵 and 𝐹. (Contributed by Scott Fenton, 21-Sep-2013.)
Hypotheses
Ref Expression
axsegconlem2.1 𝑆 = Σ𝑝 ∈ (1...𝑁)(((𝐴𝑝) − (𝐵𝑝))↑2)
axsegconlem7.2 𝑇 = Σ𝑝 ∈ (1...𝑁)(((𝐶𝑝) − (𝐷𝑝))↑2)
axsegconlem8.3 𝐹 = (𝑘 ∈ (1...𝑁) ↦ (((((√‘𝑆) + (√‘𝑇)) · (𝐵𝑘)) − ((√‘𝑇) · (𝐴𝑘))) / (√‘𝑆)))
Assertion
Ref Expression
axsegconlem10 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → ∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − ((√‘𝑆) / ((√‘𝑆) + (√‘𝑇)))) · (𝐴𝑖)) + (((√‘𝑆) / ((√‘𝑆) + (√‘𝑇))) · (𝐹𝑖))))
Distinct variable groups:   𝐴,𝑝   𝐵,𝑝   𝐶,𝑝   𝐷,𝑝   𝑁,𝑝   𝐴,𝑖,𝑘   𝐵,𝑖,𝑘   𝐶,𝑖,𝑘   𝐷,𝑖,𝑘   𝑖,𝑁,𝑘   𝑆,𝑖,𝑘   𝑇,𝑖,𝑘   𝑖,𝑝
Allowed substitution hints:   𝑆(𝑝)   𝑇(𝑝)   𝐹(𝑖,𝑘,𝑝)

Proof of Theorem axsegconlem10
StepHypRef Expression
1 axsegconlem7.2 . . . . . . . 8 𝑇 = Σ𝑝 ∈ (1...𝑁)(((𝐶𝑝) − (𝐷𝑝))↑2)
21axsegconlem4 26714 . . . . . . 7 ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) → (√‘𝑇) ∈ ℝ)
32ad2antlr 726 . . . . . 6 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑖 ∈ (1...𝑁)) → (√‘𝑇) ∈ ℝ)
4 simpl1 1188 . . . . . . 7 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → 𝐴 ∈ (𝔼‘𝑁))
5 fveere 26695 . . . . . . 7 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝑖 ∈ (1...𝑁)) → (𝐴𝑖) ∈ ℝ)
64, 5sylan 583 . . . . . 6 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑖 ∈ (1...𝑁)) → (𝐴𝑖) ∈ ℝ)
73, 6remulcld 10660 . . . . 5 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑖 ∈ (1...𝑁)) → ((√‘𝑇) · (𝐴𝑖)) ∈ ℝ)
87recnd 10658 . . . 4 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑖 ∈ (1...𝑁)) → ((√‘𝑇) · (𝐴𝑖)) ∈ ℂ)
9 axsegconlem2.1 . . . . . . . . 9 𝑆 = Σ𝑝 ∈ (1...𝑁)(((𝐴𝑝) − (𝐵𝑝))↑2)
109axsegconlem4 26714 . . . . . . . 8 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) → (√‘𝑆) ∈ ℝ)
11103adant3 1129 . . . . . . 7 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴𝐵) → (√‘𝑆) ∈ ℝ)
1211ad2antrr 725 . . . . . 6 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑖 ∈ (1...𝑁)) → (√‘𝑆) ∈ ℝ)
13 axsegconlem8.3 . . . . . . . 8 𝐹 = (𝑘 ∈ (1...𝑁) ↦ (((((√‘𝑆) + (√‘𝑇)) · (𝐵𝑘)) − ((√‘𝑇) · (𝐴𝑘))) / (√‘𝑆)))
149, 1, 13axsegconlem8 26718 . . . . . . 7 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → 𝐹 ∈ (𝔼‘𝑁))
15 fveere 26695 . . . . . . 7 ((𝐹 ∈ (𝔼‘𝑁) ∧ 𝑖 ∈ (1...𝑁)) → (𝐹𝑖) ∈ ℝ)
1614, 15sylan 583 . . . . . 6 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑖 ∈ (1...𝑁)) → (𝐹𝑖) ∈ ℝ)
1712, 16remulcld 10660 . . . . 5 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑖 ∈ (1...𝑁)) → ((√‘𝑆) · (𝐹𝑖)) ∈ ℝ)
1817recnd 10658 . . . 4 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑖 ∈ (1...𝑁)) → ((√‘𝑆) · (𝐹𝑖)) ∈ ℂ)
