Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > idghm | Structured version Visualization version GIF version |
Description: The identity homomorphism on a group. (Contributed by Stefan O'Rear, 31-Dec-2014.) |
Ref | Expression |
---|---|
idghm.b | ⊢ 𝐵 = (Base‘𝐺) |
Ref | Expression |
---|---|
idghm | ⊢ (𝐺 ∈ Grp → ( I ↾ 𝐵) ∈ (𝐺 GrpHom 𝐺)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . 2 ⊢ (𝐺 ∈ Grp → 𝐺 ∈ Grp) | |
2 | idghm.b | . . . . . . . 8 ⊢ 𝐵 = (Base‘𝐺) | |
3 | eqid 2758 | . . . . . . . 8 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
4 | 2, 3 | grpcl 18177 | . . . . . . 7 ⊢ ((𝐺 ∈ Grp ∧ 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵) → (𝑎(+g‘𝐺)𝑏) ∈ 𝐵) |
5 | 4 | 3expb 1117 | . . . . . 6 ⊢ ((𝐺 ∈ Grp ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) → (𝑎(+g‘𝐺)𝑏) ∈ 𝐵) |
6 | fvresi 6926 | . . . . . 6 ⊢ ((𝑎(+g‘𝐺)𝑏) ∈ 𝐵 → (( I ↾ 𝐵)‘(𝑎(+g‘𝐺)𝑏)) = (𝑎(+g‘𝐺)𝑏)) | |
7 | 5, 6 | syl 17 | . . . . 5 ⊢ ((𝐺 ∈ Grp ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) → (( I ↾ 𝐵)‘(𝑎(+g‘𝐺)𝑏)) = (𝑎(+g‘𝐺)𝑏)) |
8 | fvresi 6926 | . . . . . . 7 ⊢ (𝑎 ∈ 𝐵 → (( I ↾ 𝐵)‘𝑎) = 𝑎) | |
9 | fvresi 6926 | . . . . . . 7 ⊢ (𝑏 ∈ 𝐵 → (( I ↾ 𝐵)‘𝑏) = 𝑏) | |
10 | 8, 9 | oveqan12d 7169 | . . . . . 6 ⊢ ((𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵) → ((( I ↾ 𝐵)‘𝑎)(+g‘𝐺)(( I ↾ 𝐵)‘𝑏)) = (𝑎(+g‘𝐺)𝑏)) |
11 | 10 | adantl 485 | . . . . 5 ⊢ ((𝐺 ∈ Grp ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) → ((( I ↾ 𝐵)‘𝑎)(+g‘𝐺)(( I ↾ 𝐵)‘𝑏)) = (𝑎(+g‘𝐺)𝑏)) |
12 | 7, 11 | eqtr4d 2796 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) → (( I ↾ 𝐵)‘(𝑎(+g‘𝐺)𝑏)) = ((( I ↾ 𝐵)‘𝑎)(+g‘𝐺)(( I ↾ 𝐵)‘𝑏))) |
13 | 12 | ralrimivva 3120 | . . 3 ⊢ (𝐺 ∈ Grp → ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 (( I ↾ 𝐵)‘(𝑎(+g‘𝐺)𝑏)) = ((( I ↾ 𝐵)‘𝑎)(+g‘𝐺)(( I ↾ 𝐵)‘𝑏))) |
14 | f1oi 6639 | . . . 4 ⊢ ( I ↾ 𝐵):𝐵–1-1-onto→𝐵 | |
15 | f1of 6602 | . . . 4 ⊢ (( I ↾ 𝐵):𝐵–1-1-onto→𝐵 → ( I ↾ 𝐵):𝐵⟶𝐵) | |
16 | 14, 15 | ax-mp 5 | . . 3 ⊢ ( I ↾ 𝐵):𝐵⟶𝐵 |
17 | 13, 16 | jctil 523 | . 2 ⊢ (𝐺 ∈ Grp → (( I ↾ 𝐵):𝐵⟶𝐵 ∧ ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 (( I ↾ 𝐵)‘(𝑎(+g‘𝐺)𝑏)) = ((( I ↾ 𝐵)‘𝑎)(+g‘𝐺)(( I ↾ 𝐵)‘𝑏)))) |
18 | 2, 2, 3, 3 | isghm 18425 | . 2 ⊢ (( I ↾ 𝐵) ∈ (𝐺 GrpHom 𝐺) ↔ ((𝐺 ∈ Grp ∧ 𝐺 ∈ Grp) ∧ (( I ↾ 𝐵):𝐵⟶𝐵 ∧ ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 (( I ↾ 𝐵)‘(𝑎(+g‘𝐺)𝑏)) = ((( I ↾ 𝐵)‘𝑎)(+g‘𝐺)(( I ↾ 𝐵)‘𝑏))))) |
19 | 1, 1, 17, 18 | syl21anbrc 1341 | 1 ⊢ (𝐺 ∈ Grp → ( I ↾ 𝐵) ∈ (𝐺 GrpHom 𝐺)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1538 ∈ wcel 2111 ∀wral 3070 I cid 5429 ↾ cres 5526 ⟶wf 6331 –1-1-onto→wf1o 6334 ‘cfv 6335 (class class class)co 7150 Basecbs 16541 +gcplusg 16623 Grpcgrp 18169 GrpHom cghm 18422 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-rep 5156 ax-sep 5169 ax-nul 5176 ax-pow 5234 ax-pr 5298 ax-un 7459 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-ral 3075 df-rex 3076 df-reu 3077 df-rab 3079 df-v 3411 df-sbc 3697 df-csb 3806 df-dif 3861 df-un 3863 df-in 3865 df-ss 3875 df-nul 4226 df-if 4421 df-pw 4496 df-sn 4523 df-pr 4525 df-op 4529 df-uni 4799 df-iun 4885 df-br 5033 df-opab 5095 df-mpt 5113 df-id 5430 df-xp 5530 df-rel 5531 df-cnv 5532 df-co 5533 df-dm 5534 df-rn 5535 df-res 5536 df-ima 5537 df-iota 6294 df-fun 6337 df-fn 6338 df-f 6339 df-f1 6340 df-fo 6341 df-f1o 6342 df-fv 6343 df-ov 7153 df-oprab 7154 df-mpo 7155 df-mgm 17918 df-sgrp 17967 df-mnd 17978 df-grp 18172 df-ghm 18423 |
This theorem is referenced by: gicref 18478 symgga 18602 0frgp 18972 idrhm 19554 idlmhm 19881 frgpcyg 20341 nmoid 23444 idnghm 23445 idrnghm 44899 |
Copyright terms: Public domain | W3C validator |