Proof of Theorem axsegconlem10
Step | Hyp | Ref
| Expression |
1 | | axsegconlem7.2 |
. . . . . . . 8
⊢ 𝑇 = Σ𝑝 ∈ (1...𝑁)(((𝐶‘𝑝) − (𝐷‘𝑝))↑2) |
2 | 1 | axsegconlem4 27191 |
. . . . . . 7
⊢ ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) → (√‘𝑇) ∈ ℝ) |
3 | 2 | ad2antlr 723 |
. . . . . 6
⊢ ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴 ≠ 𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑖 ∈ (1...𝑁)) → (√‘𝑇) ∈ ℝ) |
4 | | simpl1 1189 |
. . . . . . 7
⊢ (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴 ≠ 𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → 𝐴 ∈ (𝔼‘𝑁)) |
5 | | fveere 27172 |
. . . . . . 7
⊢ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝑖 ∈ (1...𝑁)) → (𝐴‘𝑖) ∈ ℝ) |
6 | 4, 5 | sylan 579 |
. . . . . 6
⊢ ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴 ≠ 𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑖 ∈ (1...𝑁)) → (𝐴‘𝑖) ∈ ℝ) |
7 | 3, 6 | remulcld 10936 |
. . . . 5
⊢ ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴 ≠ 𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑖 ∈ (1...𝑁)) → ((√‘𝑇) · (𝐴‘𝑖)) ∈ ℝ) |
8 | 7 | recnd 10934 |
. . . 4
⊢ ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴 ≠ 𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑖 ∈ (1...𝑁)) → ((√‘𝑇) · (𝐴‘𝑖)) ∈ ℂ) |
9 | | axsegconlem2.1 |
. . . . . . . . 9
⊢ 𝑆 = Σ𝑝 ∈ (1...𝑁)(((𝐴‘𝑝) − (𝐵‘𝑝))↑2) |
10 | 9 | axsegconlem4 27191 |
. . . . . . . 8
⊢ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) → (√‘𝑆) ∈ ℝ) |
11 | 10 | 3adant3 1130 |
. . . . . . 7
⊢ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴 ≠ 𝐵) → (√‘𝑆) ∈ ℝ) |
12 | 11 | ad2antrr 722 |
. . . . . 6
⊢ ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴 ≠ 𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑖 ∈ (1...𝑁)) → (√‘𝑆) ∈ ℝ) |
13 | | axsegconlem8.3 |
. . . . . . . 8
⊢ 𝐹 = (𝑘 ∈ (1...𝑁) ↦ (((((√‘𝑆) + (√‘𝑇)) · (𝐵‘𝑘)) − ((√‘𝑇) · (𝐴‘𝑘))) / (√‘𝑆))) |
14 | 9, 1, 13 | axsegconlem8 27195 |
. . . . . . 7
⊢ (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴 ≠ 𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → 𝐹 ∈ (𝔼‘𝑁)) |
15 | | fveere 27172 |
. . . . . . 7
⊢ ((𝐹 ∈ (𝔼‘𝑁) ∧ 𝑖 ∈ (1...𝑁)) → (𝐹‘𝑖) ∈ ℝ) |
16 | 14, 15 | sylan 579 |
. . . . . 6
⊢ ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴 ≠ 𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑖 ∈ (1...𝑁)) → (𝐹‘𝑖) ∈ ℝ) |
17 | 12, 16 | remulcld 10936 |
. . . . 5
⊢ ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴 ≠ 𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑖 ∈ (1...𝑁)) → ((√‘𝑆) · (𝐹‘𝑖)) ∈ ℝ) |
18 | 17 | recnd 10934 |
. . . 4
