MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grpsubsub4 Structured version   Visualization version   GIF version

Theorem grpsubsub4 18192
Description: Double group subtraction (subsub4 10919 analog). (Contributed by Mario Carneiro, 2-Dec-2014.)
Hypotheses
Ref Expression
grpsubadd.b 𝐵 = (Base‘𝐺)
grpsubadd.p + = (+g𝐺)
grpsubadd.m = (-g𝐺)
Assertion
Ref Expression
grpsubsub4 ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 𝑌) 𝑍) = (𝑋 (𝑍 + 𝑌)))

Proof of Theorem grpsubsub4
StepHypRef Expression
1 simpl 485 . . . . . 6 ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝐺 ∈ Grp)
2 grpsubadd.b . . . . . . . 8 𝐵 = (Base‘𝐺)
3 grpsubadd.m . . . . . . . 8 = (-g𝐺)
42, 3grpsubcl 18179 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌) ∈ 𝐵)
543adant3r3 1180 . . . . . 6 ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋 𝑌) ∈ 𝐵)
6 simpr3 1192 . . . . . 6 ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝑍𝐵)
7 grpsubadd.p . . . . . . 7 + = (+g𝐺)
82, 7, 3grpnpcan 18191 . . . . . 6 ((𝐺 ∈ Grp ∧ (𝑋 𝑌) ∈ 𝐵𝑍𝐵) → (((𝑋 𝑌) 𝑍) + 𝑍) = (𝑋 𝑌))
91, 5, 6, 8syl3anc 1367 . . . . 5 ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (((𝑋 𝑌) 𝑍) + 𝑍) = (𝑋 𝑌))
109oveq1d 7171 . . . 4 ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((((𝑋 𝑌) 𝑍) + 𝑍) + 𝑌) = ((𝑋 𝑌) + 𝑌))
112, 3grpsubcl 18179 . . . . . 6 ((𝐺 ∈ Grp ∧ (𝑋 𝑌) ∈ 𝐵𝑍𝐵) → ((𝑋 𝑌) 𝑍) ∈ 𝐵)
121, 5, 6, 11syl3anc 1367 . . . . 5 ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 𝑌) 𝑍) ∈ 𝐵)
13 simpr2 1191 . . . . 5 ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝑌𝐵)
142, 7grpass 18112 . . . . 5 ((𝐺 ∈ Grp ∧ (((𝑋 𝑌) 𝑍) ∈ 𝐵𝑍𝐵𝑌𝐵)) → ((((𝑋 𝑌) 𝑍) + 𝑍) + 𝑌) = (((𝑋 𝑌) 𝑍) + (𝑍 + 𝑌)))
151, 12, 6, 13, 14syl13anc 1368 . . . 4 ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((((𝑋 𝑌) 𝑍) + 𝑍) + 𝑌) = (((𝑋 𝑌) 𝑍) + (𝑍 + 𝑌)))
162, 7, 3grpnpcan 18191 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 𝑌) + 𝑌) = 𝑋)
17163adant3r3 1180 . . . 4 ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 𝑌) + 𝑌) = 𝑋)
1810, 15, 173eqtr3d 2864 . . 3 ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (((𝑋 𝑌) 𝑍) + (𝑍 + 𝑌)) = 𝑋)
19 simpr1 1190 . . . 4 ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝑋𝐵)
202, 7grpcl 18111 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑍𝐵𝑌𝐵) → (𝑍 + 𝑌) ∈ 𝐵)
211, 6, 13, 20syl3anc 1367 . . . 4 ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑍 + 𝑌) ∈ 𝐵)
222, 7, 3grpsubadd 18187 . . . 4 ((𝐺 ∈ Grp ∧ (𝑋𝐵 ∧ (𝑍 + 𝑌) ∈ 𝐵 ∧ ((𝑋 𝑌) 𝑍) ∈ 𝐵)) → ((𝑋 (𝑍 + 𝑌)) = ((𝑋 𝑌) 𝑍) ↔ (((𝑋 𝑌) 𝑍) + (𝑍 + 𝑌)) = 𝑋))
231, 19, 21, 12, 22syl13anc 1368 . . 3 ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 (𝑍 + 𝑌)) = ((𝑋 𝑌) 𝑍) ↔ (((𝑋 𝑌) 𝑍) + (𝑍 + 𝑌)) = 𝑋))
2418, 23mpbird 259 . 2 ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋 (𝑍 + 𝑌)) = ((𝑋 𝑌) 𝑍))
2524eqcomd 2827 1 ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 𝑌) 𝑍) = (𝑋 (𝑍 + 𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1537  wcel 2114  cfv 6355  (class class class)co 7156  Basecbs 16483  +gcplusg 16565  Grpcgrp 18103  -gcsg 18105
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4839  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-id 5460  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-1st 7689  df-2nd 7690  df-0g 16715  df-mgm 17852  df-sgrp 17901  df-mnd 17912  df-grp 18106  df-minusg 18107  df-sbg 18108
This theorem is referenced by:  grppnpcan2  18193  grpnnncan2  18196  sylow3lem1  18752  subgdisj1  18817  pjthlem2  24041  ply1divex  24730
  Copyright terms: Public domain W3C validator