MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axsegconlem9 Structured version   Visualization version   GIF version

Theorem axsegconlem9 26719
Description: Lemma for axsegcon 26721. Show that 𝐵𝐹 is congruent to 𝐶𝐷. (Contributed by Scott Fenton, 19-Sep-2013.)
Hypotheses
Ref Expression
axsegconlem2.1 𝑆 = Σ𝑝 ∈ (1...𝑁)(((𝐴𝑝) − (𝐵𝑝))↑2)
axsegconlem7.2 𝑇 = Σ𝑝 ∈ (1...𝑁)(((𝐶𝑝) − (𝐷𝑝))↑2)
axsegconlem8.3 𝐹 = (𝑘 ∈ (1...𝑁) ↦ (((((√‘𝑆) + (√‘𝑇)) · (𝐵𝑘)) − ((√‘𝑇) · (𝐴𝑘))) / (√‘𝑆)))
Assertion
Ref Expression
axsegconlem9 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → Σ𝑖 ∈ (1...𝑁)(((𝐵𝑖) − (𝐹𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐷𝑖))↑2))
Distinct variable groups:   𝐴,𝑝   𝐵,𝑝   𝐶,𝑝   𝐷,𝑝   𝑁,𝑝   𝐴,𝑖,𝑘   𝐵,𝑖,𝑘   𝐶,𝑖,𝑘   𝐷,𝑖,𝑘   𝑖,𝑁,𝑘   𝑆,𝑖,𝑘   𝑇,𝑖,𝑘   𝑖,𝑝
Allowed substitution hints:   𝑆(𝑝)   𝑇(𝑝)   𝐹(𝑖,𝑘,𝑝)

Proof of Theorem axsegconlem9
StepHypRef Expression
1 fveq2 6645 . . . . . . . . . . . 12 (𝑘 = 𝑖 → (𝐵𝑘) = (𝐵𝑖))
21oveq2d 7151 . . . . . . . . . . 11 (𝑘 = 𝑖 → (((√‘𝑆) + (√‘𝑇)) · (𝐵𝑘)) = (((√‘𝑆) + (√‘𝑇)) · (𝐵𝑖)))
3 fveq2 6645 . . . . . . . . . . . 12 (𝑘 = 𝑖 → (𝐴𝑘) = (𝐴𝑖))
43oveq2d 7151 . . . . . . . . . . 11 (𝑘 = 𝑖 → ((√‘𝑇) · (𝐴𝑘)) = ((√‘𝑇) · (𝐴𝑖)))
52, 4oveq12d 7153 . . . . . . . . . 10 (𝑘 = 𝑖 → ((((√‘𝑆) + (√‘𝑇)) · (𝐵𝑘)) − ((√‘𝑇) · (𝐴𝑘))) = ((((√‘𝑆) + (√‘𝑇)) · (𝐵𝑖)) − ((√‘𝑇) · (𝐴𝑖))))
65oveq1d 7150 . . . . . . . . 9 (𝑘 = 𝑖 → (((((√‘𝑆) + (√‘𝑇)) · (𝐵𝑘)) − ((√‘𝑇) · (𝐴𝑘))) / (√‘𝑆)) = (((((√‘𝑆) + (√‘𝑇)) · (𝐵𝑖)) − ((√‘𝑇) · (𝐴𝑖))) / (√‘𝑆)))
7 axsegconlem8.3 . . . . . . . . 9 𝐹 = (𝑘 ∈ (1...𝑁) ↦ (((((√‘𝑆) + (√‘𝑇)) · (𝐵𝑘)) − ((√‘𝑇) · (𝐴𝑘))) / (√‘𝑆)))
8 ovex 7168 . . . . . . . . 9 (((((√‘𝑆) + (√‘𝑇)) · (𝐵𝑖)) − ((√‘𝑇) · (𝐴𝑖))) / (√‘𝑆)) ∈ V
96, 7, 8fvmpt 6745 . . . . . . . 8 (𝑖 ∈ (1...𝑁) → (𝐹𝑖) = (((((√‘𝑆) + (√‘𝑇)) · (𝐵𝑖)) − ((√‘𝑇) · (𝐴𝑖))) / (√‘𝑆)))
109adantl 485 . . . . . . 7 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑖 ∈ (1...𝑁)) → (𝐹𝑖) = (((((√‘𝑆) + (√‘𝑇)) · (𝐵𝑖)) − ((√‘𝑇) · (𝐴𝑖))) / (√‘𝑆)))
1110oveq2d 7151 . . . . . 6 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑖 ∈ (1...𝑁)) → ((𝐵𝑖) − (𝐹𝑖)) = ((𝐵𝑖) − (((((√‘𝑆) + (√‘𝑇)) · (𝐵𝑖)) − ((√‘𝑇) · (𝐴𝑖))) / (√‘𝑆))))
12 axsegconlem2.1 . . . . . . . . . . . . 13 𝑆 = Σ𝑝 ∈ (1...𝑁)(((𝐴𝑝) − (𝐵𝑝))↑2)
1312axsegconlem4 26714 . . . . . . . . . . . 12 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) → (√‘𝑆) ∈ ℝ)
14133adant3 1129 . . . . . . . . . . 11 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴𝐵) → (√‘𝑆) ∈ ℝ)
1514ad2antrr 725 . . . . . . . . . 10 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑖 ∈ (1...𝑁)) → (√‘𝑆) ∈ ℝ)