⊢ ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴 ≠ 𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑖 ∈ (1...𝑁)) → ((√‘𝑆) · (𝐹‘𝑖)) ∈ ℂ) |
19 | | readdcl 10885 |
. . . . . . 7
⊢
(((√‘𝑆)
∈ ℝ ∧ (√‘𝑇) ∈ ℝ) →
((√‘𝑆) +
(√‘𝑇)) ∈
ℝ) |
20 | 11, 2, 19 | syl2an 595 |
. . . . . 6
⊢ (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴 ≠ 𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → ((√‘𝑆) + (√‘𝑇)) ∈ ℝ) |
21 | 20 | adantr 480 |
. . . . 5
⊢ ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴 ≠ 𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑖 ∈ (1...𝑁)) → ((√‘𝑆) + (√‘𝑇)) ∈ ℝ) |
22 | 21 | recnd 10934 |
. . . 4
⊢ ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴 ≠ 𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑖 ∈ (1...𝑁)) → ((√‘𝑆) + (√‘𝑇)) ∈ ℂ) |
23 | | 0red 10909 |
. . . . . . 7
⊢ (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴 ≠ 𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → 0 ∈
ℝ) |
24 | 11 | adantr 480 |
. . . . . . 7
⊢ (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴 ≠ 𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → (√‘𝑆) ∈ ℝ) |
25 | 9 | axsegconlem6 27193 |
. . . . . . . 8
⊢ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴 ≠ 𝐵) → 0 < (√‘𝑆)) |
26 | 25 | adantr 480 |
. . . . . . 7
⊢ (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴 ≠ 𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → 0 < (√‘𝑆)) |
27 | 1 | axsegconlem5 27192 |
. . . . . . . . 9
⊢ ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) → 0 ≤ (√‘𝑇)) |
28 | 27 | adantl 481 |
. . . . . . . 8
⊢ (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴 ≠ 𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → 0 ≤ (√‘𝑇)) |
29 | | addge01 11415 |
. . . . . . . . 9
⊢
(((√‘𝑆)
∈ ℝ ∧ (√‘𝑇) ∈ ℝ) → (0 ≤
(√‘𝑇) ↔
(√‘𝑆) ≤
((√‘𝑆) +
(√‘𝑇)))) |
30 | 11, 2, 29 | syl2an 595 |
. . . . . . . 8
⊢ (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴 ≠ 𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → (0 ≤ (√‘𝑇) ↔ (√‘𝑆) ≤ ((√‘𝑆) + (√‘𝑇)))) |
31 | 28, 30 | mpbid 231 |
. . . . . . 7
⊢ (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴 ≠ 𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → (√‘𝑆) ≤ ((√‘𝑆) + (√‘𝑇))) |
32 | 23, 24, 20, 26, 31 | ltletrd 11065 |
. . . . . 6
⊢ (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴 ≠ 𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → 0 < ((√‘𝑆) + (√‘𝑇))) |
33 | 32 | gt0ne0d 11469 |
. . . . 5
⊢ (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴 ≠ 𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → ((√‘𝑆) + (√‘𝑇)) ≠ 0) |
34 | 33 | adantr 480 |
. . . 4