19 readdcl 10609 . . . . . . 7 (((√‘𝑆) ∈ ℝ ∧ (√‘𝑇) ∈ ℝ) → ((√‘𝑆) + (√‘𝑇)) ∈ ℝ)
2011, 2, 19syl2an 598 . . . . . 6 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → ((√‘𝑆) + (√‘𝑇)) ∈ ℝ)
2120adantr 484 . . . . 5 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑖 ∈ (1...𝑁)) → ((√‘𝑆) + (√‘𝑇)) ∈ ℝ)
2221recnd 10658 . . . 4 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑖 ∈ (1...𝑁)) → ((√‘𝑆) + (√‘𝑇)) ∈ ℂ)
23 0red 10633 . . . . . . 7 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → 0 ∈ ℝ)
2411adantr 484 . . . . . . 7 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → (√‘𝑆) ∈ ℝ)
259axsegconlem6 26716 . . . . . . . 8 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴𝐵) → 0 < (√‘𝑆))
2625adantr 484 . . . . . . 7 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → 0 < (√‘𝑆))
271axsegconlem5 26715 . . . . . . . . 9 ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) → 0 ≤ (√‘𝑇))
2827adantl 485 . . . . . . . 8 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → 0 ≤ (√‘𝑇))
29 addge01 11139 . . . . . . . . 9 (((√‘𝑆) ∈ ℝ ∧ (√‘𝑇) ∈ ℝ) → (0 ≤ (√‘𝑇) ↔ (√‘𝑆) ≤ ((√‘𝑆) + (√‘𝑇))))
3011, 2, 29syl2an 598 . . . . . . . 8 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → (0 ≤ (√‘𝑇) ↔ (√‘𝑆) ≤ ((√‘𝑆) + (√‘𝑇))))
3128, 30mpbid 235 . . . . . . 7 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → (√‘𝑆) ≤ ((√‘𝑆) + (√‘𝑇)))
3223, 24, 20, 26, 31ltletrd 10789 . . . . . 6 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → 0 < ((√‘𝑆) + (√‘𝑇)))
3332gt0ne0d 11193 . . . . 5 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → ((√‘𝑆) + (√‘𝑇)) ≠ 0)
3433adantr 484 . . . 4 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑖 ∈ (1...𝑁)) → ((√‘𝑆) + (√‘𝑇)) ≠ 0)
358, 18, 22, 34divdird 11443 . . 3 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑖 ∈ (1...𝑁)) → ((((√‘𝑇) · (𝐴𝑖)) + ((√‘𝑆) · (𝐹𝑖))) / ((√‘𝑆) + (√‘𝑇))) = ((((√‘𝑇) · (𝐴𝑖)) / ((√‘𝑆) + (√‘𝑇))) + (((√‘𝑆) · (𝐹𝑖)) / ((√‘𝑆) + (√‘𝑇)))))
36 fveq2 6645 . . . . . . . . . . . . 13 (𝑘 = 𝑖 → (𝐵𝑘) = (𝐵𝑖))
3736oveq2d 7151 . . . . . . . . . . . 12 (𝑘 = 𝑖 → (((√‘𝑆) + (√‘𝑇)) · (𝐵𝑘)) = (((√‘𝑆) + (√‘𝑇)) · (𝐵𝑖)))
38 fveq2 6645 . . . . . . . . . . . . 13 (𝑘 = 𝑖 → (𝐴𝑘) = (𝐴𝑖))
3938oveq2d 7151 . . . . . . . . . . . 12 (𝑘 = 𝑖 → ((√‘𝑇) · (𝐴𝑘)) = ((√‘𝑇) · (𝐴𝑖)))
4037, 39oveq12d 7153 . . . . . . . . . . 11 (𝑘 = 𝑖 → ((((√‘𝑆) + (√‘𝑇)) · (𝐵𝑘)) − ((√‘𝑇) · (𝐴𝑘))) = ((((√‘𝑆) + (√‘𝑇)) · (𝐵𝑖)) − ((√‘𝑇) · (𝐴𝑖))))
4140oveq1d 7150 . . . . . . . . . 10 (𝑘 = 𝑖 → (((((√‘𝑆) + (√‘𝑇)) · (𝐵𝑘)) − ((√‘𝑇) · (𝐴𝑘))) / (√‘𝑆)) = (((((√‘𝑆) + (√‘𝑇)) · (𝐵𝑖)) − ((√‘𝑇) · (𝐴𝑖))) / (√‘𝑆)))
