Proof of Theorem axsegconlem9
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | fveq2 6906 | . . . . . . . . . . . 12
⊢ (𝑘 = 𝑖 → (𝐵‘𝑘) = (𝐵‘𝑖)) | 
| 2 | 1 | oveq2d 7447 | . . . . . . . . . . 11
⊢ (𝑘 = 𝑖 → (((√‘𝑆) + (√‘𝑇)) · (𝐵‘𝑘)) = (((√‘𝑆) + (√‘𝑇)) · (𝐵‘𝑖))) | 
| 3 |  | fveq2 6906 | . . . . . . . . . . . 12
⊢ (𝑘 = 𝑖 → (𝐴‘𝑘) = (𝐴‘𝑖)) | 
| 4 | 3 | oveq2d 7447 | . . . . . . . . . . 11
⊢ (𝑘 = 𝑖 → ((√‘𝑇) · (𝐴‘𝑘)) = ((√‘𝑇) · (𝐴‘𝑖))) | 
| 5 | 2, 4 | oveq12d 7449 | . . . . . . . . . 10
⊢ (𝑘 = 𝑖 → ((((√‘𝑆) + (√‘𝑇)) · (𝐵‘𝑘)) − ((√‘𝑇) · (𝐴‘𝑘))) = ((((√‘𝑆) + (√‘𝑇)) · (𝐵‘𝑖)) − ((√‘𝑇) · (𝐴‘𝑖)))) | 
| 6 | 5 | oveq1d 7446 | . . . . . . . . 9
⊢ (𝑘 = 𝑖 → (((((√‘𝑆) + (√‘𝑇)) · (𝐵‘𝑘)) − ((√‘𝑇) · (𝐴‘𝑘))) / (√‘𝑆)) = (((((√‘𝑆) + (√‘𝑇)) · (𝐵‘𝑖)) − ((√‘𝑇) · (𝐴‘𝑖))) / (√‘𝑆))) | 
| 7 |  | axsegconlem8.3 | . . . . . . . . 9
⊢ 𝐹 = (𝑘 ∈ (1...𝑁) ↦ (((((√‘𝑆) + (√‘𝑇)) · (𝐵‘𝑘)) − ((√‘𝑇) · (𝐴‘𝑘))) / (√‘𝑆))) | 
| 8 |  | ovex 7464 | . . . . . . . . 9
⊢
(((((√‘𝑆) + (√‘𝑇)) · (𝐵‘𝑖)) − ((√‘𝑇) · (𝐴‘𝑖))) / (√‘𝑆)) ∈ V | 
| 9 | 6, 7, 8 | fvmpt 7016 | . . . . . . . 8
⊢ (𝑖 ∈ (1...𝑁) → (𝐹‘𝑖) = (((((√‘𝑆) + (√‘𝑇)) · (𝐵‘𝑖)) − ((√‘𝑇) · (𝐴‘𝑖))) / (√‘𝑆))) | 
| 10 | 9 | adantl 481 | . . . . . . 7
⊢ ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴 ≠ 𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑖 ∈ (1...𝑁)) → (𝐹‘𝑖) = (((((√‘𝑆) + (√‘𝑇)) · (𝐵‘𝑖)) − ((√‘𝑇) · (𝐴‘𝑖))) / (√‘𝑆))) | 
| 11 | 10 | oveq2d 7447 | . . . . . 6
⊢ ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴 ≠ 𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑖 ∈ (1...𝑁)) → ((𝐵‘𝑖) − (𝐹‘𝑖)) = ((𝐵‘𝑖) − (((((√‘𝑆) + (√‘𝑇)) · (𝐵‘𝑖)) − ((√‘𝑇) · (𝐴‘𝑖))) / (√‘𝑆)))) | 
| 12 |  | axsegconlem2.1 | . . . . . . . . . . . . 13
⊢ 𝑆 = Σ𝑝 ∈ (1...𝑁)(((𝐴‘𝑝) − (𝐵‘𝑝))↑2) | 
| 13 | 12 | axsegconlem4 28935 | . . . . . . . . . . . 12
⊢ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) → (√‘𝑆) ∈ ℝ) | 
| 14 | 13 | 3adant3 1133 | . . . . . . . . . . 11
⊢ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴 ≠ 𝐵) → (√‘𝑆) ∈ ℝ) | 
| 15 | 14 | ad2antrr 726 | . . . . . . . . . 10
⊢ ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴 ≠ 𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑖 ∈ (1...𝑁)) → (√‘𝑆) ∈ ℝ) | 
| 16 |  | simpl2 1193 | . . . . . . . . . . 11
⊢ (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴 ≠ 𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → 𝐵 ∈ (𝔼‘𝑁)) | 
| 17 |  | fveere 28916 | . . . . . . . . . . 11
⊢ ((𝐵 ∈ (𝔼‘𝑁) ∧ 𝑖 ∈ (1...𝑁)) → (𝐵‘𝑖) ∈ ℝ) | 
| 18 | 16, 17 | sylan 580 | . . . . . . . . . 10
⊢ ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴 ≠ 𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑖 ∈ (1...𝑁)) → (𝐵‘𝑖) ∈ ℝ) | 
| 19 | 15, 18 | remulcld 11291 | . . . . . . . . 9
⊢ ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴 ≠ 𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑖 ∈ (1...𝑁)) → ((√‘𝑆) · (𝐵‘𝑖)) ∈ ℝ) | 
| 20 | 19 | recnd 11289 | . . . . . . . 8
⊢ ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴 ≠ 𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑖 ∈ (1...𝑁)) → ((√‘𝑆) · (𝐵‘𝑖)) ∈ ℂ) | 
| 21 |  | axsegconlem7.2 | . . . . . . . . . . . . . 14
⊢ 𝑇 = Σ𝑝 ∈ (1...𝑁)(((𝐶‘𝑝) − (𝐷‘𝑝))↑2) | 