⊢ ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴 ≠ 𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑖 ∈ (1...𝑁)) → ((√‘𝑆) + (√‘𝑇)) ≠ 0) |
35 | 8, 18, 22, 34 | divdird 11719 |
. . 3
⊢ ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴 ≠ 𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑖 ∈ (1...𝑁)) → ((((√‘𝑇) · (𝐴‘𝑖)) + ((√‘𝑆) · (𝐹‘𝑖))) / ((√‘𝑆) + (√‘𝑇))) = ((((√‘𝑇) · (𝐴‘𝑖)) / ((√‘𝑆) + (√‘𝑇))) + (((√‘𝑆) · (𝐹‘𝑖)) / ((√‘𝑆) + (√‘𝑇))))) |
36 | | fveq2 6756 |
. . . . . . . . . . . . 13
⊢ (𝑘 = 𝑖 → (𝐵‘𝑘) = (𝐵‘𝑖)) |
37 | 36 | oveq2d 7271 |
. . . . . . . . . . . 12
⊢ (𝑘 = 𝑖 → (((√‘𝑆) + (√‘𝑇)) · (𝐵‘𝑘)) = (((√‘𝑆) + (√‘𝑇)) · (𝐵‘𝑖))) |
38 | | fveq2 6756 |
. . . . . . . . . . . . 13
⊢ (𝑘 = 𝑖 → (𝐴‘𝑘) = (𝐴‘𝑖)) |
39 | 38 | oveq2d 7271 |
. . . . . . . . . . . 12
⊢ (𝑘 = 𝑖 → ((√‘𝑇) · (𝐴‘𝑘)) = ((√‘𝑇) · (𝐴‘𝑖))) |
40 | 37, 39 | oveq12d 7273 |
. . . . . . . . . . 11
⊢ (𝑘 = 𝑖 → ((((√‘𝑆) + (√‘𝑇)) · (𝐵‘𝑘)) − ((√‘𝑇) · (𝐴‘𝑘))) = ((((√‘𝑆) + (√‘𝑇)) · (𝐵‘𝑖)) − ((√‘𝑇) · (𝐴‘𝑖)))) |
41 | 40 | oveq1d 7270 |
. . . . . . . . . 10
⊢ (𝑘 = 𝑖 → (((((√‘𝑆) + (√‘𝑇)) · (𝐵‘𝑘)) − ((√‘𝑇) · (𝐴‘𝑘))) / (√‘𝑆)) = (((((√‘𝑆) + (√‘𝑇)) · (𝐵‘𝑖)) − ((√‘𝑇) · (𝐴‘𝑖))) / (√‘𝑆))) |
42 | | ovex 7288 |
. . . . . . . . . 10
⊢
(((((√‘𝑆) + (√‘𝑇)) · (𝐵‘𝑖)) − ((√‘𝑇) · (𝐴‘𝑖))) / (√‘𝑆)) ∈ V |
43 | 41, 13, 42 | fvmpt 6857 |
. . . . . . . . 9
⊢ (𝑖 ∈ (1...𝑁) → (𝐹‘𝑖) = (((((√‘𝑆) + (√‘𝑇)) · (𝐵‘𝑖)) − ((√‘𝑇) · (𝐴‘𝑖))) / (√‘𝑆))) |
44 | 43 | adantl 481 |
. . . . . . . 8
⊢ ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴 ≠ 𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑖 ∈ (1...𝑁)) → (𝐹‘𝑖) = (((((√‘𝑆) + (√‘𝑇)) · (𝐵‘𝑖)) − ((√‘𝑇) · (𝐴‘𝑖))) / (√‘𝑆))) |
45 | 44 | oveq2d 7271 |
. . . . . . 7
⊢ ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴 ≠ 𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑖 ∈ (1...𝑁)) → ((√‘𝑆) · (𝐹‘𝑖)) = ((√‘𝑆) · (((((√‘𝑆) + (√‘𝑇)) · (𝐵‘𝑖)) − ((√‘𝑇) · (𝐴‘𝑖))) / (√‘𝑆)))) |
46 | | simpl2 1190 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴 ≠ 𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → 𝐵 ∈ (𝔼‘𝑁)) |
47 | | fveere 27172 |
. . . . . . . . . . . 12
⊢ ((𝐵 ∈ (𝔼‘𝑁) ∧ 𝑖 ∈ (1...𝑁)) → (𝐵‘𝑖) ∈ ℝ) |
48 | 46, 47 | sylan 579 |
. . . . . . . . . . 11
⊢ ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴 ≠ 𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑖 ∈ (1...𝑁)) → (𝐵‘𝑖) ∈ ℝ) |
49 | 21, 48 | remulcld 10936 |
. . . . . . . . . 10
⊢ ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴 ≠ 𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑖 ∈ (1...𝑁)) → (((√‘𝑆) + (√‘𝑇)) · (𝐵‘𝑖)) ∈ ℝ) |
50 | 49, 7 | resubcld 11333 |
. . . . . . . . 9