16 simpl2 1189 . . . . . . . . . . 11 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → 𝐵 ∈ (𝔼‘𝑁))
17 fveere 26695 . . . . . . . . . . 11 ((𝐵 ∈ (𝔼‘𝑁) ∧ 𝑖 ∈ (1...𝑁)) → (𝐵𝑖) ∈ ℝ)
1816, 17sylan 583 . . . . . . . . . 10 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑖 ∈ (1...𝑁)) → (𝐵𝑖) ∈ ℝ)
1915, 18remulcld 10660 . . . . . . . . 9 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑖 ∈ (1...𝑁)) → ((√‘𝑆) · (𝐵𝑖)) ∈ ℝ)
2019recnd 10658 . . . . . . . 8 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑖 ∈ (1...𝑁)) → ((√‘𝑆) · (𝐵𝑖)) ∈ ℂ)
21 axsegconlem7.2 . . . . . . . . . . . . . 14 𝑇 = Σ𝑝 ∈ (1...𝑁)(((𝐶𝑝) − (𝐷𝑝))↑2)
2221axsegconlem4 26714 . . . . . . . . . . . . 13 ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) → (√‘𝑇) ∈ ℝ)
23 readdcl 10609 . . . . . . . . . . . . 13 (((√‘𝑆) ∈ ℝ ∧ (√‘𝑇) ∈ ℝ) → ((√‘𝑆) + (√‘𝑇)) ∈ ℝ)
2414, 22, 23syl2an 598 . . . . . . . . . . . 12 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → ((√‘𝑆) + (√‘𝑇)) ∈ ℝ)
2524adantr 484 . . . . . . . . . . 11 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑖 ∈ (1...𝑁)) → ((√‘𝑆) + (√‘𝑇)) ∈ ℝ)
2625, 18remulcld 10660 . . . . . . . . . 10 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑖 ∈ (1...𝑁)) → (((√‘𝑆) + (√‘𝑇)) · (𝐵𝑖)) ∈ ℝ)
2722ad2antlr 726 . . . . . . . . . . 11 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑖 ∈ (1...𝑁)) → (√‘𝑇) ∈ ℝ)
28 simpl1 1188 . . . . . . . . . . . 12 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → 𝐴 ∈ (𝔼‘𝑁))
29 fveere 26695 . . . . . . . . . . . 12 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝑖 ∈ (1...𝑁)) → (𝐴𝑖) ∈ ℝ)
3028, 29sylan 583 . . . . . . . . . . 11 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑖 ∈ (1...𝑁)) → (𝐴𝑖) ∈ ℝ)
3127, 30remulcld 10660 . . . . . . . . . 10 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑖 ∈ (1...𝑁)) → ((√‘𝑇) · (𝐴𝑖)) ∈ ℝ)
3226, 31resubcld 11057 . . . . . . . . 9 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑖 ∈ (1...𝑁)) → ((((√‘𝑆) + (√‘𝑇)) · (𝐵𝑖)) − ((√‘𝑇) · (𝐴𝑖))) ∈ ℝ)
3332recnd 10658 . . . . . . . 8 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑖 ∈ (1...𝑁)) → ((((√‘𝑆) + (√‘𝑇)) · (𝐵𝑖)) − ((√‘𝑇) · (𝐴𝑖))) ∈ ℂ)
3415recnd 10658 . . . . . . . 8 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑖 ∈ (1...𝑁)) → (√‘𝑆) ∈ ℂ)
3512axsegconlem6 26716 . . . . . . . . . 10 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴𝐵) → 0 < (√‘𝑆))
3635gt0ne0d 11193 . . . . . . . . 9 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴𝐵) → (√‘𝑆) ≠ 0)
