MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grpodivdiv Structured version   Visualization version   GIF version

Theorem grpodivdiv 30473
Description: Double group division. (Contributed by NM, 24-Feb-2008.) (New usage is discouraged.)
Hypotheses
Ref Expression
grpdivf.1 𝑋 = ran 𝐺
grpdivf.3 𝐷 = ( /𝑔𝐺)
Assertion
Ref Expression
grpodivdiv ((𝐺 ∈ GrpOp ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → (𝐴𝐷(𝐵𝐷𝐶)) = (𝐴𝐺(𝐶𝐷𝐵)))

Proof of Theorem grpodivdiv
StepHypRef Expression
1 simpl 481 . . 3 ((𝐺 ∈ GrpOp ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → 𝐺 ∈ GrpOp)
2 simpr1 1191 . . 3 ((𝐺 ∈ GrpOp ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → 𝐴𝑋)
3 grpdivf.1 . . . . 5 𝑋 = ran 𝐺
4 grpdivf.3 . . . . 5 𝐷 = ( /𝑔𝐺)
53, 4grpodivcl 30472 . . . 4 ((𝐺 ∈ GrpOp ∧ 𝐵𝑋𝐶𝑋) → (𝐵𝐷𝐶) ∈ 𝑋)
653adant3r1 1179 . . 3 ((𝐺 ∈ GrpOp ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → (𝐵𝐷𝐶) ∈ 𝑋)
7 eqid 2726 . . . 4 (inv‘𝐺) = (inv‘𝐺)
83, 7, 4grpodivval 30468 . . 3 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋 ∧ (𝐵𝐷𝐶) ∈ 𝑋) → (𝐴𝐷(𝐵𝐷𝐶)) = (𝐴𝐺((inv‘𝐺)‘(𝐵𝐷𝐶))))
91, 2, 6, 8syl3anc 1368 . 2 ((𝐺 ∈ GrpOp ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → (𝐴𝐷(𝐵𝐷𝐶)) = (𝐴𝐺((inv‘𝐺)‘(𝐵𝐷𝐶))))
103, 7, 4grpoinvdiv 30470 . . . 4 ((𝐺 ∈ GrpOp ∧ 𝐵𝑋𝐶𝑋) → ((inv‘𝐺)‘(𝐵𝐷𝐶)) = (𝐶𝐷𝐵))
11103adant3r1 1179 . . 3 ((𝐺 ∈ GrpOp ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → ((inv‘𝐺)‘(𝐵𝐷𝐶)) = (𝐶𝐷𝐵))
1211oveq2d 7440 . 2 ((𝐺 ∈ GrpOp ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → (𝐴𝐺((inv‘𝐺)‘(𝐵𝐷𝐶))) = (𝐴𝐺(𝐶𝐷𝐵)))
139, 12eqtrd 2766 1 ((𝐺 ∈ GrpOp ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → (𝐴𝐷(𝐵𝐷𝐶)) = (𝐴𝐺(𝐶𝐷𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394  w3a 1084   = wceq 1534  wcel 2099  ran crn 5683  cfv 6554  (class class class)co 7424  GrpOpcgr 30422  invcgn 30424   /𝑔 cgs 30425
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-rep 5290  ax-sep 5304  ax-nul 5311  ax-pow 5369  ax-pr 5433  ax-un 7746
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-ral 3052  df-rex 3061  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4326  df-if 4534  df-pw 4609  df-sn 4634  df-pr 4636  df-op 4640  df-uni 4914  df-iun 5003  df-br 5154  df-opab 5216  df-mpt 5237  df-id 5580  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-iota 6506  df-fun 6556  df-fn 6557  df-f 6558  df-f1 6559  df-fo 6560  df-f1o 6561  df-fv 6562  df-riota 7380  df-ov 7427  df-oprab 7428  df-mpo 7429  df-1st 8003  df-2nd 8004  df-grpo 30426  df-gid 30427  df-ginv 30428  df-gdiv 30429
This theorem is referenced by:  ablodivdiv  30486
  Copyright terms: Public domain W3C validator