MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  idghm Structured version   Visualization version   GIF version

Theorem idghm 19101
Description: The identity homomorphism on a group. (Contributed by Stefan O'Rear, 31-Dec-2014.)
Hypothesis
Ref Expression
idghm.b 𝐵 = (Base‘𝐺)
Assertion
Ref Expression
idghm (𝐺 ∈ Grp → ( I ↾ 𝐵) ∈ (𝐺 GrpHom 𝐺))

Proof of Theorem idghm
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 id 22 . 2 (𝐺 ∈ Grp → 𝐺 ∈ Grp)
2 idghm.b . . . . . . . 8 𝐵 = (Base‘𝐺)
3 eqid 2732 . . . . . . . 8 (+g𝐺) = (+g𝐺)
42, 3grpcl 18823 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝑎𝐵𝑏𝐵) → (𝑎(+g𝐺)𝑏) ∈ 𝐵)
543expb 1120 . . . . . 6 ((𝐺 ∈ Grp ∧ (𝑎𝐵𝑏𝐵)) → (𝑎(+g𝐺)𝑏) ∈ 𝐵)
6 fvresi 7167 . . . . . 6 ((𝑎(+g𝐺)𝑏) ∈ 𝐵 → (( I ↾ 𝐵)‘(𝑎(+g𝐺)𝑏)) = (𝑎(+g𝐺)𝑏))
75, 6syl 17 . . . . 5 ((𝐺 ∈ Grp ∧ (𝑎𝐵𝑏𝐵)) → (( I ↾ 𝐵)‘(𝑎(+g𝐺)𝑏)) = (𝑎(+g𝐺)𝑏))
8 fvresi 7167 . . . . . . 7 (𝑎𝐵 → (( I ↾ 𝐵)‘𝑎) = 𝑎)
9 fvresi 7167 . . . . . . 7 (𝑏𝐵 → (( I ↾ 𝐵)‘𝑏) = 𝑏)
108, 9oveqan12d 7424 . . . . . 6 ((𝑎𝐵𝑏𝐵) → ((( I ↾ 𝐵)‘𝑎)(+g𝐺)(( I ↾ 𝐵)‘𝑏)) = (𝑎(+g𝐺)𝑏))
1110adantl 482 . . . . 5 ((𝐺 ∈ Grp ∧ (𝑎𝐵𝑏𝐵)) → ((( I ↾ 𝐵)‘𝑎)(+g𝐺)(( I ↾ 𝐵)‘𝑏)) = (𝑎(+g𝐺)𝑏))
127, 11eqtr4d 2775 . . . 4 ((𝐺 ∈ Grp ∧ (𝑎𝐵𝑏𝐵)) → (( I ↾ 𝐵)‘(𝑎(+g𝐺)𝑏)) = ((( I ↾ 𝐵)‘𝑎)(+g𝐺)(( I ↾ 𝐵)‘𝑏)))
1312ralrimivva 3200 . . 3 (𝐺 ∈ Grp → ∀𝑎𝐵𝑏𝐵 (( I ↾ 𝐵)‘(𝑎(+g𝐺)𝑏)) = ((( I ↾ 𝐵)‘𝑎)(+g𝐺)(( I ↾ 𝐵)‘𝑏)))
14 f1oi 6868 . . . 4 ( I ↾ 𝐵):𝐵1-1-onto𝐵
15 f1of 6830 . . . 4 (( I ↾ 𝐵):𝐵1-1-onto𝐵 → ( I ↾ 𝐵):𝐵𝐵)
1614, 15ax-mp 5 . . 3 ( I ↾ 𝐵):𝐵𝐵
1713, 16jctil 520 . 2 (𝐺 ∈ Grp → (( I ↾ 𝐵):𝐵𝐵 ∧ ∀𝑎𝐵𝑏𝐵 (( I ↾ 𝐵)‘(𝑎(+g𝐺)𝑏)) = ((( I ↾ 𝐵)‘𝑎)(+g𝐺)(( I ↾ 𝐵)‘𝑏))))
182, 2, 3, 3isghm 19086 . 2 (( I ↾ 𝐵) ∈ (𝐺 GrpHom 𝐺) ↔ ((𝐺 ∈ Grp ∧ 𝐺 ∈ Grp) ∧ (( I ↾ 𝐵):𝐵𝐵 ∧ ∀𝑎𝐵𝑏𝐵 (( I ↾ 𝐵)‘(𝑎(+g𝐺)𝑏)) = ((( I ↾ 𝐵)‘𝑎)(+g𝐺)(( I ↾ 𝐵)‘𝑏)))))
191, 1, 17, 18syl21anbrc 1344 1 (𝐺 ∈ Grp → ( I ↾ 𝐵) ∈ (𝐺 GrpHom 𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1541  wcel 2106  wral 3061   I cid 5572  cres 5677  wf 6536  1-1-ontowf1o 6539  cfv 6540  (class class class)co 7405  Basecbs 17140  +gcplusg 17193  Grpcgrp 18815   GrpHom cghm 19083
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-ov 7408  df-oprab 7409  df-mpo 7410  df-mgm 18557  df-sgrp 18606  df-mnd 18622  df-grp 18818  df-ghm 19084
This theorem is referenced by:  gicref  19139  symgga  19269  0frgp  19641  idrhm  20260  idlmhm  20644  frgpcyg  21120  nmoid  24250  idnghm  24251  idrnghm  46692
  Copyright terms: Public domain W3C validator