3736ad2antrr 725 . . . . . . . 8 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑖 ∈ (1...𝑁)) → (√‘𝑆) ≠ 0)
3820, 33, 34, 37divsubdird 11444 . . . . . . 7 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑖 ∈ (1...𝑁)) → ((((√‘𝑆) · (𝐵𝑖)) − ((((√‘𝑆) + (√‘𝑇)) · (𝐵𝑖)) − ((√‘𝑇) · (𝐴𝑖)))) / (√‘𝑆)) = ((((√‘𝑆) · (𝐵𝑖)) / (√‘𝑆)) − (((((√‘𝑆) + (√‘𝑇)) · (𝐵𝑖)) − ((√‘𝑇) · (𝐴𝑖))) / (√‘𝑆))))
3926recnd 10658 . . . . . . . . . 10 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑖 ∈ (1...𝑁)) → (((√‘𝑆) + (√‘𝑇)) · (𝐵𝑖)) ∈ ℂ)
4031recnd 10658 . . . . . . . . . 10 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑖 ∈ (1...𝑁)) → ((√‘𝑇) · (𝐴𝑖)) ∈ ℂ)
4120, 39, 40subsubd 11014 . . . . . . . . 9 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑖 ∈ (1...𝑁)) → (((√‘𝑆) · (𝐵𝑖)) − ((((√‘𝑆) + (√‘𝑇)) · (𝐵𝑖)) − ((√‘𝑇) · (𝐴𝑖)))) = ((((√‘𝑆) · (𝐵𝑖)) − (((√‘𝑆) + (√‘𝑇)) · (𝐵𝑖))) + ((√‘𝑇) · (𝐴𝑖))))
4227recnd 10658 . . . . . . . . . . 11 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑖 ∈ (1...𝑁)) → (√‘𝑇) ∈ ℂ)
4318renegcld 11056 . . . . . . . . . . . 12 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑖 ∈ (1...𝑁)) → -(𝐵𝑖) ∈ ℝ)
4443recnd 10658 . . . . . . . . . . 11 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑖 ∈ (1...𝑁)) → -(𝐵𝑖) ∈ ℂ)
4530recnd 10658 . . . . . . . . . . 11 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑖 ∈ (1...𝑁)) → (𝐴𝑖) ∈ ℂ)
4642, 44, 45adddid 10654 . . . . . . . . . 10 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑖 ∈ (1...𝑁)) → ((√‘𝑇) · (-(𝐵𝑖) + (𝐴𝑖))) = (((√‘𝑇) · -(𝐵𝑖)) + ((√‘𝑇) · (𝐴𝑖))))
4744, 45addcomd 10831 . . . . . . . . . . . 12 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑖 ∈ (1...𝑁)) → (-(𝐵𝑖) + (𝐴𝑖)) = ((𝐴𝑖) + -(𝐵𝑖)))
4818recnd 10658 . . . . . . . . . . . . 13 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑖 ∈ (1...𝑁)) → (𝐵𝑖) ∈ ℂ)
4945, 48negsubd 10992 . . . . . . . . . . . 12 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑖 ∈ (1...𝑁)) → ((𝐴𝑖) + -(𝐵𝑖)) = ((𝐴𝑖) − (𝐵𝑖)))
5047, 49eqtrd 2833 . . . . . . . . . . 11 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑖 ∈ (1...𝑁)) → (-(𝐵𝑖) + (𝐴𝑖)) = ((𝐴𝑖) − (𝐵𝑖)))
5150oveq2d 7151 . . . . . . . . . 10 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑖 ∈ (1...𝑁)) → ((√‘𝑇) · (-(𝐵𝑖) + (𝐴𝑖))) = ((√‘𝑇) · ((𝐴𝑖) − (𝐵𝑖))))
5225recnd 10658 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑖 ∈ (1...𝑁)) → ((√‘𝑆) + (√‘𝑇)) ∈ ℂ)
