MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grpinvid1 Structured version   Visualization version   GIF version

Theorem grpinvid1 18372
Description: The inverse of a group element expressed in terms of the identity element. (Contributed by NM, 24-Aug-2011.)
Hypotheses
Ref Expression
grpinv.b 𝐵 = (Base‘𝐺)
grpinv.p + = (+g𝐺)
grpinv.u 0 = (0g𝐺)
grpinv.n 𝑁 = (invg𝐺)
Assertion
Ref Expression
grpinvid1 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑌𝐵) → ((𝑁𝑋) = 𝑌 ↔ (𝑋 + 𝑌) = 0 ))

Proof of Theorem grpinvid1
StepHypRef Expression
1 oveq2 7199 . . . 4 ((𝑁𝑋) = 𝑌 → (𝑋 + (𝑁𝑋)) = (𝑋 + 𝑌))
21adantl 485 . . 3 (((𝐺 ∈ Grp ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑁𝑋) = 𝑌) → (𝑋 + (𝑁𝑋)) = (𝑋 + 𝑌))
3 grpinv.b . . . . . 6 𝐵 = (Base‘𝐺)
4 grpinv.p . . . . . 6 + = (+g𝐺)
5 grpinv.u . . . . . 6 0 = (0g𝐺)
6 grpinv.n . . . . . 6 𝑁 = (invg𝐺)
73, 4, 5, 6grprinv 18371 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (𝑋 + (𝑁𝑋)) = 0 )
873adant3 1134 . . . 4 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑌𝐵) → (𝑋 + (𝑁𝑋)) = 0 )
98adantr 484 . . 3 (((𝐺 ∈ Grp ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑁𝑋) = 𝑌) → (𝑋 + (𝑁𝑋)) = 0 )
102, 9eqtr3d 2773 . 2 (((𝐺 ∈ Grp ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑁𝑋) = 𝑌) → (𝑋 + 𝑌) = 0 )
11 oveq2 7199 . . . 4 ((𝑋 + 𝑌) = 0 → ((𝑁𝑋) + (𝑋 + 𝑌)) = ((𝑁𝑋) + 0 ))
1211adantl 485 . . 3 (((𝐺 ∈ Grp ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑋 + 𝑌) = 0 ) → ((𝑁𝑋) + (𝑋 + 𝑌)) = ((𝑁𝑋) + 0 ))
133, 4, 5, 6grplinv 18370 . . . . . . . 8 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → ((𝑁𝑋) + 𝑋) = 0 )
1413oveq1d 7206 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (((𝑁𝑋) + 𝑋) + 𝑌) = ( 0 + 𝑌))
15143adant3 1134 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑌𝐵) → (((𝑁𝑋) + 𝑋) + 𝑌) = ( 0 + 𝑌))
163, 6grpinvcl 18369 . . . . . . . . . 10 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (𝑁𝑋) ∈ 𝐵)
1716adantrr 717 . . . . . . . . 9 ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵)) → (𝑁𝑋) ∈ 𝐵)
18 simprl 771 . . . . . . . . 9 ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵)) → 𝑋𝐵)
19 simprr 773 . . . . . . . . 9 ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵)) → 𝑌𝐵)
2017, 18, 193jca 1130 . . . . . . . 8 ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵)) → ((𝑁𝑋) ∈ 𝐵𝑋𝐵𝑌𝐵))
213, 4grpass 18328 . . . . . . . 8 ((𝐺 ∈ Grp ∧ ((𝑁𝑋) ∈ 𝐵𝑋𝐵𝑌𝐵)) → (((𝑁𝑋) + 𝑋) + 𝑌) = ((𝑁𝑋) + (𝑋 + 𝑌)))
2220, 21syldan 594 . . . . . . 7 ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵)) → (((𝑁𝑋) + 𝑋) + 𝑌) = ((𝑁𝑋) + (𝑋 + 𝑌)))
23223impb 1117 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑌𝐵) → (((𝑁𝑋) + 𝑋) + 𝑌) = ((𝑁𝑋) + (𝑋 + 𝑌)))
2415, 23eqtr3d 2773 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑌𝐵) → ( 0 + 𝑌) = ((𝑁𝑋) + (𝑋 + 𝑌)))
253, 4, 5grplid 18351 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝑌𝐵) → ( 0 + 𝑌) = 𝑌)
26253adant2 1133 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑌𝐵) → ( 0 + 𝑌) = 𝑌)
2724, 26eqtr3d 2773 . . . 4 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑌𝐵) → ((𝑁𝑋) + (𝑋 + 𝑌)) = 𝑌)
2827adantr 484 . . 3 (((𝐺 ∈ Grp ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑋 + 𝑌) = 0 ) → ((𝑁𝑋) + (𝑋 + 𝑌)) = 𝑌)
293, 4, 5grprid 18352 . . . . . 6 ((𝐺 ∈ Grp ∧ (𝑁𝑋) ∈ 𝐵) → ((𝑁𝑋) + 0 ) = (𝑁𝑋))
3016, 29syldan 594 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → ((𝑁𝑋) + 0 ) = (𝑁𝑋))
31303adant3 1134 . . . 4 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑌𝐵) → ((𝑁𝑋) + 0 ) = (𝑁𝑋))
3231adantr 484 . . 3 (((𝐺 ∈ Grp ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑋 + 𝑌) = 0 ) → ((𝑁𝑋) + 0 ) = (𝑁𝑋))
3312, 28, 323eqtr3rd 2780 . 2 (((𝐺 ∈ Grp ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑋 + 𝑌) = 0 ) → (𝑁𝑋) = 𝑌)
3410, 33impbida 801 1 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑌𝐵) → ((𝑁𝑋) = 𝑌 ↔ (𝑋 + 𝑌) = 0 ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1089   = wceq 1543  wcel 2112  cfv 6358  (class class class)co 7191  Basecbs 16666  +gcplusg 16749  0gc0g 16898  Grpcgrp 18319  invgcminusg 18320
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2708  ax-sep 5177  ax-nul 5184  ax-pow 5243  ax-pr 5307  ax-un 7501
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2728  df-clel 2809  df-nfc 2879  df-ne 2933  df-ral 3056  df-rex 3057  df-reu 3058  df-rmo 3059  df-rab 3060  df-v 3400  df-sbc 3684  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-nul 4224  df-if 4426  df-pw 4501  df-sn 4528  df-pr 4530  df-op 4534  df-uni 4806  df-br 5040  df-opab 5102  df-mpt 5121  df-id 5440  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-iota 6316  df-fun 6360  df-fn 6361  df-f 6362  df-fv 6366  df-riota 7148  df-ov 7194  df-0g 16900  df-mgm 18068  df-sgrp 18117  df-mnd 18128  df-grp 18322  df-minusg 18323
This theorem is referenced by:  grpinvid  18378  grpinvcnv  18385  grpinvadd  18395  subginv  18504  qusinv  18557  ghminv  18583  symginv  18748  frgpinv  19108  cnaddinv  19210  ringnegl  19566  lmodindp1  20005  lmodvsinv2  20028  cnfldneg  20343  zringinvg  20406  mdetunilem6  21468  invrvald  21527  dchrinv  26096  baerlem3lem1  39407
  Copyright terms: Public domain W3C validator