MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grpinvid2 Structured version   Visualization version   GIF version

Theorem grpinvid2 18222
Description: The inverse of a group element expressed in terms of the identity element. (Contributed by NM, 24-Aug-2011.)
Hypotheses
Ref Expression
grpinv.b 𝐵 = (Base‘𝐺)
grpinv.p + = (+g𝐺)
grpinv.u 0 = (0g𝐺)
grpinv.n 𝑁 = (invg𝐺)
Assertion
Ref Expression
grpinvid2 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑌𝐵) → ((𝑁𝑋) = 𝑌 ↔ (𝑌 + 𝑋) = 0 ))

Proof of Theorem grpinvid2
StepHypRef Expression
1 oveq1 7157 . . . 4 ((𝑁𝑋) = 𝑌 → ((𝑁𝑋) + 𝑋) = (𝑌 + 𝑋))
21adantl 485 . . 3 (((𝐺 ∈ Grp ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑁𝑋) = 𝑌) → ((𝑁𝑋) + 𝑋) = (𝑌 + 𝑋))
3 grpinv.b . . . . . 6 𝐵 = (Base‘𝐺)
4 grpinv.p . . . . . 6 + = (+g𝐺)
5 grpinv.u . . . . . 6 0 = (0g𝐺)
6 grpinv.n . . . . . 6 𝑁 = (invg𝐺)
73, 4, 5, 6grplinv 18219 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → ((𝑁𝑋) + 𝑋) = 0 )
873adant3 1129 . . . 4 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑌𝐵) → ((𝑁𝑋) + 𝑋) = 0 )
98adantr 484 . . 3 (((𝐺 ∈ Grp ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑁𝑋) = 𝑌) → ((𝑁𝑋) + 𝑋) = 0 )
102, 9eqtr3d 2795 . 2 (((𝐺 ∈ Grp ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑁𝑋) = 𝑌) → (𝑌 + 𝑋) = 0 )
113, 6grpinvcl 18218 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (𝑁𝑋) ∈ 𝐵)
123, 4, 5grplid 18200 . . . . . . 7 ((𝐺 ∈ Grp ∧ (𝑁𝑋) ∈ 𝐵) → ( 0 + (𝑁𝑋)) = (𝑁𝑋))
1311, 12syldan 594 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → ( 0 + (𝑁𝑋)) = (𝑁𝑋))
14133adant3 1129 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑌𝐵) → ( 0 + (𝑁𝑋)) = (𝑁𝑋))
1514eqcomd 2764 . . . 4 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑌𝐵) → (𝑁𝑋) = ( 0 + (𝑁𝑋)))
1615adantr 484 . . 3 (((𝐺 ∈ Grp ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑌 + 𝑋) = 0 ) → (𝑁𝑋) = ( 0 + (𝑁𝑋)))
17 oveq1 7157 . . . 4 ((𝑌 + 𝑋) = 0 → ((𝑌 + 𝑋) + (𝑁𝑋)) = ( 0 + (𝑁𝑋)))
1817adantl 485 . . 3 (((𝐺 ∈ Grp ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑌 + 𝑋) = 0 ) → ((𝑌 + 𝑋) + (𝑁𝑋)) = ( 0 + (𝑁𝑋)))
19 simprr 772 . . . . . . . 8 ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵)) → 𝑌𝐵)
20 simprl 770 . . . . . . . 8 ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵)) → 𝑋𝐵)
2111adantrr 716 . . . . . . . 8 ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵)) → (𝑁𝑋) ∈ 𝐵)
2219, 20, 213jca 1125 . . . . . . 7 ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵)) → (𝑌𝐵𝑋𝐵 ∧ (𝑁𝑋) ∈ 𝐵))
233, 4grpass 18178 . . . . . . 7 ((𝐺 ∈ Grp ∧ (𝑌𝐵𝑋𝐵 ∧ (𝑁𝑋) ∈ 𝐵)) → ((𝑌 + 𝑋) + (𝑁𝑋)) = (𝑌 + (𝑋 + (𝑁𝑋))))
2422, 23syldan 594 . . . . . 6 ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵)) → ((𝑌 + 𝑋) + (𝑁𝑋)) = (𝑌 + (𝑋 + (𝑁𝑋))))
25243impb 1112 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑌𝐵) → ((𝑌 + 𝑋) + (𝑁𝑋)) = (𝑌 + (𝑋 + (𝑁𝑋))))
263, 4, 5, 6grprinv 18220 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (𝑋 + (𝑁𝑋)) = 0 )
2726oveq2d 7166 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (𝑌 + (𝑋 + (𝑁𝑋))) = (𝑌 + 0 ))
28273adant3 1129 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑌𝐵) → (𝑌 + (𝑋 + (𝑁𝑋))) = (𝑌 + 0 ))
293, 4, 5grprid 18201 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝑌𝐵) → (𝑌 + 0 ) = 𝑌)
30293adant2 1128 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑌𝐵) → (𝑌 + 0 ) = 𝑌)
3125, 28, 303eqtrd 2797 . . . 4 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑌𝐵) → ((𝑌 + 𝑋) + (𝑁𝑋)) = 𝑌)
3231adantr 484 . . 3 (((𝐺 ∈ Grp ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑌 + 𝑋) = 0 ) → ((𝑌 + 𝑋) + (𝑁𝑋)) = 𝑌)
3316, 18, 323eqtr2d 2799 . 2 (((𝐺 ∈ Grp ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑌 + 𝑋) = 0 ) → (𝑁𝑋) = 𝑌)
3410, 33impbida 800 1 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑌𝐵) → ((𝑁𝑋) = 𝑌 ↔ (𝑌 + 𝑋) = 0 ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2111  cfv 6335  (class class class)co 7150  Basecbs 16541  +gcplusg 16623  0gc0g 16771  Grpcgrp 18169  invgcminusg 18170
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-sep 5169  ax-nul 5176  ax-pow 5234  ax-pr 5298  ax-un 7459
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-ral 3075  df-rex 3076  df-reu 3077  df-rmo 3078  df-rab 3079  df-v 3411  df-sbc 3697  df-dif 3861  df-un 3863  df-in 3865  df-ss 3875  df-nul 4226  df-if 4421  df-pw 4496  df-sn 4523  df-pr 4525  df-op 4529  df-uni 4799  df-br 5033  df-opab 5095  df-mpt 5113  df-id 5430  df-xp 5530  df-rel 5531  df-cnv 5532  df-co 5533  df-dm 5534  df-rn 5535  df-res 5536  df-ima 5537  df-iota 6294  df-fun 6337  df-fn 6338  df-f 6339  df-fv 6343  df-riota 7108  df-ov 7153  df-0g 16773  df-mgm 17918  df-sgrp 17967  df-mnd 17978  df-grp 18172  df-minusg 18173
This theorem is referenced by:  grpinvcnv  18234  grpsubeq0  18252  prdsinvgd  18277  rngnegr  19416  islindf4  20603  psrneg  20728  pi1inv  23753  lindslinindimp2lem4  45257  lincresunit3  45277
  Copyright terms: Public domain W3C validator