⊢ ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴 ≠ 𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑖 ∈ (1...𝑁)) → ((((√‘𝑆) + (√‘𝑇)) · (𝐵‘𝑖)) − ((√‘𝑇) · (𝐴‘𝑖))) ∈ ℝ) |
51 | 50 | recnd 10934 |
. . . . . . . 8
⊢ ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴 ≠ 𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑖 ∈ (1...𝑁)) → ((((√‘𝑆) + (√‘𝑇)) · (𝐵‘𝑖)) − ((√‘𝑇) · (𝐴‘𝑖))) ∈ ℂ) |
52 | 12 | recnd 10934 |
. . . . . . . 8
⊢ ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴 ≠ 𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑖 ∈ (1...𝑁)) → (√‘𝑆) ∈ ℂ) |
53 | 25 | gt0ne0d 11469 |
. . . . . . . . 9
⊢ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴 ≠ 𝐵) → (√‘𝑆) ≠ 0) |
54 | 53 | ad2antrr 722 |
. . . . . . . 8
⊢ ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴 ≠ 𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑖 ∈ (1...𝑁)) → (√‘𝑆) ≠ 0) |
55 | 51, 52, 54 | divcan2d 11683 |
. . . . . . 7
⊢ ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴 ≠ 𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑖 ∈ (1...𝑁)) → ((√‘𝑆) · (((((√‘𝑆) + (√‘𝑇)) · (𝐵‘𝑖)) − ((√‘𝑇) · (𝐴‘𝑖))) / (√‘𝑆))) = ((((√‘𝑆) + (√‘𝑇)) · (𝐵‘𝑖)) − ((√‘𝑇) · (𝐴‘𝑖)))) |
56 | 45, 55 | eqtrd 2778 |
. . . . . 6
⊢ ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴 ≠ 𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑖 ∈ (1...𝑁)) → ((√‘𝑆) · (𝐹‘𝑖)) = ((((√‘𝑆) + (√‘𝑇)) · (𝐵‘𝑖)) − ((√‘𝑇) · (𝐴‘𝑖)))) |
57 | 56 | oveq2d 7271 |
. . . . 5
⊢ ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴 ≠ 𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑖 ∈ (1...𝑁)) → (((√‘𝑇) · (𝐴‘𝑖)) + ((√‘𝑆) · (𝐹‘𝑖))) = (((√‘𝑇) · (𝐴‘𝑖)) + ((((√‘𝑆) + (√‘𝑇)) · (𝐵‘𝑖)) − ((√‘𝑇) · (𝐴‘𝑖))))) |
58 | 49 | recnd 10934 |
. . . . . 6
⊢ ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴 ≠ 𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑖 ∈ (1...𝑁)) → (((√‘𝑆) + (√‘𝑇)) · (𝐵‘𝑖)) ∈ ℂ) |
59 | 8, 58 | pncan3d 11265 |
. . . . 5
⊢ ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴 ≠ 𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑖 ∈ (1...𝑁)) → (((√‘𝑇) · (𝐴‘𝑖)) + ((((√‘𝑆) + (√‘𝑇)) · (𝐵‘𝑖)) − ((√‘𝑇) · (𝐴‘𝑖)))) = (((√‘𝑆) + (√‘𝑇)) · (𝐵‘𝑖))) |
60 | 57, 59 | eqtrd 2778 |
. . . 4
⊢ ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴 ≠ 𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑖 ∈ (1...𝑁)) → (((√‘𝑇) · (𝐴‘𝑖)) + ((√‘𝑆) · (𝐹‘𝑖))) = (((√‘𝑆) + (√‘𝑇)) · (𝐵‘𝑖))) |
61 | 7, 17 | readdcld 10935 |
. . . . . 6
⊢ ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴 ≠ 𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑖 ∈ (1...𝑁)) → (((√‘𝑇) · (𝐴‘𝑖)) + ((√‘𝑆) · (𝐹‘𝑖))) ∈ ℝ) |
62 | 61 | recnd 10934 |
. . . . 5