42 ovex 7168 . . . . . . . . . 10 (((((√‘𝑆) + (√‘𝑇)) · (𝐵𝑖)) − ((√‘𝑇) · (𝐴𝑖))) / (√‘𝑆)) ∈ V
4341, 13, 42fvmpt 6745 . . . . . . . . 9 (𝑖 ∈ (1...𝑁) → (𝐹𝑖) = (((((√‘𝑆) + (√‘𝑇)) · (𝐵𝑖)) − ((√‘𝑇) · (𝐴𝑖))) / (√‘𝑆)))
4443adantl 485 . . . . . . . 8 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑖 ∈ (1...𝑁)) → (𝐹𝑖) = (((((√‘𝑆) + (√‘𝑇)) · (𝐵𝑖)) − ((√‘𝑇) · (𝐴𝑖))) / (√‘𝑆)))
4544oveq2d 7151 . . . . . . 7 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑖 ∈ (1...𝑁)) → ((√‘𝑆) · (𝐹𝑖)) = ((√‘𝑆) · (((((√‘𝑆) + (√‘𝑇)) · (𝐵𝑖)) − ((√‘𝑇) · (𝐴𝑖))) / (√‘𝑆))))
46 simpl2 1189 . . . . . . . . . . . 12 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → 𝐵 ∈ (𝔼‘𝑁))
47 fveere 26695 . . . . . . . . . . . 12 ((𝐵 ∈ (𝔼‘𝑁) ∧ 𝑖 ∈ (1...𝑁)) → (𝐵𝑖) ∈ ℝ)
4846, 47sylan 583 . . . . . . . . . . 11 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑖 ∈ (1...𝑁)) → (𝐵𝑖) ∈ ℝ)
4921, 48remulcld 10660 . . . . . . . . . 10 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑖 ∈ (1...𝑁)) → (((√‘𝑆) + (√‘𝑇)) · (𝐵𝑖)) ∈ ℝ)
5049, 7resubcld 11057 . . . . . . . . 9 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑖 ∈ (1...𝑁)) → ((((√‘𝑆) + (√‘𝑇)) · (𝐵𝑖)) − ((√‘𝑇) · (𝐴𝑖))) ∈ ℝ)
5150recnd 10658 . . . . . . . 8 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑖 ∈ (1...𝑁)) → ((((√‘𝑆) + (√‘𝑇)) · (𝐵𝑖)) − ((√‘𝑇) · (𝐴𝑖))) ∈ ℂ)
5212recnd 10658 . . . . . . . 8 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑖 ∈ (1...𝑁)) → (√‘𝑆) ∈ ℂ)
5325gt0ne0d 11193 . . . . . . . . 9 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴𝐵) → (√‘𝑆) ≠ 0)
5453ad2antrr 725 . . . . . . . 8 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑖 ∈ (1...𝑁)) → (√‘𝑆) ≠ 0)
5551, 52, 54divcan2d 11407 . . . . . . 7 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑖 ∈ (1...𝑁)) → ((√‘𝑆) · (((((√‘𝑆) + (√‘𝑇)) · (𝐵𝑖)) − ((√‘𝑇) · (𝐴𝑖))) / (√‘𝑆))) = ((((√‘𝑆) + (√‘𝑇)) · (𝐵𝑖)) − ((√‘𝑇) · (𝐴𝑖))))
5645, 55eqtrd 2833 . . . . . 6 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑖 ∈ (1...𝑁)) → ((√‘𝑆) · (𝐹𝑖)) = ((((√‘𝑆) + (√‘𝑇)) · (𝐵𝑖)) − ((√‘𝑇) · (𝐴𝑖))))
5756oveq2d 7151 . . . . 5 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑖 ∈ (1...𝑁)) → (((√‘𝑇) · (𝐴𝑖)) + ((√‘𝑆) · (𝐹𝑖))) = (((√‘𝑇) · (𝐴𝑖)) + ((((√‘𝑆) + (√‘𝑇)) · (𝐵𝑖)) − ((√‘𝑇) · (𝐴𝑖)))))
5849recnd 10658 . . . . . 6 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑖 ∈ (1...𝑁)) → (((√‘𝑆) + (√‘𝑇)) · (𝐵𝑖)) ∈ ℂ)
598, 58pncan3d 10989 . . . . 5 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑖 ∈ (1...𝑁)) → (((√‘𝑇) · (𝐴𝑖)) + ((((√‘𝑆) + (√‘𝑇)) · (𝐵𝑖)) − ((√‘𝑇) · (𝐴𝑖)))) = (((√‘𝑆) + (√‘𝑇)) · (𝐵𝑖)))