| 22 | 21 | axsegconlem4 28935 | . . . . . . . . . . . . 13
⊢ ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) → (√‘𝑇) ∈ ℝ) | 
| 23 |  | readdcl 11238 | . . . . . . . . . . . . 13
⊢
(((√‘𝑆)
∈ ℝ ∧ (√‘𝑇) ∈ ℝ) →
((√‘𝑆) +
(√‘𝑇)) ∈
ℝ) | 
| 24 | 14, 22, 23 | syl2an 596 | . . . . . . . . . . . 12
⊢ (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴 ≠ 𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → ((√‘𝑆) + (√‘𝑇)) ∈ ℝ) | 
| 25 | 24 | adantr 480 | . . . . . . . . . . 11
⊢ ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴 ≠ 𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑖 ∈ (1...𝑁)) → ((√‘𝑆) + (√‘𝑇)) ∈ ℝ) | 
| 26 | 25, 18 | remulcld 11291 | . . . . . . . . . 10
⊢ ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴 ≠ 𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑖 ∈ (1...𝑁)) → (((√‘𝑆) + (√‘𝑇)) · (𝐵‘𝑖)) ∈ ℝ) | 
| 27 | 22 | ad2antlr 727 | . . . . . . . . . . 11
⊢ ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴 ≠ 𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑖 ∈ (1...𝑁)) → (√‘𝑇) ∈ ℝ) | 
| 28 |  | simpl1 1192 | . . . . . . . . . . . 12
⊢ (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴 ≠ 𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → 𝐴 ∈ (𝔼‘𝑁)) | 
| 29 |  | fveere 28916 | . . . . . . . . . . . 12
⊢ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝑖 ∈ (1...𝑁)) → (𝐴‘𝑖) ∈ ℝ) | 
| 30 | 28, 29 | sylan 580 | . . . . . . . . . . 11
⊢ ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴 ≠ 𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑖 ∈ (1...𝑁)) → (𝐴‘𝑖) ∈ ℝ) | 
| 31 | 27, 30 | remulcld 11291 | . . . . . . . . . 10
⊢ ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴 ≠ 𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑖 ∈ (1...𝑁)) → ((√‘𝑇) · (𝐴‘𝑖)) ∈ ℝ) | 
| 32 | 26, 31 | resubcld 11691 | . . . . . . . . 9
⊢ ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴 ≠ 𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑖 ∈ (1...𝑁)) → ((((√‘𝑆) + (√‘𝑇)) · (𝐵‘𝑖)) − ((√‘𝑇) · (𝐴‘𝑖))) ∈ ℝ) | 
| 33 | 32 | recnd 11289 | . . . . . . . 8
⊢ ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴 ≠ 𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑖 ∈ (1...𝑁)) → ((((√‘𝑆) + (√‘𝑇)) · (𝐵‘𝑖)) − ((√‘𝑇) · (𝐴‘𝑖))) ∈ ℂ) | 
| 34 | 15 | recnd 11289 | . . . . . . . 8
⊢ ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴 ≠ 𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑖 ∈ (1...𝑁)) → (√‘𝑆) ∈ ℂ) | 
| 35 | 12 | axsegconlem6 28937 | . . . . . . . . . 10
⊢ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴 ≠ 𝐵) → 0 < (√‘𝑆)) | 
| 36 | 35 | gt0ne0d 11827 | . . . . . . . . 9
⊢ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴 ≠ 𝐵) → (√‘𝑆) ≠ 0) | 
| 37 | 36 | ad2antrr 726 | . . . . . . . 8
⊢ ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴 ≠ 𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑖 ∈ (1...𝑁)) → (√‘𝑆) ≠ 0) | 
| 38 | 20, 33, 34, 37 | divsubdird 12082 | . . . . . . 7
⊢ ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴 ≠ 𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑖 ∈ (1...𝑁)) → ((((√‘𝑆) · (𝐵‘𝑖)) − ((((√‘𝑆) + (√‘𝑇)) · (𝐵‘𝑖)) − ((√‘𝑇) · (𝐴‘𝑖)))) / (√‘𝑆)) = ((((√‘𝑆) · (𝐵‘𝑖)) / (√‘𝑆)) − (((((√‘𝑆) + (√‘𝑇)) · (𝐵‘𝑖)) − ((√‘𝑇) · (𝐴‘𝑖))) / (√‘𝑆)))) | 
