| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > grpodivcl | Structured version Visualization version GIF version | ||
| Description: Closure of group division (or subtraction) operation. (Contributed by NM, 15-Feb-2008.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| grpdivf.1 | ⊢ 𝑋 = ran 𝐺 |
| grpdivf.3 | ⊢ 𝐷 = ( /𝑔 ‘𝐺) |
| Ref | Expression |
|---|---|
| grpodivcl | ⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐷𝐵) ∈ 𝑋) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpdivf.1 | . . 3 ⊢ 𝑋 = ran 𝐺 | |
| 2 | grpdivf.3 | . . 3 ⊢ 𝐷 = ( /𝑔 ‘𝐺) | |
| 3 | 1, 2 | grpodivf 30510 | . 2 ⊢ (𝐺 ∈ GrpOp → 𝐷:(𝑋 × 𝑋)⟶𝑋) |
| 4 | fovcdm 7511 | . 2 ⊢ ((𝐷:(𝑋 × 𝑋)⟶𝑋 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐷𝐵) ∈ 𝑋) | |
| 5 | 3, 4 | syl3an1 1163 | 1 ⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐷𝐵) ∈ 𝑋) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 × cxp 5609 ran crn 5612 ⟶wf 6472 ‘cfv 6476 (class class class)co 7341 GrpOpcgr 30461 /𝑔 cgs 30464 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5212 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-id 5506 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-1st 7916 df-2nd 7917 df-grpo 30465 df-gid 30466 df-ginv 30467 df-gdiv 30468 |
| This theorem is referenced by: grpodivdiv 30512 ablomuldiv 30524 ablodivdiv4 30526 ablonnncan1 30529 ablo4pnp 37920 ghomdiv 37932 grpokerinj 37933 dmncan1 38116 |
| Copyright terms: Public domain | W3C validator |