Proof of Theorem grpinvid1
Step | Hyp | Ref
| Expression |
1 | | oveq2 7315 |
. . . 4
⊢ ((𝑁‘𝑋) = 𝑌 → (𝑋 + (𝑁‘𝑋)) = (𝑋 + 𝑌)) |
2 | 1 | adantl 483 |
. . 3
⊢ (((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑁‘𝑋) = 𝑌) → (𝑋 + (𝑁‘𝑋)) = (𝑋 + 𝑌)) |
3 | | grpinv.b |
. . . . . 6
⊢ 𝐵 = (Base‘𝐺) |
4 | | grpinv.p |
. . . . . 6
⊢ + =
(+g‘𝐺) |
5 | | grpinv.u |
. . . . . 6
⊢ 0 =
(0g‘𝐺) |
6 | | grpinv.n |
. . . . . 6
⊢ 𝑁 = (invg‘𝐺) |
7 | 3, 4, 5, 6 | grprinv 18674 |
. . . . 5
⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → (𝑋 + (𝑁‘𝑋)) = 0 ) |
8 | 7 | 3adant3 1132 |
. . . 4
⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 + (𝑁‘𝑋)) = 0 ) |
9 | 8 | adantr 482 |
. . 3
⊢ (((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑁‘𝑋) = 𝑌) → (𝑋 + (𝑁‘𝑋)) = 0 ) |
10 | 2, 9 | eqtr3d 2778 |
. 2
⊢ (((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑁‘𝑋) = 𝑌) → (𝑋 + 𝑌) = 0 ) |
11 | | oveq2 7315 |
. . . 4
⊢ ((𝑋 + 𝑌) = 0 → ((𝑁‘𝑋) + (𝑋 + 𝑌)) = ((𝑁‘𝑋) + 0 )) |
12 | 11 | adantl 483 |
. . 3
⊢ (((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑋 + 𝑌) = 0 ) → ((𝑁‘𝑋) + (𝑋 + 𝑌)) = ((𝑁‘𝑋) + 0 )) |
13 | 3, 4, 5, 6 | grplinv 18673 |
. . . . . . . 8
⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → ((𝑁‘𝑋) + 𝑋) = 0 ) |
14 | 13 | oveq1d 7322 |
. . . . . . 7
⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → (((𝑁‘𝑋) + 𝑋) + 𝑌) = ( 0 + 𝑌)) |
15 | 14 | 3adant3 1132 |
. . . . . 6
⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (((𝑁‘𝑋) + 𝑋) + 𝑌) = ( 0 + 𝑌)) |
16 | 3, 6 | grpinvcl 18672 |
. . . . . . . . . 10
⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → (𝑁‘𝑋) ∈ 𝐵) |
17 | 16 | adantrr 715 |
. . . . . . . . 9
⊢ ((𝐺 ∈ Grp ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (𝑁‘𝑋) ∈ 𝐵) |
18 | | simprl 769 |
. . . . . . . . 9
⊢ ((𝐺 ∈ Grp ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → 𝑋 ∈ 𝐵) |
19 | | simprr 771 |
. . . . . . . . 9
⊢ ((𝐺 ∈ Grp ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → 𝑌 ∈ 𝐵) |
20 | 17, 18, 19 | 3jca 1128 |
. . . . . . . 8
⊢ ((𝐺 ∈ Grp ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → ((𝑁‘𝑋) ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) |
21 | 3, 4 | grpass 18631 |
. . . . . . . 8
⊢ ((𝐺 ∈ Grp ∧ ((𝑁‘𝑋) ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (((𝑁‘𝑋) + 𝑋) + 𝑌) = ((𝑁‘𝑋) + (𝑋 + 𝑌))) |
22 | 20, 21 | syldan 592 |
. . . . . . 7
⊢ ((𝐺 ∈ Grp ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (((𝑁‘𝑋) + 𝑋) + 𝑌) = ((𝑁‘𝑋) + (𝑋 + 𝑌))) |
23 | 22 | 3impb 1115 |
. . . . . 6
⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (((𝑁‘𝑋) + 𝑋) + 𝑌) = ((𝑁‘𝑋) + (𝑋 + 𝑌))) |
24 | 15, 23 | eqtr3d 2778 |
. . . . 5
⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ( 0 + 𝑌) = ((𝑁‘𝑋) + (𝑋 + 𝑌))) |
25 | 3, 4, 5 | grplid 18654 |
. . . . . 6
⊢ ((𝐺 ∈ Grp ∧ 𝑌 ∈ 𝐵) → ( 0 + 𝑌) = 𝑌) |
26 | 25 | 3adant2 1131 |
. . . . 5
⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ( 0 + 𝑌) = 𝑌) |
27 | 24, 26 | eqtr3d 2778 |
. . . 4
⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑁‘𝑋) + (𝑋 + 𝑌)) = 𝑌) |
28 | 27 | adantr 482 |
. . 3
⊢ (((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑋 + 𝑌) = 0 ) → ((𝑁‘𝑋) + (𝑋 + 𝑌)) = 𝑌) |
29 | 3, 4, 5 | grprid 18655 |
. . . . . 6
⊢ ((𝐺 ∈ Grp ∧ (𝑁‘𝑋) ∈ 𝐵) → ((𝑁‘𝑋) + 0 ) = (𝑁‘𝑋)) |
30 | 16, 29 | syldan 592 |
. . . . 5
⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → ((𝑁‘𝑋) + 0 ) = (𝑁‘𝑋)) |
31 | 30 | 3adant3 1132 |
. . . 4
⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑁‘𝑋) + 0 ) = (𝑁‘𝑋)) |
32 | 31 | adantr 482 |
. . 3
⊢ (((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑋 + 𝑌) = 0 ) → ((𝑁‘𝑋) + 0 ) = (𝑁‘𝑋)) |
33 | 12, 28, 32 | 3eqtr3rd 2785 |
. 2
⊢ (((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑋 + 𝑌) = 0 ) → (𝑁‘𝑋) = 𝑌) |
34 | 10, 33 | impbida 799 |
1
⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑁‘𝑋) = 𝑌 ↔ (𝑋 + 𝑌) = 0 )) |