| 39 | 26 | recnd 11289 | . . . . . . . . . 10
⊢ ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴 ≠ 𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑖 ∈ (1...𝑁)) → (((√‘𝑆) + (√‘𝑇)) · (𝐵‘𝑖)) ∈ ℂ) | 
| 40 | 31 | recnd 11289 | . . . . . . . . . 10
⊢ ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴 ≠ 𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑖 ∈ (1...𝑁)) → ((√‘𝑇) · (𝐴‘𝑖)) ∈ ℂ) | 
| 41 | 20, 39, 40 | subsubd 11648 | . . . . . . . . 9
⊢ ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴 ≠ 𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑖 ∈ (1...𝑁)) → (((√‘𝑆) · (𝐵‘𝑖)) − ((((√‘𝑆) + (√‘𝑇)) · (𝐵‘𝑖)) − ((√‘𝑇) · (𝐴‘𝑖)))) = ((((√‘𝑆) · (𝐵‘𝑖)) − (((√‘𝑆) + (√‘𝑇)) · (𝐵‘𝑖))) + ((√‘𝑇) · (𝐴‘𝑖)))) | 
| 42 | 27 | recnd 11289 | . . . . . . . . . . 11
⊢ ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴 ≠ 𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑖 ∈ (1...𝑁)) → (√‘𝑇) ∈ ℂ) | 
| 43 | 18 | renegcld 11690 | . . . . . . . . . . . 12
⊢ ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴 ≠ 𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑖 ∈ (1...𝑁)) → -(𝐵‘𝑖) ∈ ℝ) | 
| 44 | 43 | recnd 11289 | . . . . . . . . . . 11
⊢ ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴 ≠ 𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑖 ∈ (1...𝑁)) → -(𝐵‘𝑖) ∈ ℂ) | 
| 45 | 30 | recnd 11289 | . . . . . . . . . . 11
⊢ ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴 ≠ 𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑖 ∈ (1...𝑁)) → (𝐴‘𝑖) ∈ ℂ) | 
| 46 | 42, 44, 45 | adddid 11285 | . . . . . . . . . 10
⊢ ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴 ≠ 𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑖 ∈ (1...𝑁)) → ((√‘𝑇) · (-(𝐵‘𝑖) + (𝐴‘𝑖))) = (((√‘𝑇) · -(𝐵‘𝑖)) + ((√‘𝑇) · (𝐴‘𝑖)))) | 
| 47 | 44, 45 | addcomd 11463 | . . . . . . . . . . . 12
⊢ ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴 ≠ 𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑖 ∈ (1...𝑁)) → (-(𝐵‘𝑖) + (𝐴‘𝑖)) = ((𝐴‘𝑖) + -(𝐵‘𝑖))) | 
| 48 | 18 | recnd 11289 | . . . . . . . . . . . . 13
⊢ ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴 ≠ 𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑖 ∈ (1...𝑁)) → (𝐵‘𝑖) ∈ ℂ) | 
| 49 | 45, 48 | negsubd 11626 | . . . . . . . . . . . 12
⊢ ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴 ≠ 𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑖 ∈ (1...𝑁)) → ((𝐴‘𝑖) + -(𝐵‘𝑖)) = ((𝐴‘𝑖) − (𝐵‘𝑖))) | 
| 50 | 47, 49 | eqtrd 2777 | . . . . . . . . . . 11
⊢ ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴 ≠ 𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑖 ∈ (1...𝑁)) → (-(𝐵‘𝑖) + (𝐴‘𝑖)) = ((𝐴‘𝑖) − (𝐵‘𝑖))) | 
| 51 | 50 | oveq2d 7447 | . . . . . . . . . 10
⊢ ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴 ≠ 𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑖 ∈ (1...𝑁)) → ((√‘𝑇) · (-(𝐵‘𝑖) + (𝐴‘𝑖))) = ((√‘𝑇) · ((𝐴‘𝑖) − (𝐵‘𝑖)))) | 
| 52 | 25 | recnd 11289 | . . . . . . . . . . . . . . 15
⊢ ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴 ≠ 𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑖 ∈ (1...𝑁)) → ((√‘𝑆) + (√‘𝑇)) ∈ ℂ) | 
| 53 | 52, 34 | negsubdi2d 11636 | . . . . . . . . . . . . . 14