5352, 34negsubdi2d 11002 . . . . . . . . . . . . . 14 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑖 ∈ (1...𝑁)) → -(((√‘𝑆) + (√‘𝑇)) − (√‘𝑆)) = ((√‘𝑆) − ((√‘𝑆) + (√‘𝑇))))
5434, 42pncan2d 10988 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑖 ∈ (1...𝑁)) → (((√‘𝑆) + (√‘𝑇)) − (√‘𝑆)) = (√‘𝑇))
5554negeqd 10869 . . . . . . . . . . . . . 14 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑖 ∈ (1...𝑁)) → -(((√‘𝑆) + (√‘𝑇)) − (√‘𝑆)) = -(√‘𝑇))
5653, 55eqtr3d 2835 . . . . . . . . . . . . 13 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑖 ∈ (1...𝑁)) → ((√‘𝑆) − ((√‘𝑆) + (√‘𝑇))) = -(√‘𝑇))
5756oveq1d 7150 . . . . . . . . . . . 12 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑖 ∈ (1...𝑁)) → (((√‘𝑆) − ((√‘𝑆) + (√‘𝑇))) · (𝐵𝑖)) = (-(√‘𝑇) · (𝐵𝑖)))
5834, 52, 48subdird 11086 . . . . . . . . . . . 12 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑖 ∈ (1...𝑁)) → (((√‘𝑆) − ((√‘𝑆) + (√‘𝑇))) · (𝐵𝑖)) = (((√‘𝑆) · (𝐵𝑖)) − (((√‘𝑆) + (√‘𝑇)) · (𝐵𝑖))))
59 mulneg12 11067 . . . . . . . . . . . . 13 (((√‘𝑇) ∈ ℂ ∧ (𝐵𝑖) ∈ ℂ) → (-(√‘𝑇) · (𝐵𝑖)) = ((√‘𝑇) · -(𝐵𝑖)))
6042, 48, 59syl2anc 587 . . . . . . . . . . . 12 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑖 ∈ (1...𝑁)) → (-(√‘𝑇) · (𝐵𝑖)) = ((√‘𝑇) · -(𝐵𝑖)))
6157, 58, 603eqtr3rd 2842 . . . . . . . . . . 11 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑖 ∈ (1...𝑁)) → ((√‘𝑇) · -(𝐵𝑖)) = (((√‘𝑆) · (𝐵𝑖)) − (((√‘𝑆) + (√‘𝑇)) · (𝐵𝑖))))
6261oveq1d 7150 . . . . . . . . . 10 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑖 ∈ (1...𝑁)) → (((√‘𝑇) · -(𝐵𝑖)) + ((√‘𝑇) · (𝐴𝑖))) = ((((√‘𝑆) · (𝐵𝑖)) − (((√‘𝑆) + (√‘𝑇)) · (𝐵𝑖))) + ((√‘𝑇) · (𝐴𝑖))))
6346, 51, 623eqtr3rd 2842 . . . . . . . . 9 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑖 ∈ (1...𝑁)) → ((((√‘𝑆) · (𝐵𝑖)) − (((√‘𝑆) + (√‘𝑇)) · (𝐵𝑖))) + ((√‘𝑇) · (𝐴𝑖))) = ((√‘𝑇) · ((𝐴𝑖) − (𝐵𝑖))))
6441, 63eqtrd 2833 . . . . . . . 8 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑖 ∈ (1...𝑁)) → (((√‘𝑆) · (𝐵𝑖)) − ((((√‘𝑆) + (√‘𝑇)) · (𝐵𝑖)) − ((√‘𝑇) · (𝐴𝑖)))) = ((√‘𝑇) · ((𝐴𝑖) − (𝐵𝑖))))
6564oveq1d 7150 . . . . . . 7 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑖 ∈ (1...𝑁)) → ((((√‘𝑆) · (𝐵𝑖)) − ((((√‘𝑆) + (√‘𝑇)) · (𝐵𝑖)) − ((√‘𝑇) · (𝐴𝑖)))) / (√‘𝑆)) = (((√‘𝑇) · ((𝐴𝑖) − (𝐵𝑖))) / (√‘𝑆)))
6648, 34, 37divcan3d 11410 . . . . . . . 8 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑖 ∈ (1...𝑁)) → (((√‘𝑆) · (𝐵𝑖)) / (√‘𝑆)) = (𝐵𝑖))
6766oveq1d 7150 . . . . . . 7 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑖 ∈ (1...𝑁)) → ((((√‘𝑆) · (𝐵𝑖)) / (√‘𝑆)) − (((((√‘𝑆) + (√‘𝑇)) · (𝐵𝑖)) − ((√‘𝑇) · (𝐴𝑖))) / (√‘𝑆))) = ((𝐵𝑖) − (((((√‘𝑆) + (√‘𝑇)) · (𝐵𝑖)) − ((√‘𝑇) · (𝐴𝑖))) / (√‘𝑆))))
