Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  grpsubsub4 Structured version   Visualization version   GIF version

Theorem grpsubsub4 18192
 Description: Double group subtraction (subsub4 10915 analog). (Contributed by Mario Carneiro, 2-Dec-2014.)
Hypotheses
Ref Expression
Assertion
Ref Expression
grpsubsub4 ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 𝑌) 𝑍) = (𝑋 (𝑍 + 𝑌)))

Proof of Theorem grpsubsub4
StepHypRef Expression
1 simpl 486 . . . . . 6 ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝐺 ∈ Grp)
2 grpsubadd.b . . . . . . . 8 𝐵 = (Base‘𝐺)
3 grpsubadd.m . . . . . . . 8 = (-g𝐺)
42, 3grpsubcl 18179 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌) ∈ 𝐵)
543adant3r3 1181 . . . . . 6 ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋 𝑌) ∈ 𝐵)
6 simpr3 1193 . . . . . 6 ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝑍𝐵)
7 grpsubadd.p . . . . . . 7 + = (+g𝐺)
82, 7, 3grpnpcan 18191 . . . . . 6 ((𝐺 ∈ Grp ∧ (𝑋 𝑌) ∈ 𝐵𝑍𝐵) → (((𝑋 𝑌) 𝑍) + 𝑍) = (𝑋 𝑌))
91, 5, 6, 8syl3anc 1368 . . . . 5 ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (((𝑋 𝑌) 𝑍) + 𝑍) = (𝑋 𝑌))
109oveq1d 7155 . . . 4 ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((((𝑋 𝑌) 𝑍) + 𝑍) + 𝑌) = ((𝑋 𝑌) + 𝑌))
112, 3grpsubcl 18179 . . . . . 6 ((𝐺 ∈ Grp ∧ (𝑋 𝑌) ∈ 𝐵𝑍𝐵) → ((𝑋 𝑌) 𝑍) ∈ 𝐵)
121, 5, 6, 11syl3anc 1368 . . . . 5 ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 𝑌) 𝑍) ∈ 𝐵)
13 simpr2 1192 . . . . 5 ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝑌𝐵)
142, 7grpass 18111 . . . . 5 ((𝐺 ∈ Grp ∧ (((𝑋 𝑌) 𝑍) ∈ 𝐵𝑍𝐵𝑌𝐵)) → ((((𝑋 𝑌) 𝑍) + 𝑍) + 𝑌) = (((𝑋 𝑌) 𝑍) + (𝑍 + 𝑌)))
151, 12, 6, 13, 14syl13anc 1369 . . . 4 ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((((𝑋 𝑌) 𝑍) + 𝑍) + 𝑌) = (((𝑋 𝑌) 𝑍) + (𝑍 + 𝑌)))
162, 7, 3grpnpcan 18191 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 𝑌) + 𝑌) = 𝑋)
17163adant3r3 1181 . . . 4 ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 𝑌) + 𝑌) = 𝑋)
1810, 15, 173eqtr3d 2841 . . 3 ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (((𝑋 𝑌) 𝑍) + (𝑍 + 𝑌)) = 𝑋)
19 simpr1 1191 . . . 4 ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝑋𝐵)
202, 7grpcl 18110 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑍𝐵𝑌𝐵) → (𝑍 + 𝑌) ∈ 𝐵)
211, 6, 13, 20syl3anc 1368 . . . 4 ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑍 + 𝑌) ∈ 𝐵)
222, 7, 3grpsubadd 18187 . . . 4 ((𝐺 ∈ Grp ∧ (𝑋𝐵 ∧ (𝑍 + 𝑌) ∈ 𝐵 ∧ ((𝑋 𝑌) 𝑍) ∈ 𝐵)) → ((𝑋 (𝑍 + 𝑌)) = ((𝑋 𝑌) 𝑍) ↔ (((𝑋 𝑌) 𝑍) + (𝑍 + 𝑌)) = 𝑋))
231, 19, 21, 12, 22syl13anc 1369 . . 3 ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 (𝑍 + 𝑌)) = ((𝑋 𝑌) 𝑍) ↔ (((𝑋 𝑌) 𝑍) + (𝑍 + 𝑌)) = 𝑋))
2418, 23mpbird 260 . 2 ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋 (𝑍 + 𝑌)) = ((𝑋 𝑌) 𝑍))
2524eqcomd 2804 1 ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 𝑌) 𝑍) = (𝑋 (𝑍 + 𝑌)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   ∧ wa 399   ∧ w3a 1084   = wceq 1538   ∈ wcel 2111  ‘cfv 6327  (class class class)co 7140  Basecbs 16482  +gcplusg 16564  Grpcgrp 18102  -gcsg 18104 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5168  ax-nul 5175  ax-pow 5232  ax-pr 5296  ax-un 7448 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4802  df-iun 4884  df-br 5032  df-opab 5094  df-mpt 5112  df-id 5426  df-xp 5526  df-rel 5527  df-cnv 5528  df-co 5529  df-dm 5530  df-rn 5531  df-res 5532  df-ima 5533  df-iota 6286  df-fun 6329  df-fn 6330  df-f 6331  df-fv 6335  df-riota 7098  df-ov 7143  df-oprab 7144  df-mpo 7145  df-1st 7678  df-2nd 7679  df-0g 16714  df-mgm 17851  df-sgrp 17900  df-mnd 17911  df-grp 18105  df-minusg 18106  df-sbg 18107 This theorem is referenced by:  grppnpcan2  18193  grpnnncan2  18196  sylow3lem1  18752  subgdisj1  18817  pjthlem2  24056  ply1divex  24751
 Copyright terms: Public domain W3C validator