⊢ ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴 ≠ 𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑖 ∈ (1...𝑁)) → -(((√‘𝑆) + (√‘𝑇)) − (√‘𝑆)) = ((√‘𝑆) − ((√‘𝑆) + (√‘𝑇)))) | 
| 54 | 34, 42 | pncan2d 11622 | . . . . . . . . . . . . . . 15
⊢ ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴 ≠ 𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑖 ∈ (1...𝑁)) → (((√‘𝑆) + (√‘𝑇)) − (√‘𝑆)) = (√‘𝑇)) | 
| 55 | 54 | negeqd 11502 | . . . . . . . . . . . . . 14
⊢ ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴 ≠ 𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑖 ∈ (1...𝑁)) → -(((√‘𝑆) + (√‘𝑇)) − (√‘𝑆)) = -(√‘𝑇)) | 
| 56 | 53, 55 | eqtr3d 2779 | . . . . . . . . . . . . 13
⊢ ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴 ≠ 𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑖 ∈ (1...𝑁)) → ((√‘𝑆) − ((√‘𝑆) + (√‘𝑇))) = -(√‘𝑇)) | 
| 57 | 56 | oveq1d 7446 | . . . . . . . . . . . 12
⊢ ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴 ≠ 𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑖 ∈ (1...𝑁)) → (((√‘𝑆) − ((√‘𝑆) + (√‘𝑇))) · (𝐵‘𝑖)) = (-(√‘𝑇) · (𝐵‘𝑖))) | 
| 58 | 34, 52, 48 | subdird 11720 | . . . . . . . . . . . 12
⊢ ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴 ≠ 𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑖 ∈ (1...𝑁)) → (((√‘𝑆) − ((√‘𝑆) + (√‘𝑇))) · (𝐵‘𝑖)) = (((√‘𝑆) · (𝐵‘𝑖)) − (((√‘𝑆) + (√‘𝑇)) · (𝐵‘𝑖)))) | 
| 59 |  | mulneg12 11701 | . . . . . . . . . . . . 13
⊢
(((√‘𝑇)
∈ ℂ ∧ (𝐵‘𝑖) ∈ ℂ) →
(-(√‘𝑇)
· (𝐵‘𝑖)) = ((√‘𝑇) · -(𝐵‘𝑖))) | 
| 60 | 42, 48, 59 | syl2anc 584 | . . . . . . . . . . . 12
⊢ ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴 ≠ 𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑖 ∈ (1...𝑁)) → (-(√‘𝑇) · (𝐵‘𝑖)) = ((√‘𝑇) · -(𝐵‘𝑖))) | 
| 61 | 57, 58, 60 | 3eqtr3rd 2786 | . . . . . . . . . . 11
⊢ ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴 ≠ 𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑖 ∈ (1...𝑁)) → ((√‘𝑇) · -(𝐵‘𝑖)) = (((√‘𝑆) · (𝐵‘𝑖)) − (((√‘𝑆) + (√‘𝑇)) · (𝐵‘𝑖)))) | 
| 62 | 61 | oveq1d 7446 | . . . . . . . . . 10
⊢ ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴 ≠ 𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑖 ∈ (1...𝑁)) → (((√‘𝑇) · -(𝐵‘𝑖)) + ((√‘𝑇) · (𝐴‘𝑖))) = ((((√‘𝑆) · (𝐵‘𝑖)) − (((√‘𝑆) + (√‘𝑇)) · (𝐵‘𝑖))) + ((√‘𝑇) · (𝐴‘𝑖)))) | 
| 63 | 46, 51, 62 | 3eqtr3rd 2786 | . . . . . . . . 9
⊢ ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴 ≠ 𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑖 ∈ (1...𝑁)) → ((((√‘𝑆) · (𝐵‘𝑖)) − (((√‘𝑆) + (√‘𝑇)) · (𝐵‘𝑖))) + ((√‘𝑇) · (𝐴‘𝑖))) = ((√‘𝑇) · ((𝐴‘𝑖) − (𝐵‘𝑖)))) | 
| 64 | 41, 63 | eqtrd 2777 | . . . . . . . 8
⊢ ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴 ≠ 𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑖 ∈ (1...𝑁)) → (((√‘𝑆) · (𝐵‘𝑖)) − ((((√‘𝑆) + (√‘𝑇)) · (𝐵‘𝑖)) − ((√‘𝑇) · (𝐴‘𝑖)))) = ((√‘𝑇) · ((𝐴‘𝑖) − (𝐵‘𝑖)))) | 
| 65 | 64 | oveq1d 7446 | . . . . . . 7
⊢ ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴 ≠ 𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑖 ∈ (1...𝑁)) → ((((√‘𝑆) · (𝐵‘𝑖)) − ((((√‘𝑆) + (√‘𝑇)) · (𝐵‘𝑖)) − ((√‘𝑇) · (𝐴‘𝑖)))) / (√‘𝑆)) = (((√‘𝑇) · ((𝐴‘𝑖) − (𝐵‘𝑖))) / (√‘𝑆))) | 
