| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > idghm | Structured version Visualization version GIF version | ||
| Description: The identity homomorphism on a group. (Contributed by Stefan O'Rear, 31-Dec-2014.) |
| Ref | Expression |
|---|---|
| idghm.b | ⊢ 𝐵 = (Base‘𝐺) |
| Ref | Expression |
|---|---|
| idghm | ⊢ (𝐺 ∈ Grp → ( I ↾ 𝐵) ∈ (𝐺 GrpHom 𝐺)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . 2 ⊢ (𝐺 ∈ Grp → 𝐺 ∈ Grp) | |
| 2 | idghm.b | . . . . . . . 8 ⊢ 𝐵 = (Base‘𝐺) | |
| 3 | eqid 2729 | . . . . . . . 8 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
| 4 | 2, 3 | grpcl 18855 | . . . . . . 7 ⊢ ((𝐺 ∈ Grp ∧ 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵) → (𝑎(+g‘𝐺)𝑏) ∈ 𝐵) |
| 5 | 4 | 3expb 1120 | . . . . . 6 ⊢ ((𝐺 ∈ Grp ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) → (𝑎(+g‘𝐺)𝑏) ∈ 𝐵) |
| 6 | fvresi 7129 | . . . . . 6 ⊢ ((𝑎(+g‘𝐺)𝑏) ∈ 𝐵 → (( I ↾ 𝐵)‘(𝑎(+g‘𝐺)𝑏)) = (𝑎(+g‘𝐺)𝑏)) | |
| 7 | 5, 6 | syl 17 | . . . . 5 ⊢ ((𝐺 ∈ Grp ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) → (( I ↾ 𝐵)‘(𝑎(+g‘𝐺)𝑏)) = (𝑎(+g‘𝐺)𝑏)) |
| 8 | fvresi 7129 | . . . . . . 7 ⊢ (𝑎 ∈ 𝐵 → (( I ↾ 𝐵)‘𝑎) = 𝑎) | |
| 9 | fvresi 7129 | . . . . . . 7 ⊢ (𝑏 ∈ 𝐵 → (( I ↾ 𝐵)‘𝑏) = 𝑏) | |
| 10 | 8, 9 | oveqan12d 7388 | . . . . . 6 ⊢ ((𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵) → ((( I ↾ 𝐵)‘𝑎)(+g‘𝐺)(( I ↾ 𝐵)‘𝑏)) = (𝑎(+g‘𝐺)𝑏)) |
| 11 | 10 | adantl 481 | . . . . 5 ⊢ ((𝐺 ∈ Grp ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) → ((( I ↾ 𝐵)‘𝑎)(+g‘𝐺)(( I ↾ 𝐵)‘𝑏)) = (𝑎(+g‘𝐺)𝑏)) |
| 12 | 7, 11 | eqtr4d 2767 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) → (( I ↾ 𝐵)‘(𝑎(+g‘𝐺)𝑏)) = ((( I ↾ 𝐵)‘𝑎)(+g‘𝐺)(( I ↾ 𝐵)‘𝑏))) |
| 13 | 12 | ralrimivva 3178 | . . 3 ⊢ (𝐺 ∈ Grp → ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 (( I ↾ 𝐵)‘(𝑎(+g‘𝐺)𝑏)) = ((( I ↾ 𝐵)‘𝑎)(+g‘𝐺)(( I ↾ 𝐵)‘𝑏))) |
| 14 | f1oi 6820 | . . . 4 ⊢ ( I ↾ 𝐵):𝐵–1-1-onto→𝐵 | |
| 15 | f1of 6782 | . . . 4 ⊢ (( I ↾ 𝐵):𝐵–1-1-onto→𝐵 → ( I ↾ 𝐵):𝐵⟶𝐵) | |
| 16 | 14, 15 | ax-mp 5 | . . 3 ⊢ ( I ↾ 𝐵):𝐵⟶𝐵 |
| 17 | 13, 16 | jctil 519 | . 2 ⊢ (𝐺 ∈ Grp → (( I ↾ 𝐵):𝐵⟶𝐵 ∧ ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 (( I ↾ 𝐵)‘(𝑎(+g‘𝐺)𝑏)) = ((( I ↾ 𝐵)‘𝑎)(+g‘𝐺)(( I ↾ 𝐵)‘𝑏)))) |
| 18 | 2, 2, 3, 3 | isghm 19129 | . 2 ⊢ (( I ↾ 𝐵) ∈ (𝐺 GrpHom 𝐺) ↔ ((𝐺 ∈ Grp ∧ 𝐺 ∈ Grp) ∧ (( I ↾ 𝐵):𝐵⟶𝐵 ∧ ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 (( I ↾ 𝐵)‘(𝑎(+g‘𝐺)𝑏)) = ((( I ↾ 𝐵)‘𝑎)(+g‘𝐺)(( I ↾ 𝐵)‘𝑏))))) |
| 19 | 1, 1, 17, 18 | syl21anbrc 1345 | 1 ⊢ (𝐺 ∈ Grp → ( I ↾ 𝐵) ∈ (𝐺 GrpHom 𝐺)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 I cid 5525 ↾ cres 5633 ⟶wf 6495 –1-1-onto→wf1o 6498 ‘cfv 6499 (class class class)co 7369 Basecbs 17155 +gcplusg 17196 Grpcgrp 18847 GrpHom cghm 19126 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-ov 7372 df-oprab 7373 df-mpo 7374 df-1st 7947 df-2nd 7948 df-map 8778 df-mgm 18549 df-sgrp 18628 df-mnd 18644 df-grp 18850 df-ghm 19127 |
| This theorem is referenced by: gicref 19186 symgga 19321 0frgp 19693 idrnghm 20378 idrhm 20410 idlmhm 20980 frgpcyg 21515 nmoid 24663 idnghm 24664 |
| Copyright terms: Public domain | W3C validator |