MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grpinvid2 Structured version   Visualization version   GIF version

Theorem grpinvid2 18157
Description: The inverse of a group element expressed in terms of the identity element. (Contributed by NM, 24-Aug-2011.)
Hypotheses
Ref Expression
grpinv.b 𝐵 = (Base‘𝐺)
grpinv.p + = (+g𝐺)
grpinv.u 0 = (0g𝐺)
grpinv.n 𝑁 = (invg𝐺)
Assertion
Ref Expression
grpinvid2 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑌𝐵) → ((𝑁𝑋) = 𝑌 ↔ (𝑌 + 𝑋) = 0 ))

Proof of Theorem grpinvid2
StepHypRef Expression
1 oveq1 7165 . . . 4 ((𝑁𝑋) = 𝑌 → ((𝑁𝑋) + 𝑋) = (𝑌 + 𝑋))
21adantl 484 . . 3 (((𝐺 ∈ Grp ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑁𝑋) = 𝑌) → ((𝑁𝑋) + 𝑋) = (𝑌 + 𝑋))
3 grpinv.b . . . . . 6 𝐵 = (Base‘𝐺)
4 grpinv.p . . . . . 6 + = (+g𝐺)
5 grpinv.u . . . . . 6 0 = (0g𝐺)
6 grpinv.n . . . . . 6 𝑁 = (invg𝐺)
73, 4, 5, 6grplinv 18154 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → ((𝑁𝑋) + 𝑋) = 0 )
873adant3 1128 . . . 4 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑌𝐵) → ((𝑁𝑋) + 𝑋) = 0 )
98adantr 483 . . 3 (((𝐺 ∈ Grp ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑁𝑋) = 𝑌) → ((𝑁𝑋) + 𝑋) = 0 )
102, 9eqtr3d 2860 . 2 (((𝐺 ∈ Grp ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑁𝑋) = 𝑌) → (𝑌 + 𝑋) = 0 )
113, 6grpinvcl 18153 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (𝑁𝑋) ∈ 𝐵)
123, 4, 5grplid 18135 . . . . . . 7 ((𝐺 ∈ Grp ∧ (𝑁𝑋) ∈ 𝐵) → ( 0 + (𝑁𝑋)) = (𝑁𝑋))
1311, 12syldan 593 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → ( 0 + (𝑁𝑋)) = (𝑁𝑋))
14133adant3 1128 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑌𝐵) → ( 0 + (𝑁𝑋)) = (𝑁𝑋))
1514eqcomd 2829 . . . 4 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑌𝐵) → (𝑁𝑋) = ( 0 + (𝑁𝑋)))
1615adantr 483 . . 3 (((𝐺 ∈ Grp ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑌 + 𝑋) = 0 ) → (𝑁𝑋) = ( 0 + (𝑁𝑋)))
17 oveq1 7165 . . . 4 ((𝑌 + 𝑋) = 0 → ((𝑌 + 𝑋) + (𝑁𝑋)) = ( 0 + (𝑁𝑋)))
1817adantl 484 . . 3 (((𝐺 ∈ Grp ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑌 + 𝑋) = 0 ) → ((𝑌 + 𝑋) + (𝑁𝑋)) = ( 0 + (𝑁𝑋)))
19 simprr 771 . . . . . . . 8 ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵)) → 𝑌𝐵)
20 simprl 769 . . . . . . . 8 ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵)) → 𝑋𝐵)
2111adantrr 715 . . . . . . . 8 ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵)) → (𝑁𝑋) ∈ 𝐵)
2219, 20, 213jca 1124 . . . . . . 7 ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵)) → (𝑌𝐵𝑋𝐵 ∧ (𝑁𝑋) ∈ 𝐵))
233, 4grpass 18114 . . . . . . 7 ((𝐺 ∈ Grp ∧ (𝑌𝐵𝑋𝐵 ∧ (𝑁𝑋) ∈ 𝐵)) → ((𝑌 + 𝑋) + (𝑁𝑋)) = (𝑌 + (𝑋 + (𝑁𝑋))))
2422, 23syldan 593 . . . . . 6 ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵)) → ((𝑌 + 𝑋) + (𝑁𝑋)) = (𝑌 + (𝑋 + (𝑁𝑋))))
25243impb 1111 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑌𝐵) → ((𝑌 + 𝑋) + (𝑁𝑋)) = (𝑌 + (𝑋 + (𝑁𝑋))))
263, 4, 5, 6grprinv 18155 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (𝑋 + (𝑁𝑋)) = 0 )
2726oveq2d 7174 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (𝑌 + (𝑋 + (𝑁𝑋))) = (𝑌 + 0 ))
28273adant3 1128 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑌𝐵) → (𝑌 + (𝑋 + (𝑁𝑋))) = (𝑌 + 0 ))
293, 4, 5grprid 18136 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝑌𝐵) → (𝑌 + 0 ) = 𝑌)
30293adant2 1127 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑌𝐵) → (𝑌 + 0 ) = 𝑌)
3125, 28, 303eqtrd 2862 . . . 4 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑌𝐵) → ((𝑌 + 𝑋) + (𝑁𝑋)) = 𝑌)
3231adantr 483 . . 3 (((𝐺 ∈ Grp ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑌 + 𝑋) = 0 ) → ((𝑌 + 𝑋) + (𝑁𝑋)) = 𝑌)
3316, 18, 323eqtr2d 2864 . 2 (((𝐺 ∈ Grp ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑌 + 𝑋) = 0 ) → (𝑁𝑋) = 𝑌)
3410, 33impbida 799 1 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑌𝐵) → ((𝑁𝑋) = 𝑌 ↔ (𝑌 + 𝑋) = 0 ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1537  wcel 2114  cfv 6357  (class class class)co 7158  Basecbs 16485  +gcplusg 16567  0gc0g 16715  Grpcgrp 18105  invgcminusg 18106
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-op 4576  df-uni 4841  df-br 5069  df-opab 5131  df-mpt 5149  df-id 5462  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-fv 6365  df-riota 7116  df-ov 7161  df-0g 16717  df-mgm 17854  df-sgrp 17903  df-mnd 17914  df-grp 18108  df-minusg 18109
This theorem is referenced by:  grpinvcnv  18169  grpsubeq0  18187  prdsinvgd  18212  rngnegr  19347  psrneg  20182  islindf4  20984  pi1inv  23658  lindslinindimp2lem4  44523  lincresunit3  44543
  Copyright terms: Public domain W3C validator