6838, 65, 673eqtr3rd 2842 . . . . . 6 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑖 ∈ (1...𝑁)) → ((𝐵𝑖) − (((((√‘𝑆) + (√‘𝑇)) · (𝐵𝑖)) − ((√‘𝑇) · (𝐴𝑖))) / (√‘𝑆))) = (((√‘𝑇) · ((𝐴𝑖) − (𝐵𝑖))) / (√‘𝑆)))
6911, 68eqtrd 2833 . . . . 5 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑖 ∈ (1...𝑁)) → ((𝐵𝑖) − (𝐹𝑖)) = (((√‘𝑇) · ((𝐴𝑖) − (𝐵𝑖))) / (√‘𝑆)))
7069oveq1d 7150 . . . 4 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑖 ∈ (1...𝑁)) → (((𝐵𝑖) − (𝐹𝑖))↑2) = ((((√‘𝑇) · ((𝐴𝑖) − (𝐵𝑖))) / (√‘𝑆))↑2))
7130, 18resubcld 11057 . . . . . . 7 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑖 ∈ (1...𝑁)) → ((𝐴𝑖) − (𝐵𝑖)) ∈ ℝ)
7227, 71remulcld 10660 . . . . . 6 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑖 ∈ (1...𝑁)) → ((√‘𝑇) · ((𝐴𝑖) − (𝐵𝑖))) ∈ ℝ)
7372recnd 10658 . . . . 5 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑖 ∈ (1...𝑁)) → ((√‘𝑇) · ((𝐴𝑖) − (𝐵𝑖))) ∈ ℂ)
7473, 34, 37sqdivd 13519 . . . 4 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑖 ∈ (1...𝑁)) → ((((√‘𝑇) · ((𝐴𝑖) − (𝐵𝑖))) / (√‘𝑆))↑2) = ((((√‘𝑇) · ((𝐴𝑖) − (𝐵𝑖)))↑2) / ((√‘𝑆)↑2)))
7571recnd 10658 . . . . . . 7 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑖 ∈ (1...𝑁)) → ((𝐴𝑖) − (𝐵𝑖)) ∈ ℂ)
7642, 75sqmuld 13518 . . . . . 6 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑖 ∈ (1...𝑁)) → (((√‘𝑇) · ((𝐴𝑖) − (𝐵𝑖)))↑2) = (((√‘𝑇)↑2) · (((𝐴𝑖) − (𝐵𝑖))↑2)))
7721axsegconlem2 26712 . . . . . . . . 9 ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) → 𝑇 ∈ ℝ)
7877ad2antlr 726 . . . . . . . 8 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑖 ∈ (1...𝑁)) → 𝑇 ∈ ℝ)
7921axsegconlem3 26713 . . . . . . . . 9 ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) → 0 ≤ 𝑇)
8079ad2antlr 726 . . . . . . . 8 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑖 ∈ (1...𝑁)) → 0 ≤ 𝑇)
81 resqrtth 14607 . . . . . . . 8 ((𝑇 ∈ ℝ ∧ 0 ≤ 𝑇) → ((√‘𝑇)↑2) = 𝑇)
8278, 80, 81syl2anc 587 . . . . . . 7 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑖 ∈ (1...𝑁)) → ((√‘𝑇)↑2) = 𝑇)
8382oveq1d 7150 . . . . . 6 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑖 ∈ (1...𝑁)) → (((√‘𝑇)↑2) · (((𝐴𝑖) − (𝐵𝑖))↑2)) = (𝑇 · (((𝐴𝑖) − (𝐵𝑖))↑2)))
8476, 83eqtrd 2833 . . . . 5 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑖 ∈ (1...𝑁)) → (((√‘𝑇) · ((𝐴𝑖) − (𝐵𝑖)))↑2) = (𝑇 · (((𝐴𝑖) − (𝐵𝑖))↑2)))
8512axsegconlem2 26712 . . . . . . . 8 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) → 𝑆 ∈ ℝ)
8612axsegconlem3 26713 . . . . . . . 8 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) → 0 ≤ 𝑆)