| 66 | 48, 34, 37 | divcan3d 12048 | . . . . . . . 8
⊢ ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴 ≠ 𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑖 ∈ (1...𝑁)) → (((√‘𝑆) · (𝐵‘𝑖)) / (√‘𝑆)) = (𝐵‘𝑖)) | 
| 67 | 66 | oveq1d 7446 | . . . . . . 7
⊢ ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴 ≠ 𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑖 ∈ (1...𝑁)) → ((((√‘𝑆) · (𝐵‘𝑖)) / (√‘𝑆)) − (((((√‘𝑆) + (√‘𝑇)) · (𝐵‘𝑖)) − ((√‘𝑇) · (𝐴‘𝑖))) / (√‘𝑆))) = ((𝐵‘𝑖) − (((((√‘𝑆) + (√‘𝑇)) · (𝐵‘𝑖)) − ((√‘𝑇) · (𝐴‘𝑖))) / (√‘𝑆)))) | 
| 68 | 38, 65, 67 | 3eqtr3rd 2786 | . . . . . 6
⊢ ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴 ≠ 𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑖 ∈ (1...𝑁)) → ((𝐵‘𝑖) − (((((√‘𝑆) + (√‘𝑇)) · (𝐵‘𝑖)) − ((√‘𝑇) · (𝐴‘𝑖))) / (√‘𝑆))) = (((√‘𝑇) · ((𝐴‘𝑖) − (𝐵‘𝑖))) / (√‘𝑆))) | 
| 69 | 11, 68 | eqtrd 2777 | . . . . 5
⊢ ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴 ≠ 𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑖 ∈ (1...𝑁)) → ((𝐵‘𝑖) − (𝐹‘𝑖)) = (((√‘𝑇) · ((𝐴‘𝑖) − (𝐵‘𝑖))) / (√‘𝑆))) | 
| 70 | 69 | oveq1d 7446 | . . . 4
⊢ ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴 ≠ 𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑖 ∈ (1...𝑁)) → (((𝐵‘𝑖) − (𝐹‘𝑖))↑2) = ((((√‘𝑇) · ((𝐴‘𝑖) − (𝐵‘𝑖))) / (√‘𝑆))↑2)) | 
| 71 | 30, 18 | resubcld 11691 | . . . . . . 7
⊢ ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴 ≠ 𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑖 ∈ (1...𝑁)) → ((𝐴‘𝑖) − (𝐵‘𝑖)) ∈ ℝ) | 
| 72 | 27, 71 | remulcld 11291 | . . . . . 6
⊢ ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴 ≠ 𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑖 ∈ (1...𝑁)) → ((√‘𝑇) · ((𝐴‘𝑖) − (𝐵‘𝑖))) ∈ ℝ) | 
| 73 | 72 | recnd 11289 | . . . . 5
⊢ ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴 ≠ 𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑖 ∈ (1...𝑁)) → ((√‘𝑇) · ((𝐴‘𝑖) − (𝐵‘𝑖))) ∈ ℂ) | 
| 74 | 73, 34, 37 | sqdivd 14199 | . . . 4
⊢ ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴 ≠ 𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑖 ∈ (1...𝑁)) → ((((√‘𝑇) · ((𝐴‘𝑖) − (𝐵‘𝑖))) / (√‘𝑆))↑2) = ((((√‘𝑇) · ((𝐴‘𝑖) − (𝐵‘𝑖)))↑2) / ((√‘𝑆)↑2))) | 
| 75 | 71 | recnd 11289 | . . . . . . 7
⊢ ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴 ≠ 𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑖 ∈ (1...𝑁)) → ((𝐴‘𝑖) − (𝐵‘𝑖)) ∈ ℂ) | 
| 76 | 42, 75 | sqmuld 14198 | . . . . . 6
⊢ ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴 ≠ 𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑖 ∈ (1...𝑁)) → (((√‘𝑇) · ((𝐴‘𝑖) − (𝐵‘𝑖)))↑2) = (((√‘𝑇)↑2) · (((𝐴‘𝑖) − (𝐵‘𝑖))↑2))) | 
| 77 | 21 | axsegconlem2 28933 | . . . . . . . . 9
⊢ ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) → 𝑇 ∈ ℝ) | 
| 78 | 77 | ad2antlr 727 | . . . . . . . 8
⊢ ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴 ≠ 𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑖 ∈ (1...𝑁)) → 𝑇 ∈ ℝ) | 
| 79 | 21 | axsegconlem3 28934 | . . . . . . . . 9
⊢ ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) → 0 ≤ 𝑇) | 
| 80 | 79 | ad2antlr 727 | . . . . . . . 8
⊢ ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴 ≠ 𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑖 ∈ (1...𝑁)) → 0 ≤ 𝑇) | 
