![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > idghm | Structured version Visualization version GIF version |
Description: The identity homomorphism on a group. (Contributed by Stefan O'Rear, 31-Dec-2014.) |
Ref | Expression |
---|---|
idghm.b | ⊢ 𝐵 = (Base‘𝐺) |
Ref | Expression |
---|---|
idghm | ⊢ (𝐺 ∈ Grp → ( I ↾ 𝐵) ∈ (𝐺 GrpHom 𝐺)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . 2 ⊢ (𝐺 ∈ Grp → 𝐺 ∈ Grp) | |
2 | idghm.b | . . . . . . . 8 ⊢ 𝐵 = (Base‘𝐺) | |
3 | eqid 2728 | . . . . . . . 8 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
4 | 2, 3 | grpcl 18898 | . . . . . . 7 ⊢ ((𝐺 ∈ Grp ∧ 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵) → (𝑎(+g‘𝐺)𝑏) ∈ 𝐵) |
5 | 4 | 3expb 1118 | . . . . . 6 ⊢ ((𝐺 ∈ Grp ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) → (𝑎(+g‘𝐺)𝑏) ∈ 𝐵) |
6 | fvresi 7182 | . . . . . 6 ⊢ ((𝑎(+g‘𝐺)𝑏) ∈ 𝐵 → (( I ↾ 𝐵)‘(𝑎(+g‘𝐺)𝑏)) = (𝑎(+g‘𝐺)𝑏)) | |
7 | 5, 6 | syl 17 | . . . . 5 ⊢ ((𝐺 ∈ Grp ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) → (( I ↾ 𝐵)‘(𝑎(+g‘𝐺)𝑏)) = (𝑎(+g‘𝐺)𝑏)) |
8 | fvresi 7182 | . . . . . . 7 ⊢ (𝑎 ∈ 𝐵 → (( I ↾ 𝐵)‘𝑎) = 𝑎) | |
9 | fvresi 7182 | . . . . . . 7 ⊢ (𝑏 ∈ 𝐵 → (( I ↾ 𝐵)‘𝑏) = 𝑏) | |
10 | 8, 9 | oveqan12d 7439 | . . . . . 6 ⊢ ((𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵) → ((( I ↾ 𝐵)‘𝑎)(+g‘𝐺)(( I ↾ 𝐵)‘𝑏)) = (𝑎(+g‘𝐺)𝑏)) |
11 | 10 | adantl 481 | . . . . 5 ⊢ ((𝐺 ∈ Grp ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) → ((( I ↾ 𝐵)‘𝑎)(+g‘𝐺)(( I ↾ 𝐵)‘𝑏)) = (𝑎(+g‘𝐺)𝑏)) |
12 | 7, 11 | eqtr4d 2771 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) → (( I ↾ 𝐵)‘(𝑎(+g‘𝐺)𝑏)) = ((( I ↾ 𝐵)‘𝑎)(+g‘𝐺)(( I ↾ 𝐵)‘𝑏))) |
13 | 12 | ralrimivva 3197 | . . 3 ⊢ (𝐺 ∈ Grp → ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 (( I ↾ 𝐵)‘(𝑎(+g‘𝐺)𝑏)) = ((( I ↾ 𝐵)‘𝑎)(+g‘𝐺)(( I ↾ 𝐵)‘𝑏))) |
14 | f1oi 6877 | . . . 4 ⊢ ( I ↾ 𝐵):𝐵–1-1-onto→𝐵 | |
15 | f1of 6839 | . . . 4 ⊢ (( I ↾ 𝐵):𝐵–1-1-onto→𝐵 → ( I ↾ 𝐵):𝐵⟶𝐵) | |
16 | 14, 15 | ax-mp 5 | . . 3 ⊢ ( I ↾ 𝐵):𝐵⟶𝐵 |
17 | 13, 16 | jctil 519 | . 2 ⊢ (𝐺 ∈ Grp → (( I ↾ 𝐵):𝐵⟶𝐵 ∧ ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 (( I ↾ 𝐵)‘(𝑎(+g‘𝐺)𝑏)) = ((( I ↾ 𝐵)‘𝑎)(+g‘𝐺)(( I ↾ 𝐵)‘𝑏)))) |
18 | 2, 2, 3, 3 | isghm 19170 | . 2 ⊢ (( I ↾ 𝐵) ∈ (𝐺 GrpHom 𝐺) ↔ ((𝐺 ∈ Grp ∧ 𝐺 ∈ Grp) ∧ (( I ↾ 𝐵):𝐵⟶𝐵 ∧ ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 (( I ↾ 𝐵)‘(𝑎(+g‘𝐺)𝑏)) = ((( I ↾ 𝐵)‘𝑎)(+g‘𝐺)(( I ↾ 𝐵)‘𝑏))))) |
19 | 1, 1, 17, 18 | syl21anbrc 1342 | 1 ⊢ (𝐺 ∈ Grp → ( I ↾ 𝐵) ∈ (𝐺 GrpHom 𝐺)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1534 ∈ wcel 2099 ∀wral 3058 I cid 5575 ↾ cres 5680 ⟶wf 6544 –1-1-onto→wf1o 6547 ‘cfv 6548 (class class class)co 7420 Basecbs 17180 +gcplusg 17233 Grpcgrp 18890 GrpHom cghm 19167 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5365 ax-pr 5429 ax-un 7740 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-ral 3059 df-rex 3068 df-reu 3374 df-rab 3430 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5576 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-iota 6500 df-fun 6550 df-fn 6551 df-f 6552 df-f1 6553 df-fo 6554 df-f1o 6555 df-fv 6556 df-ov 7423 df-oprab 7424 df-mpo 7425 df-mgm 18600 df-sgrp 18679 df-mnd 18695 df-grp 18893 df-ghm 19168 |
This theorem is referenced by: gicref 19226 symgga 19362 0frgp 19734 idrnghm 20397 idrhm 20429 idlmhm 20926 frgpcyg 21507 nmoid 24672 idnghm 24673 |
Copyright terms: Public domain | W3C validator |