| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > idghm | Structured version Visualization version GIF version | ||
| Description: The identity homomorphism on a group. (Contributed by Stefan O'Rear, 31-Dec-2014.) |
| Ref | Expression |
|---|---|
| idghm.b | ⊢ 𝐵 = (Base‘𝐺) |
| Ref | Expression |
|---|---|
| idghm | ⊢ (𝐺 ∈ Grp → ( I ↾ 𝐵) ∈ (𝐺 GrpHom 𝐺)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . 2 ⊢ (𝐺 ∈ Grp → 𝐺 ∈ Grp) | |
| 2 | idghm.b | . . . . . . . 8 ⊢ 𝐵 = (Base‘𝐺) | |
| 3 | eqid 2729 | . . . . . . . 8 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
| 4 | 2, 3 | grpcl 18873 | . . . . . . 7 ⊢ ((𝐺 ∈ Grp ∧ 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵) → (𝑎(+g‘𝐺)𝑏) ∈ 𝐵) |
| 5 | 4 | 3expb 1120 | . . . . . 6 ⊢ ((𝐺 ∈ Grp ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) → (𝑎(+g‘𝐺)𝑏) ∈ 𝐵) |
| 6 | fvresi 7147 | . . . . . 6 ⊢ ((𝑎(+g‘𝐺)𝑏) ∈ 𝐵 → (( I ↾ 𝐵)‘(𝑎(+g‘𝐺)𝑏)) = (𝑎(+g‘𝐺)𝑏)) | |
| 7 | 5, 6 | syl 17 | . . . . 5 ⊢ ((𝐺 ∈ Grp ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) → (( I ↾ 𝐵)‘(𝑎(+g‘𝐺)𝑏)) = (𝑎(+g‘𝐺)𝑏)) |
| 8 | fvresi 7147 | . . . . . . 7 ⊢ (𝑎 ∈ 𝐵 → (( I ↾ 𝐵)‘𝑎) = 𝑎) | |
| 9 | fvresi 7147 | . . . . . . 7 ⊢ (𝑏 ∈ 𝐵 → (( I ↾ 𝐵)‘𝑏) = 𝑏) | |
| 10 | 8, 9 | oveqan12d 7406 | . . . . . 6 ⊢ ((𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵) → ((( I ↾ 𝐵)‘𝑎)(+g‘𝐺)(( I ↾ 𝐵)‘𝑏)) = (𝑎(+g‘𝐺)𝑏)) |
| 11 | 10 | adantl 481 | . . . . 5 ⊢ ((𝐺 ∈ Grp ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) → ((( I ↾ 𝐵)‘𝑎)(+g‘𝐺)(( I ↾ 𝐵)‘𝑏)) = (𝑎(+g‘𝐺)𝑏)) |
| 12 | 7, 11 | eqtr4d 2767 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) → (( I ↾ 𝐵)‘(𝑎(+g‘𝐺)𝑏)) = ((( I ↾ 𝐵)‘𝑎)(+g‘𝐺)(( I ↾ 𝐵)‘𝑏))) |
| 13 | 12 | ralrimivva 3180 | . . 3 ⊢ (𝐺 ∈ Grp → ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 (( I ↾ 𝐵)‘(𝑎(+g‘𝐺)𝑏)) = ((( I ↾ 𝐵)‘𝑎)(+g‘𝐺)(( I ↾ 𝐵)‘𝑏))) |
| 14 | f1oi 6838 | . . . 4 ⊢ ( I ↾ 𝐵):𝐵–1-1-onto→𝐵 | |
| 15 | f1of 6800 | . . . 4 ⊢ (( I ↾ 𝐵):𝐵–1-1-onto→𝐵 → ( I ↾ 𝐵):𝐵⟶𝐵) | |
| 16 | 14, 15 | ax-mp 5 | . . 3 ⊢ ( I ↾ 𝐵):𝐵⟶𝐵 |
| 17 | 13, 16 | jctil 519 | . 2 ⊢ (𝐺 ∈ Grp → (( I ↾ 𝐵):𝐵⟶𝐵 ∧ ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 (( I ↾ 𝐵)‘(𝑎(+g‘𝐺)𝑏)) = ((( I ↾ 𝐵)‘𝑎)(+g‘𝐺)(( I ↾ 𝐵)‘𝑏)))) |
| 18 | 2, 2, 3, 3 | isghm 19147 | . 2 ⊢ (( I ↾ 𝐵) ∈ (𝐺 GrpHom 𝐺) ↔ ((𝐺 ∈ Grp ∧ 𝐺 ∈ Grp) ∧ (( I ↾ 𝐵):𝐵⟶𝐵 ∧ ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 (( I ↾ 𝐵)‘(𝑎(+g‘𝐺)𝑏)) = ((( I ↾ 𝐵)‘𝑎)(+g‘𝐺)(( I ↾ 𝐵)‘𝑏))))) |
| 19 | 1, 1, 17, 18 | syl21anbrc 1345 | 1 ⊢ (𝐺 ∈ Grp → ( I ↾ 𝐵) ∈ (𝐺 GrpHom 𝐺)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 I cid 5532 ↾ cres 5640 ⟶wf 6507 –1-1-onto→wf1o 6510 ‘cfv 6511 (class class class)co 7387 Basecbs 17179 +gcplusg 17220 Grpcgrp 18865 GrpHom cghm 19144 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 df-1st 7968 df-2nd 7969 df-map 8801 df-mgm 18567 df-sgrp 18646 df-mnd 18662 df-grp 18868 df-ghm 19145 |
| This theorem is referenced by: gicref 19204 symgga 19337 0frgp 19709 idrnghm 20367 idrhm 20399 idlmhm 20948 frgpcyg 21483 nmoid 24630 idnghm 24631 |
| Copyright terms: Public domain | W3C validator |