| 81 |  | resqrtth 15294 | . . . . . . . 8
⊢ ((𝑇 ∈ ℝ ∧ 0 ≤
𝑇) →
((√‘𝑇)↑2)
= 𝑇) | 
| 82 | 78, 80, 81 | syl2anc 584 | . . . . . . 7
⊢ ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴 ≠ 𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑖 ∈ (1...𝑁)) → ((√‘𝑇)↑2) = 𝑇) | 
| 83 | 82 | oveq1d 7446 | . . . . . 6
⊢ ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴 ≠ 𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑖 ∈ (1...𝑁)) → (((√‘𝑇)↑2) · (((𝐴‘𝑖) − (𝐵‘𝑖))↑2)) = (𝑇 · (((𝐴‘𝑖) − (𝐵‘𝑖))↑2))) | 
| 84 | 76, 83 | eqtrd 2777 | . . . . 5
⊢ ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴 ≠ 𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑖 ∈ (1...𝑁)) → (((√‘𝑇) · ((𝐴‘𝑖) − (𝐵‘𝑖)))↑2) = (𝑇 · (((𝐴‘𝑖) − (𝐵‘𝑖))↑2))) | 
| 85 | 12 | axsegconlem2 28933 | . . . . . . . 8
⊢ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) → 𝑆 ∈ ℝ) | 
| 86 | 12 | axsegconlem3 28934 | . . . . . . . 8
⊢ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) → 0 ≤ 𝑆) | 
| 87 |  | resqrtth 15294 | . . . . . . . 8
⊢ ((𝑆 ∈ ℝ ∧ 0 ≤
𝑆) →
((√‘𝑆)↑2)
= 𝑆) | 
| 88 | 85, 86, 87 | syl2anc 584 | . . . . . . 7
⊢ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) → ((√‘𝑆)↑2) = 𝑆) | 
| 89 | 88 | 3adant3 1133 | . . . . . 6
⊢ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴 ≠ 𝐵) → ((√‘𝑆)↑2) = 𝑆) | 
| 90 | 89 | ad2antrr 726 | . . . . 5
⊢ ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴 ≠ 𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑖 ∈ (1...𝑁)) → ((√‘𝑆)↑2) = 𝑆) | 
| 91 | 84, 90 | oveq12d 7449 | . . . 4
⊢ ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴 ≠ 𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑖 ∈ (1...𝑁)) → ((((√‘𝑇) · ((𝐴‘𝑖) − (𝐵‘𝑖)))↑2) / ((√‘𝑆)↑2)) = ((𝑇 · (((𝐴‘𝑖) − (𝐵‘𝑖))↑2)) / 𝑆)) | 
| 92 | 70, 74, 91 | 3eqtrd 2781 | . . 3
⊢ ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴 ≠ 𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑖 ∈ (1...𝑁)) → (((𝐵‘𝑖) − (𝐹‘𝑖))↑2) = ((𝑇 · (((𝐴‘𝑖) − (𝐵‘𝑖))↑2)) / 𝑆)) | 
| 93 | 92 | sumeq2dv 15738 | . 2
⊢ (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴 ≠ 𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → Σ𝑖 ∈ (1...𝑁)(((𝐵‘𝑖) − (𝐹‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)((𝑇 · (((𝐴‘𝑖) − (𝐵‘𝑖))↑2)) / 𝑆)) | 
| 94 |  | fzfid 14014 | . . . . 5
⊢ (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴 ≠ 𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → (1...𝑁) ∈ Fin) | 
| 95 | 77 | adantl 481 | . . . . . 6
⊢ (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴 ≠ 𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → 𝑇 ∈ ℝ) | 
| 96 | 95 | recnd 11289 | . . . . 5
⊢ (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴 ≠ 𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → 𝑇 ∈ ℂ) | 
| 97 | 71 | resqcld 14165 | . . . . . 6
⊢ ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴 ≠ 𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑖 ∈ (1...𝑁)) → (((𝐴‘𝑖) − (𝐵‘𝑖))↑2) ∈ ℝ) | 
| 98 | 97 | recnd 11289 | . . . . 5
⊢ ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴 ≠ 𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑖 ∈ (1...𝑁)) → (((𝐴‘𝑖) − (𝐵‘𝑖))↑2) ∈ ℂ) | 