87 resqrtth 14607 . . . . . . . 8 ((𝑆 ∈ ℝ ∧ 0 ≤ 𝑆) → ((√‘𝑆)↑2) = 𝑆)
8885, 86, 87syl2anc 587 . . . . . . 7 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) → ((√‘𝑆)↑2) = 𝑆)
89883adant3 1129 . . . . . 6 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴𝐵) → ((√‘𝑆)↑2) = 𝑆)
9089ad2antrr 725 . . . . 5 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑖 ∈ (1...𝑁)) → ((√‘𝑆)↑2) = 𝑆)
9184, 90oveq12d 7153 . . . 4 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑖 ∈ (1...𝑁)) → ((((√‘𝑇) · ((𝐴𝑖) − (𝐵𝑖)))↑2) / ((√‘𝑆)↑2)) = ((𝑇 · (((𝐴𝑖) − (𝐵𝑖))↑2)) / 𝑆))
9270, 74, 913eqtrd 2837 . . 3 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑖 ∈ (1...𝑁)) → (((𝐵𝑖) − (𝐹𝑖))↑2) = ((𝑇 · (((𝐴𝑖) − (𝐵𝑖))↑2)) / 𝑆))
9392sumeq2dv 15052 . 2 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → Σ𝑖 ∈ (1...𝑁)(((𝐵𝑖) − (𝐹𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)((𝑇 · (((𝐴𝑖) − (𝐵𝑖))↑2)) / 𝑆))
94 fzfid 13336 . . . . 5 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → (1...𝑁) ∈ Fin)
9577adantl 485 . . . . . 6 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → 𝑇 ∈ ℝ)
9695recnd 10658 . . . . 5 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → 𝑇 ∈ ℂ)
9771resqcld 13607 . . . . . 6 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑖 ∈ (1...𝑁)) → (((𝐴𝑖) − (𝐵𝑖))↑2) ∈ ℝ)
9897recnd 10658 . . . . 5 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑖 ∈ (1...𝑁)) → (((𝐴𝑖) − (𝐵𝑖))↑2) ∈ ℂ)
9994, 96, 98fsummulc2 15131 . . . 4 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → (𝑇 · Σ𝑖 ∈ (1...𝑁)(((𝐴𝑖) − (𝐵𝑖))↑2)) = Σ𝑖 ∈ (1...𝑁)(𝑇 · (((𝐴𝑖) − (𝐵𝑖))↑2)))
10099oveq1d 7150 . . 3 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → ((𝑇 · Σ𝑖 ∈ (1...𝑁)(((𝐴𝑖) − (𝐵𝑖))↑2)) / 𝑆) = (Σ𝑖 ∈ (1...𝑁)(𝑇 · (((𝐴𝑖) − (𝐵𝑖))↑2)) / 𝑆))
101 fveq2 6645 . . . . . . . . 9 (𝑝 = 𝑖 → (𝐶𝑝) = (𝐶𝑖))
102 fveq2 6645 . . . . . . . . 9 (𝑝 = 𝑖 → (𝐷𝑝) = (𝐷𝑖))
103101, 102oveq12d 7153 . . . . . . . 8 (𝑝 = 𝑖 → ((𝐶𝑝) − (𝐷𝑝)) = ((𝐶𝑖) − (𝐷𝑖)))
104103oveq1d 7150 . . . . . . 7 (𝑝 = 𝑖 → (((𝐶𝑝) − (𝐷𝑝))↑2) = (((𝐶𝑖) − (𝐷𝑖))↑2))
105104cbvsumv 15045 . . . . . 6 Σ𝑝 ∈ (1...𝑁)(((𝐶𝑝) − (𝐷𝑝))↑2) = Σ𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐷𝑖))↑2)
10621, 105eqtri 2821 . . . . 5 𝑇 = Σ𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐷𝑖))↑2)
107 fveq2 6645 . . . . . . . . 9 (𝑖 = 𝑝 → (𝐴𝑖) = (𝐴𝑝))
108 fveq2 6645 . . . . . . . . 9 (𝑖 = 𝑝 → (𝐵𝑖) = (𝐵𝑝))
109107, 108oveq12d 7153 . . . . . . . 8 (𝑖 = 𝑝 → ((𝐴𝑖) − (𝐵𝑖)) = ((𝐴𝑝) − (𝐵𝑝)))