6057, 59eqtrd 2833 . . . 4 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑖 ∈ (1...𝑁)) → (((√‘𝑇) · (𝐴𝑖)) + ((√‘𝑆) · (𝐹𝑖))) = (((√‘𝑆) + (√‘𝑇)) · (𝐵𝑖)))
617, 17readdcld 10659 . . . . . 6 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑖 ∈ (1...𝑁)) → (((√‘𝑇) · (𝐴𝑖)) + ((√‘𝑆) · (𝐹𝑖))) ∈ ℝ)
6261recnd 10658 . . . . 5 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑖 ∈ (1...𝑁)) → (((√‘𝑇) · (𝐴𝑖)) + ((√‘𝑆) · (𝐹𝑖))) ∈ ℂ)
6348recnd 10658 . . . . 5 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑖 ∈ (1...𝑁)) → (𝐵𝑖) ∈ ℂ)
6462, 63, 22, 34divmul2d 11438 . . . 4 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑖 ∈ (1...𝑁)) → (((((√‘𝑇) · (𝐴𝑖)) + ((√‘𝑆) · (𝐹𝑖))) / ((√‘𝑆) + (√‘𝑇))) = (𝐵𝑖) ↔ (((√‘𝑇) · (𝐴𝑖)) + ((√‘𝑆) · (𝐹𝑖))) = (((√‘𝑆) + (√‘𝑇)) · (𝐵𝑖))))
6560, 64mpbird 260 . . 3 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑖 ∈ (1...𝑁)) → ((((√‘𝑇) · (𝐴𝑖)) + ((√‘𝑆) · (𝐹𝑖))) / ((√‘𝑆) + (√‘𝑇))) = (𝐵𝑖))
662recnd 10658 . . . . . . 7 ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) → (√‘𝑇) ∈ ℂ)
6766ad2antlr 726 . . . . . 6 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑖 ∈ (1...𝑁)) → (√‘𝑇) ∈ ℂ)
686recnd 10658 . . . . . 6 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑖 ∈ (1...𝑁)) → (𝐴𝑖) ∈ ℂ)
6967, 68, 22, 34div23d 11442 . . . . 5 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑖 ∈ (1...𝑁)) → (((√‘𝑇) · (𝐴𝑖)) / ((√‘𝑆) + (√‘𝑇))) = (((√‘𝑇) / ((√‘𝑆) + (√‘𝑇))) · (𝐴𝑖)))
7022, 52, 22, 34divsubdird 11444 . . . . . . 7 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑖 ∈ (1...𝑁)) → ((((√‘𝑆) + (√‘𝑇)) − (√‘𝑆)) / ((√‘𝑆) + (√‘𝑇))) = ((((√‘𝑆) + (√‘𝑇)) / ((√‘𝑆) + (√‘𝑇))) − ((√‘𝑆) / ((√‘𝑆) + (√‘𝑇)))))
7111recnd 10658 . . . . . . . . . 10 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴𝐵) → (√‘𝑆) ∈ ℂ)
72 pncan2 10882 . . . . . . . . . 10 (((√‘𝑆) ∈ ℂ ∧ (√‘𝑇) ∈ ℂ) → (((√‘𝑆) + (√‘𝑇)) − (√‘𝑆)) = (√‘𝑇))
7371, 66, 72syl2an 598 . . . . . . . . 9 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → (((√‘𝑆) + (√‘𝑇)) − (√‘𝑆)) = (√‘𝑇))
7473adantr 484 . . . . . . . 8 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑖 ∈ (1...𝑁)) → (((√‘𝑆) + (√‘𝑇)) − (√‘𝑆)) = (√‘𝑇))
7574oveq1d 7150 . . . . . . 7 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑖 ∈ (1...𝑁)) → ((((√‘𝑆) + (√‘𝑇)) − (√‘𝑆)) / ((√‘𝑆) + (√‘𝑇))) = ((√‘𝑇) / ((√‘𝑆) + (√‘𝑇))))
7622, 34dividd 11403 . . . . . . . 8 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑖 ∈ (1...𝑁)) → (((√‘𝑆) + (√‘𝑇)) / ((√‘𝑆) + (√‘𝑇))) = 1)
7776oveq1d 7150 . . . . . . 7 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑖 ∈ (1...𝑁)) → ((((√‘𝑆) + (√‘𝑇)) / ((√‘𝑆) + (√‘𝑇))) − ((√‘𝑆) / ((√‘𝑆) + (√‘𝑇)))) = (1 − ((√‘𝑆) / ((√‘𝑆) + (√‘𝑇)))))