| 99 | 94, 96, 98 | fsummulc2 15820 | . . . 4
⊢ (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴 ≠ 𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → (𝑇 · Σ𝑖 ∈ (1...𝑁)(((𝐴‘𝑖) − (𝐵‘𝑖))↑2)) = Σ𝑖 ∈ (1...𝑁)(𝑇 · (((𝐴‘𝑖) − (𝐵‘𝑖))↑2))) | 
| 100 | 99 | oveq1d 7446 | . . 3
⊢ (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴 ≠ 𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → ((𝑇 · Σ𝑖 ∈ (1...𝑁)(((𝐴‘𝑖) − (𝐵‘𝑖))↑2)) / 𝑆) = (Σ𝑖 ∈ (1...𝑁)(𝑇 · (((𝐴‘𝑖) − (𝐵‘𝑖))↑2)) / 𝑆)) | 
| 101 |  | fveq2 6906 | . . . . . . . . 9
⊢ (𝑝 = 𝑖 → (𝐶‘𝑝) = (𝐶‘𝑖)) | 
| 102 |  | fveq2 6906 | . . . . . . . . 9
⊢ (𝑝 = 𝑖 → (𝐷‘𝑝) = (𝐷‘𝑖)) | 
| 103 | 101, 102 | oveq12d 7449 | . . . . . . . 8
⊢ (𝑝 = 𝑖 → ((𝐶‘𝑝) − (𝐷‘𝑝)) = ((𝐶‘𝑖) − (𝐷‘𝑖))) | 
| 104 | 103 | oveq1d 7446 | . . . . . . 7
⊢ (𝑝 = 𝑖 → (((𝐶‘𝑝) − (𝐷‘𝑝))↑2) = (((𝐶‘𝑖) − (𝐷‘𝑖))↑2)) | 
| 105 | 104 | cbvsumv 15732 | . . . . . 6
⊢
Σ𝑝 ∈
(1...𝑁)(((𝐶‘𝑝) − (𝐷‘𝑝))↑2) = Σ𝑖 ∈ (1...𝑁)(((𝐶‘𝑖) − (𝐷‘𝑖))↑2) | 
| 106 | 21, 105 | eqtri 2765 | . . . . 5
⊢ 𝑇 = Σ𝑖 ∈ (1...𝑁)(((𝐶‘𝑖) − (𝐷‘𝑖))↑2) | 
| 107 |  | fveq2 6906 | . . . . . . . . 9
⊢ (𝑖 = 𝑝 → (𝐴‘𝑖) = (𝐴‘𝑝)) | 
| 108 |  | fveq2 6906 | . . . . . . . . 9
⊢ (𝑖 = 𝑝 → (𝐵‘𝑖) = (𝐵‘𝑝)) | 
| 109 | 107, 108 | oveq12d 7449 | . . . . . . . 8
⊢ (𝑖 = 𝑝 → ((𝐴‘𝑖) − (𝐵‘𝑖)) = ((𝐴‘𝑝) − (𝐵‘𝑝))) | 
| 110 | 109 | oveq1d 7446 | . . . . . . 7
⊢ (𝑖 = 𝑝 → (((𝐴‘𝑖) − (𝐵‘𝑖))↑2) = (((𝐴‘𝑝) − (𝐵‘𝑝))↑2)) | 
| 111 | 110 | cbvsumv 15732 | . . . . . 6
⊢
Σ𝑖 ∈
(1...𝑁)(((𝐴‘𝑖) − (𝐵‘𝑖))↑2) = Σ𝑝 ∈ (1...𝑁)(((𝐴‘𝑝) − (𝐵‘𝑝))↑2) | 
| 112 | 111, 12 | eqtr4i 2768 | . . . . 5
⊢
Σ𝑖 ∈
(1...𝑁)(((𝐴‘𝑖) − (𝐵‘𝑖))↑2) = 𝑆 | 
| 113 | 106, 112 | oveq12i 7443 | . . . 4
⊢ (𝑇 · Σ𝑖 ∈ (1...𝑁)(((𝐴‘𝑖) − (𝐵‘𝑖))↑2)) = (Σ𝑖 ∈ (1...𝑁)(((𝐶‘𝑖) − (𝐷‘𝑖))↑2) · 𝑆) | 
| 114 |  | eqid 2737 | . . . . . . . . . 10
⊢
Σ𝑖 ∈
(1...𝑁)(((𝐴‘𝑖) − (𝐵‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)(((𝐴‘𝑖) − (𝐵‘𝑖))↑2) | 
| 115 | 114 | axsegconlem2 28933 | . . . . . . . . 9
⊢ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) → Σ𝑖 ∈ (1...𝑁)(((𝐴‘𝑖) − (𝐵‘𝑖))↑2) ∈ ℝ) | 
| 116 | 115 | 3adant3 1133 | . . . . . . . 8
⊢ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴 ≠ 𝐵) → Σ𝑖 ∈ (1...𝑁)(((𝐴‘𝑖) − (𝐵‘𝑖))↑2) ∈ ℝ) | 
| 117 | 116 | adantr 480 | . . . . . . 7
⊢ (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴 ≠ 𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → Σ𝑖 ∈ (1...𝑁)(((𝐴‘𝑖) − (𝐵‘𝑖))↑2) ∈ ℝ) | 
| 118 | 95, 117 | remulcld 11291 | . . . . . 6
⊢ (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴 ≠ 𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → (𝑇 · Σ𝑖 ∈ (1...𝑁)(((𝐴‘𝑖) − (𝐵‘𝑖))↑2)) ∈ ℝ) | 
| 119 | 118 | recnd 11289 | . . . . 5
⊢ (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴 ≠ 𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → (𝑇 · Σ𝑖 ∈ (1...𝑁)(((𝐴‘𝑖) − (𝐵‘𝑖))↑2)) ∈ ℂ) | 
| 120 |  | eqid 2737 | . . . . . . . 8
⊢
Σ𝑖 ∈
(1...𝑁)(((𝐶‘𝑖) − (𝐷‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)(((𝐶‘𝑖) − (𝐷‘𝑖))↑2) | 
| 121 | 120 | axsegconlem2 28933 | . . . . . . 7
⊢ ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) → Σ𝑖 ∈ (1...𝑁)(((𝐶‘𝑖) − (𝐷‘𝑖))↑2) ∈ ℝ) | 
| 122 | 121 | adantl 481 | . . . . . 6
⊢ (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴 ≠ 𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → Σ𝑖 ∈ (1...𝑁)(((𝐶‘𝑖) − (𝐷‘𝑖))↑2) ∈ ℝ) | 