110109oveq1d 7150 . . . . . . 7 (𝑖 = 𝑝 → (((𝐴𝑖) − (𝐵𝑖))↑2) = (((𝐴𝑝) − (𝐵𝑝))↑2))
111110cbvsumv 15045 . . . . . 6 Σ𝑖 ∈ (1...𝑁)(((𝐴𝑖) − (𝐵𝑖))↑2) = Σ𝑝 ∈ (1...𝑁)(((𝐴𝑝) − (𝐵𝑝))↑2)
112111, 12eqtr4i 2824 . . . . 5 Σ𝑖 ∈ (1...𝑁)(((𝐴𝑖) − (𝐵𝑖))↑2) = 𝑆
113106, 112oveq12i 7147 . . . 4 (𝑇 · Σ𝑖 ∈ (1...𝑁)(((𝐴𝑖) − (𝐵𝑖))↑2)) = (Σ𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐷𝑖))↑2) · 𝑆)
114 eqid 2798 . . . . . . . . . 10 Σ𝑖 ∈ (1...𝑁)(((𝐴𝑖) − (𝐵𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)(((𝐴𝑖) − (𝐵𝑖))↑2)
115114axsegconlem2 26712 . . . . . . . . 9 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) → Σ𝑖 ∈ (1...𝑁)(((𝐴𝑖) − (𝐵𝑖))↑2) ∈ ℝ)
1161153adant3 1129 . . . . . . . 8 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴𝐵) → Σ𝑖 ∈ (1...𝑁)(((𝐴𝑖) − (𝐵𝑖))↑2) ∈ ℝ)
117116adantr 484 . . . . . . 7 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → Σ𝑖 ∈ (1...𝑁)(((𝐴𝑖) − (𝐵𝑖))↑2) ∈ ℝ)
11895, 117remulcld 10660 . . . . . 6 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → (𝑇 · Σ𝑖 ∈ (1...𝑁)(((𝐴𝑖) − (𝐵𝑖))↑2)) ∈ ℝ)
119118recnd 10658 . . . . 5 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → (𝑇 · Σ𝑖 ∈ (1...𝑁)(((𝐴𝑖) − (𝐵𝑖))↑2)) ∈ ℂ)
120 eqid 2798 . . . . . . . 8 Σ𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐷𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐷𝑖))↑2)
121120axsegconlem2 26712 . . . . . . 7 ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) → Σ𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐷𝑖))↑2) ∈ ℝ)
122121adantl 485 . . . . . 6 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → Σ𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐷𝑖))↑2) ∈ ℝ)
123122recnd 10658 . . . . 5 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → Σ𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐷𝑖))↑2) ∈ ℂ)
124853adant3 1129 . . . . . . 7 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴𝐵) → 𝑆 ∈ ℝ)
125124adantr 484 . . . . . 6 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → 𝑆 ∈ ℝ)
126125recnd 10658 . . . . 5 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → 𝑆 ∈ ℂ)
127863adant3 1129 . . . . . . . 8 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴𝐵) → 0 ≤ 𝑆)
128 sqrt00 14615 . . . . . . . . 9 ((𝑆 ∈ ℝ ∧ 0 ≤ 𝑆) → ((√‘𝑆) = 0 ↔ 𝑆 = 0))
129128necon3bid 3031 . . . . . . . 8 ((𝑆 ∈ ℝ ∧ 0 ≤ 𝑆) → ((√‘𝑆) ≠ 0 ↔ 𝑆 ≠ 0))
130124, 127, 129syl2anc 587 . . . . . . 7 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴𝐵) → ((√‘𝑆) ≠ 0 ↔ 𝑆 ≠ 0))
13136, 130mpbid 235 . . . . . 6 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴𝐵) → 𝑆 ≠ 0)