⊢ ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴 ≠ 𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑖 ∈ (1...𝑁)) → (((√‘𝑇) · (𝐴‘𝑖)) + ((√‘𝑆) · (𝐹‘𝑖))) ∈ ℂ) |
63 | 48 | recnd 10934 |
. . . . 5
⊢ ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴 ≠ 𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑖 ∈ (1...𝑁)) → (𝐵‘𝑖) ∈ ℂ) |
64 | 62, 63, 22, 34 | divmul2d 11714 |
. . . 4
⊢ ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴 ≠ 𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑖 ∈ (1...𝑁)) → (((((√‘𝑇) · (𝐴‘𝑖)) + ((√‘𝑆) · (𝐹‘𝑖))) / ((√‘𝑆) + (√‘𝑇))) = (𝐵‘𝑖) ↔ (((√‘𝑇) · (𝐴‘𝑖)) + ((√‘𝑆) · (𝐹‘𝑖))) = (((√‘𝑆) + (√‘𝑇)) · (𝐵‘𝑖)))) |
65 | 60, 64 | mpbird 256 |
. . 3
⊢ ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴 ≠ 𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑖 ∈ (1...𝑁)) → ((((√‘𝑇) · (𝐴‘𝑖)) + ((√‘𝑆) · (𝐹‘𝑖))) / ((√‘𝑆) + (√‘𝑇))) = (𝐵‘𝑖)) |
66 | 2 | recnd 10934 |
. . . . . . 7
⊢ ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) → (√‘𝑇) ∈ ℂ) |
67 | 66 | ad2antlr 723 |
. . . . . 6
⊢ ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴 ≠ 𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑖 ∈ (1...𝑁)) → (√‘𝑇) ∈ ℂ) |
68 | 6 | recnd 10934 |
. . . . . 6
⊢ ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴 ≠ 𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑖 ∈ (1...𝑁)) → (𝐴‘𝑖) ∈ ℂ) |
69 | 67, 68, 22, 34 | div23d 11718 |
. . . . 5
⊢ ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴 ≠ 𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑖 ∈ (1...𝑁)) → (((√‘𝑇) · (𝐴‘𝑖)) / ((√‘𝑆) + (√‘𝑇))) = (((√‘𝑇) / ((√‘𝑆) + (√‘𝑇))) · (𝐴‘𝑖))) |
70 | 22, 52, 22, 34 | divsubdird 11720 |
. . . . . . 7
⊢ ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴 ≠ 𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑖 ∈ (1...𝑁)) → ((((√‘𝑆) + (√‘𝑇)) − (√‘𝑆)) / ((√‘𝑆) + (√‘𝑇))) = ((((√‘𝑆) + (√‘𝑇)) / ((√‘𝑆) + (√‘𝑇))) −
((√‘𝑆) /
((√‘𝑆) +
(√‘𝑇))))) |
71 | 11 | recnd 10934 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴 ≠ 𝐵) → (√‘𝑆) ∈ ℂ) |
72 | | pncan2 11158 |
. . . . . . . . . 10
⊢
(((√‘𝑆)
∈ ℂ ∧ (√‘𝑇) ∈ ℂ) →
(((√‘𝑆) +
(√‘𝑇)) −
(√‘𝑆)) =
(√‘𝑇)) |
73 | 71, 66, 72 | syl2an 595 |
. . . . . . . . 9
⊢ (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴 ≠ 𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → (((√‘𝑆) + (√‘𝑇)) − (√‘𝑆)) = (√‘𝑇)) |
74 | 73 | adantr 480 |
. . . . . . . 8
⊢ ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴 ≠ 𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑖 ∈ (1...𝑁)) → (((√‘𝑆) + (√‘𝑇)) − (√‘𝑆)) = (√‘𝑇)) |
75 | 74 | oveq1d 7270 |
. . . . . . 7