| 123 | 122 | recnd 11289 | . . . . 5
⊢ (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴 ≠ 𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → Σ𝑖 ∈ (1...𝑁)(((𝐶‘𝑖) − (𝐷‘𝑖))↑2) ∈ ℂ) | 
| 124 | 85 | 3adant3 1133 | . . . . . . 7
⊢ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴 ≠ 𝐵) → 𝑆 ∈ ℝ) | 
| 125 | 124 | adantr 480 | . . . . . 6
⊢ (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴 ≠ 𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → 𝑆 ∈ ℝ) | 
| 126 | 125 | recnd 11289 | . . . . 5
⊢ (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴 ≠ 𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → 𝑆 ∈ ℂ) | 
| 127 | 86 | 3adant3 1133 | . . . . . . . 8
⊢ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴 ≠ 𝐵) → 0 ≤ 𝑆) | 
| 128 |  | sqrt00 15302 | . . . . . . . . 9
⊢ ((𝑆 ∈ ℝ ∧ 0 ≤
𝑆) →
((√‘𝑆) = 0
↔ 𝑆 =
0)) | 
| 129 | 128 | necon3bid 2985 | . . . . . . . 8
⊢ ((𝑆 ∈ ℝ ∧ 0 ≤
𝑆) →
((√‘𝑆) ≠ 0
↔ 𝑆 ≠
0)) | 
| 130 | 124, 127,
129 | syl2anc 584 | . . . . . . 7
⊢ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴 ≠ 𝐵) → ((√‘𝑆) ≠ 0 ↔ 𝑆 ≠ 0)) | 
| 131 | 36, 130 | mpbid 232 | . . . . . 6
⊢ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴 ≠ 𝐵) → 𝑆 ≠ 0) | 
| 132 | 131 | adantr 480 | . . . . 5
⊢ (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴 ≠ 𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → 𝑆 ≠ 0) | 
| 133 | 119, 123,
126, 132 | divmul3d 12077 | . . . 4
⊢ (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴 ≠ 𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → (((𝑇 · Σ𝑖 ∈ (1...𝑁)(((𝐴‘𝑖) − (𝐵‘𝑖))↑2)) / 𝑆) = Σ𝑖 ∈ (1...𝑁)(((𝐶‘𝑖) − (𝐷‘𝑖))↑2) ↔ (𝑇 · Σ𝑖 ∈ (1...𝑁)(((𝐴‘𝑖) − (𝐵‘𝑖))↑2)) = (Σ𝑖 ∈ (1...𝑁)(((𝐶‘𝑖) − (𝐷‘𝑖))↑2) · 𝑆))) | 
| 134 | 113, 133 | mpbiri 258 | . . 3
⊢ (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴 ≠ 𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → ((𝑇 · Σ𝑖 ∈ (1...𝑁)(((𝐴‘𝑖) − (𝐵‘𝑖))↑2)) / 𝑆) = Σ𝑖 ∈ (1...𝑁)(((𝐶‘𝑖) − (𝐷‘𝑖))↑2)) | 
| 135 | 78, 97 | remulcld 11291 | . . . . 5
⊢ ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴 ≠ 𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑖 ∈ (1...𝑁)) → (𝑇 · (((𝐴‘𝑖) − (𝐵‘𝑖))↑2)) ∈ ℝ) | 
| 136 | 135 | recnd 11289 | . . . 4
⊢ ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴 ≠ 𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑖 ∈ (1...𝑁)) → (𝑇 · (((𝐴‘𝑖) − (𝐵‘𝑖))↑2)) ∈ ℂ) | 
| 137 | 94, 126, 136, 132 | fsumdivc 15822 | . . 3
⊢ (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴 ≠ 𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → (Σ𝑖 ∈ (1...𝑁)(𝑇 · (((𝐴‘𝑖) − (𝐵‘𝑖))↑2)) / 𝑆) = Σ𝑖 ∈ (1...𝑁)((𝑇 · (((𝐴‘𝑖) − (𝐵‘𝑖))↑2)) / 𝑆)) | 
| 138 | 100, 134,
137 | 3eqtr3rd 2786 | . 2
⊢ (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴 ≠ 𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → Σ𝑖 ∈ (1...𝑁)((𝑇 · (((𝐴‘𝑖) − (𝐵‘𝑖))↑2)) / 𝑆) = Σ𝑖 ∈ (1...𝑁)(((𝐶‘𝑖) − (𝐷‘𝑖))↑2)) | 
| 139 | 93, 138 | eqtrd 2777 | 1
⊢ (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴 ≠ 𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → Σ𝑖 ∈ (1...𝑁)(((𝐵‘𝑖) − (𝐹‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)(((𝐶‘𝑖) − (𝐷‘𝑖))↑2)) |