7870, 75, 773eqtr3d 2841 . . . . . 6 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑖 ∈ (1...𝑁)) → ((√‘𝑇) / ((√‘𝑆) + (√‘𝑇))) = (1 − ((√‘𝑆) / ((√‘𝑆) + (√‘𝑇)))))
7978oveq1d 7150 . . . . 5 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑖 ∈ (1...𝑁)) → (((√‘𝑇) / ((√‘𝑆) + (√‘𝑇))) · (𝐴𝑖)) = ((1 − ((√‘𝑆) / ((√‘𝑆) + (√‘𝑇)))) · (𝐴𝑖)))
8069, 79eqtrd 2833 . . . 4 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑖 ∈ (1...𝑁)) → (((√‘𝑇) · (𝐴𝑖)) / ((√‘𝑆) + (√‘𝑇))) = ((1 − ((√‘𝑆) / ((√‘𝑆) + (√‘𝑇)))) · (𝐴𝑖)))
8116recnd 10658 . . . . 5 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑖 ∈ (1...𝑁)) → (𝐹𝑖) ∈ ℂ)
8252, 81, 22, 34div23d 11442 . . . 4 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑖 ∈ (1...𝑁)) → (((√‘𝑆) · (𝐹𝑖)) / ((√‘𝑆) + (√‘𝑇))) = (((√‘𝑆) / ((√‘𝑆) + (√‘𝑇))) · (𝐹𝑖)))
8380, 82oveq12d 7153 . . 3 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑖 ∈ (1...𝑁)) → ((((√‘𝑇) · (𝐴𝑖)) / ((√‘𝑆) + (√‘𝑇))) + (((√‘𝑆) · (𝐹𝑖)) / ((√‘𝑆) + (√‘𝑇)))) = (((1 − ((√‘𝑆) / ((√‘𝑆) + (√‘𝑇)))) · (𝐴𝑖)) + (((√‘𝑆) / ((√‘𝑆) + (√‘𝑇))) · (𝐹𝑖))))
8435, 65, 833eqtr3d 2841 . 2 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑖 ∈ (1...𝑁)) → (𝐵𝑖) = (((1 − ((√‘𝑆) / ((√‘𝑆) + (√‘𝑇)))) · (𝐴𝑖)) + (((√‘𝑆) / ((√‘𝑆) + (√‘𝑇))) · (𝐹𝑖))))
8584ralrimiva 3149 1 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → ∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − ((√‘𝑆) / ((√‘𝑆) + (√‘𝑇)))) · (𝐴𝑖)) + (((√‘𝑆) / ((√‘𝑆) + (√‘𝑇))) · (𝐹𝑖))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2111  wne 2987  wral 3106   class class class wbr 5030  cmpt 5110  cfv 6324  (class class class)co 7135  cc 10524  cr 10525  0cc0 10526  1c1 10527   + caddc 10529   · cmul 10531   < clt 10664  cle 10665  cmin 10859   / cdiv 11286  2c2 11680  ...cfz 12885  cexp 13425  csqrt 14584  Σcsu 15034  𝔼cee 26682
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-inf2 9088  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-se 5479  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-isom 6333  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-oadd 8089  df-er 8272  df-map 8391  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-sup 8890  df-oi 8958  df-card 9352  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-n0 11886  df-z 11970  df-uz 12232  df-rp 12378  df-ico 12732  df-fz 12886  df-fzo 13029  df-seq 13365  df-exp 13426  df-hash 13687  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-clim 14837  df-sum 15035  df-ee 26685
This theorem is referenced by:  axsegcon  26721
  Copyright terms: Public domain W3C validator