⊢ ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴 ≠ 𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑖 ∈ (1...𝑁)) → ((((√‘𝑆) + (√‘𝑇)) − (√‘𝑆)) / ((√‘𝑆) + (√‘𝑇))) = ((√‘𝑇) / ((√‘𝑆) + (√‘𝑇)))) |
76 | 22, 34 | dividd 11679 |
. . . . . . . 8
⊢ ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴 ≠ 𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑖 ∈ (1...𝑁)) → (((√‘𝑆) + (√‘𝑇)) / ((√‘𝑆) + (√‘𝑇))) = 1) |
77 | 76 | oveq1d 7270 |
. . . . . . 7
⊢ ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴 ≠ 𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑖 ∈ (1...𝑁)) → ((((√‘𝑆) + (√‘𝑇)) / ((√‘𝑆) + (√‘𝑇))) −
((√‘𝑆) /
((√‘𝑆) +
(√‘𝑇)))) = (1
− ((√‘𝑆)
/ ((√‘𝑆) +
(√‘𝑇))))) |
78 | 70, 75, 77 | 3eqtr3d 2786 |
. . . . . 6
⊢ ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴 ≠ 𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑖 ∈ (1...𝑁)) → ((√‘𝑇) / ((√‘𝑆) + (√‘𝑇))) = (1 − ((√‘𝑆) / ((√‘𝑆) + (√‘𝑇))))) |
79 | 78 | oveq1d 7270 |
. . . . 5
⊢ ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴 ≠ 𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑖 ∈ (1...𝑁)) → (((√‘𝑇) / ((√‘𝑆) + (√‘𝑇))) · (𝐴‘𝑖)) = ((1 − ((√‘𝑆) / ((√‘𝑆) + (√‘𝑇)))) · (𝐴‘𝑖))) |
80 | 69, 79 | eqtrd 2778 |
. . . 4
⊢ ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴 ≠ 𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑖 ∈ (1...𝑁)) → (((√‘𝑇) · (𝐴‘𝑖)) / ((√‘𝑆) + (√‘𝑇))) = ((1 − ((√‘𝑆) / ((√‘𝑆) + (√‘𝑇)))) · (𝐴‘𝑖))) |
81 | 16 | recnd 10934 |
. . . . 5
⊢ ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴 ≠ 𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑖 ∈ (1...𝑁)) → (𝐹‘𝑖) ∈ ℂ) |
82 | 52, 81, 22, 34 | div23d 11718 |
. . . 4
⊢ ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴 ≠ 𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑖 ∈ (1...𝑁)) → (((√‘𝑆) · (𝐹‘𝑖)) / ((√‘𝑆) + (√‘𝑇))) = (((√‘𝑆) / ((√‘𝑆) + (√‘𝑇))) · (𝐹‘𝑖))) |
83 | 80, 82 | oveq12d 7273 |
. . 3
⊢ ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴 ≠ 𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑖 ∈ (1...𝑁)) → ((((√‘𝑇) · (𝐴‘𝑖)) / ((√‘𝑆) + (√‘𝑇))) + (((√‘𝑆) · (𝐹‘𝑖)) / ((√‘𝑆) + (√‘𝑇)))) = (((1 − ((√‘𝑆) / ((√‘𝑆) + (√‘𝑇)))) · (𝐴‘𝑖)) + (((√‘𝑆) / ((√‘𝑆) + (√‘𝑇))) · (𝐹‘𝑖)))) |
84 | 35, 65, 83 | 3eqtr3d 2786 |
. 2
⊢ ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴 ≠ 𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑖 ∈ (1...𝑁)) → (𝐵‘𝑖) = (((1 − ((√‘𝑆) / ((√‘𝑆) + (√‘𝑇)))) · (𝐴‘𝑖)) + (((√‘𝑆) / ((√‘𝑆) + (√‘𝑇))) · (𝐹‘𝑖)))) |
85 | 84 | ralrimiva 3107 |
1
⊢ (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴 ≠ 𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → ∀𝑖 ∈ (1...𝑁)(𝐵‘𝑖) = (((1 − ((√‘𝑆) / ((√‘𝑆) + (√‘𝑇)))) · (𝐴‘𝑖)) + (((√‘𝑆) / ((√‘𝑆) + (√‘𝑇))) · (𝐹‘𝑖)))) |