132131adantr 484 . . . . 5 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → 𝑆 ≠ 0)
133119, 123, 126, 132divmul3d 11439 . . . 4 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → (((𝑇 · Σ𝑖 ∈ (1...𝑁)(((𝐴𝑖) − (𝐵𝑖))↑2)) / 𝑆) = Σ𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐷𝑖))↑2) ↔ (𝑇 · Σ𝑖 ∈ (1...𝑁)(((𝐴𝑖) − (𝐵𝑖))↑2)) = (Σ𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐷𝑖))↑2) · 𝑆)))
134113, 133mpbiri 261 . . 3 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → ((𝑇 · Σ𝑖 ∈ (1...𝑁)(((𝐴𝑖) − (𝐵𝑖))↑2)) / 𝑆) = Σ𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐷𝑖))↑2))
13578, 97remulcld 10660 . . . . 5 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑖 ∈ (1...𝑁)) → (𝑇 · (((𝐴𝑖) − (𝐵𝑖))↑2)) ∈ ℝ)
136135recnd 10658 . . . 4 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑖 ∈ (1...𝑁)) → (𝑇 · (((𝐴𝑖) − (𝐵𝑖))↑2)) ∈ ℂ)
13794, 126, 136, 132fsumdivc 15133 . . 3 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → (Σ𝑖 ∈ (1...𝑁)(𝑇 · (((𝐴𝑖) − (𝐵𝑖))↑2)) / 𝑆) = Σ𝑖 ∈ (1...𝑁)((𝑇 · (((𝐴𝑖) − (𝐵𝑖))↑2)) / 𝑆))
138100, 134, 1373eqtr3rd 2842 . 2 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → Σ𝑖 ∈ (1...𝑁)((𝑇 · (((𝐴𝑖) − (𝐵𝑖))↑2)) / 𝑆) = Σ𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐷𝑖))↑2))
13993, 138eqtrd 2833 1 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → Σ𝑖 ∈ (1...𝑁)(((𝐵𝑖) − (𝐹𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐷𝑖))↑2))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2111  wne 2987   class class class wbr 5030  cmpt 5110  cfv 6324  (class class class)co 7135  cc 10524  cr 10525  0cc0 10526  1c1 10527   + caddc 10529   · cmul 10531  cle 10665  cmin 10859  -cneg 10860   / cdiv 11286  2c2 11680  ...cfz 12885  cexp 13425  csqrt 14584  Σcsu 15034  𝔼cee 26682
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-inf2 9088  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-se 5479  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-isom 6333  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-oadd 8089  df-er 8272  df-map 8391  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-sup 8890  df-oi 8958  df-card 9352  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-n0 11886  df-z 11970  df-uz 12232  df-rp 12378  df-ico 12732  df-fz 12886  df-fzo 13029  df-seq 13365  df-exp 13426  df-hash 13687  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-clim 14837  df-sum 15035  df-ee 26685
This theorem is referenced by:  axsegcon  26721
  Copyright terms: Public domain W3C validator