| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > grpodivdiv | Structured version Visualization version GIF version | ||
| Description: Double group division. (Contributed by NM, 24-Feb-2008.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| grpdivf.1 | ⊢ 𝑋 = ran 𝐺 |
| grpdivf.3 | ⊢ 𝐷 = ( /𝑔 ‘𝐺) |
| Ref | Expression |
|---|---|
| grpodivdiv | ⊢ ((𝐺 ∈ GrpOp ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → (𝐴𝐷(𝐵𝐷𝐶)) = (𝐴𝐺(𝐶𝐷𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 482 | . . 3 ⊢ ((𝐺 ∈ GrpOp ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → 𝐺 ∈ GrpOp) | |
| 2 | simpr1 1195 | . . 3 ⊢ ((𝐺 ∈ GrpOp ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → 𝐴 ∈ 𝑋) | |
| 3 | grpdivf.1 | . . . . 5 ⊢ 𝑋 = ran 𝐺 | |
| 4 | grpdivf.3 | . . . . 5 ⊢ 𝐷 = ( /𝑔 ‘𝐺) | |
| 5 | 3, 4 | grpodivcl 30474 | . . . 4 ⊢ ((𝐺 ∈ GrpOp ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋) → (𝐵𝐷𝐶) ∈ 𝑋) |
| 6 | 5 | 3adant3r1 1183 | . . 3 ⊢ ((𝐺 ∈ GrpOp ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → (𝐵𝐷𝐶) ∈ 𝑋) |
| 7 | eqid 2730 | . . . 4 ⊢ (inv‘𝐺) = (inv‘𝐺) | |
| 8 | 3, 7, 4 | grpodivval 30470 | . . 3 ⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ (𝐵𝐷𝐶) ∈ 𝑋) → (𝐴𝐷(𝐵𝐷𝐶)) = (𝐴𝐺((inv‘𝐺)‘(𝐵𝐷𝐶)))) |
| 9 | 1, 2, 6, 8 | syl3anc 1373 | . 2 ⊢ ((𝐺 ∈ GrpOp ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → (𝐴𝐷(𝐵𝐷𝐶)) = (𝐴𝐺((inv‘𝐺)‘(𝐵𝐷𝐶)))) |
| 10 | 3, 7, 4 | grpoinvdiv 30472 | . . . 4 ⊢ ((𝐺 ∈ GrpOp ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋) → ((inv‘𝐺)‘(𝐵𝐷𝐶)) = (𝐶𝐷𝐵)) |
| 11 | 10 | 3adant3r1 1183 | . . 3 ⊢ ((𝐺 ∈ GrpOp ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → ((inv‘𝐺)‘(𝐵𝐷𝐶)) = (𝐶𝐷𝐵)) |
| 12 | 11 | oveq2d 7405 | . 2 ⊢ ((𝐺 ∈ GrpOp ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → (𝐴𝐺((inv‘𝐺)‘(𝐵𝐷𝐶))) = (𝐴𝐺(𝐶𝐷𝐵))) |
| 13 | 9, 12 | eqtrd 2765 | 1 ⊢ ((𝐺 ∈ GrpOp ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → (𝐴𝐷(𝐵𝐷𝐶)) = (𝐴𝐺(𝐶𝐷𝐵))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ran crn 5641 ‘cfv 6513 (class class class)co 7389 GrpOpcgr 30424 invcgn 30426 /𝑔 cgs 30427 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5236 ax-sep 5253 ax-nul 5263 ax-pow 5322 ax-pr 5389 ax-un 7713 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3756 df-csb 3865 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-iun 4959 df-br 5110 df-opab 5172 df-mpt 5191 df-id 5535 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-res 5652 df-ima 5653 df-iota 6466 df-fun 6515 df-fn 6516 df-f 6517 df-f1 6518 df-fo 6519 df-f1o 6520 df-fv 6521 df-riota 7346 df-ov 7392 df-oprab 7393 df-mpo 7394 df-1st 7970 df-2nd 7971 df-grpo 30428 df-gid 30429 df-ginv 30430 df-gdiv 30431 |
| This theorem is referenced by: ablodivdiv 30488 |
| Copyright terms: Public domain | W3C validator |