MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grpsubsub4 Structured version   Visualization version   GIF version

Theorem grpsubsub4 18912
Description: Double group subtraction (subsub4 11489 analog). (Contributed by Mario Carneiro, 2-Dec-2014.)
Hypotheses
Ref Expression
grpsubadd.b 𝐵 = (Base‘𝐺)
grpsubadd.p + = (+g𝐺)
grpsubadd.m = (-g𝐺)
Assertion
Ref Expression
grpsubsub4 ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 𝑌) 𝑍) = (𝑋 (𝑍 + 𝑌)))

Proof of Theorem grpsubsub4
StepHypRef Expression
1 simpl 483 . . . . . 6 ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝐺 ∈ Grp)
2 grpsubadd.b . . . . . . . 8 𝐵 = (Base‘𝐺)
3 grpsubadd.m . . . . . . . 8 = (-g𝐺)
42, 3grpsubcl 18899 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌) ∈ 𝐵)
543adant3r3 1184 . . . . . 6 ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋 𝑌) ∈ 𝐵)
6 simpr3 1196 . . . . . 6 ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝑍𝐵)
7 grpsubadd.p . . . . . . 7 + = (+g𝐺)
82, 7, 3grpnpcan 18911 . . . . . 6 ((𝐺 ∈ Grp ∧ (𝑋 𝑌) ∈ 𝐵𝑍𝐵) → (((𝑋 𝑌) 𝑍) + 𝑍) = (𝑋 𝑌))
91, 5, 6, 8syl3anc 1371 . . . . 5 ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (((𝑋 𝑌) 𝑍) + 𝑍) = (𝑋 𝑌))
109oveq1d 7420 . . . 4 ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((((𝑋 𝑌) 𝑍) + 𝑍) + 𝑌) = ((𝑋 𝑌) + 𝑌))
112, 3grpsubcl 18899 . . . . . 6 ((𝐺 ∈ Grp ∧ (𝑋 𝑌) ∈ 𝐵𝑍𝐵) → ((𝑋 𝑌) 𝑍) ∈ 𝐵)
121, 5, 6, 11syl3anc 1371 . . . . 5 ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 𝑌) 𝑍) ∈ 𝐵)
13 simpr2 1195 . . . . 5 ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝑌𝐵)
142, 7grpass 18824 . . . . 5 ((𝐺 ∈ Grp ∧ (((𝑋 𝑌) 𝑍) ∈ 𝐵𝑍𝐵𝑌𝐵)) → ((((𝑋 𝑌) 𝑍) + 𝑍) + 𝑌) = (((𝑋 𝑌) 𝑍) + (𝑍 + 𝑌)))
151, 12, 6, 13, 14syl13anc 1372 . . . 4 ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((((𝑋 𝑌) 𝑍) + 𝑍) + 𝑌) = (((𝑋 𝑌) 𝑍) + (𝑍 + 𝑌)))
162, 7, 3grpnpcan 18911 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 𝑌) + 𝑌) = 𝑋)
17163adant3r3 1184 . . . 4 ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 𝑌) + 𝑌) = 𝑋)
1810, 15, 173eqtr3d 2780 . . 3 ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (((𝑋 𝑌) 𝑍) + (𝑍 + 𝑌)) = 𝑋)
19 simpr1 1194 . . . 4 ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝑋𝐵)
202, 7grpcl 18823 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑍𝐵𝑌𝐵) → (𝑍 + 𝑌) ∈ 𝐵)
211, 6, 13, 20syl3anc 1371 . . . 4 ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑍 + 𝑌) ∈ 𝐵)
222, 7, 3grpsubadd 18907 . . . 4 ((𝐺 ∈ Grp ∧ (𝑋𝐵 ∧ (𝑍 + 𝑌) ∈ 𝐵 ∧ ((𝑋 𝑌) 𝑍) ∈ 𝐵)) → ((𝑋 (𝑍 + 𝑌)) = ((𝑋 𝑌) 𝑍) ↔ (((𝑋 𝑌) 𝑍) + (𝑍 + 𝑌)) = 𝑋))
231, 19, 21, 12, 22syl13anc 1372 . . 3 ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 (𝑍 + 𝑌)) = ((𝑋 𝑌) 𝑍) ↔ (((𝑋 𝑌) 𝑍) + (𝑍 + 𝑌)) = 𝑋))
2418, 23mpbird 256 . 2 ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋 (𝑍 + 𝑌)) = ((𝑋 𝑌) 𝑍))
2524eqcomd 2738 1 ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 𝑌) 𝑍) = (𝑋 (𝑍 + 𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wcel 2106  cfv 6540  (class class class)co 7405  Basecbs 17140  +gcplusg 17193  Grpcgrp 18815  -gcsg 18817
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-fv 6548  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-1st 7971  df-2nd 7972  df-0g 17383  df-mgm 18557  df-sgrp 18606  df-mnd 18622  df-grp 18818  df-minusg 18819  df-sbg 18820
This theorem is referenced by:  grppnpcan2  18913  grpnnncan2  18916  sylow3lem1  19489  subgdisj1  19553  pjthlem2  24946  ply1divex  25645
  Copyright terms: Public domain W3C validator