Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  grpoeqdivid Structured version   Visualization version   GIF version

Theorem grpoeqdivid 35776
Description: Two group elements are equal iff their quotient is the identity. (Contributed by Jeff Madsen, 6-Jan-2011.)
Hypotheses
Ref Expression
grpeqdivid.1 𝑋 = ran 𝐺
grpeqdivid.2 𝑈 = (GId‘𝐺)
grpeqdivid.3 𝐷 = ( /𝑔𝐺)
Assertion
Ref Expression
grpoeqdivid ((𝐺 ∈ GrpOp ∧ 𝐴𝑋𝐵𝑋) → (𝐴 = 𝐵 ↔ (𝐴𝐷𝐵) = 𝑈))

Proof of Theorem grpoeqdivid
StepHypRef Expression
1 grpeqdivid.1 . . . . 5 𝑋 = ran 𝐺
2 grpeqdivid.3 . . . . 5 𝐷 = ( /𝑔𝐺)
3 grpeqdivid.2 . . . . 5 𝑈 = (GId‘𝐺)
41, 2, 3grpodivid 28623 . . . 4 ((𝐺 ∈ GrpOp ∧ 𝐵𝑋) → (𝐵𝐷𝐵) = 𝑈)
543adant2 1133 . . 3 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋𝐵𝑋) → (𝐵𝐷𝐵) = 𝑈)
6 oveq1 7220 . . . 4 (𝐴 = 𝐵 → (𝐴𝐷𝐵) = (𝐵𝐷𝐵))
76eqeq1d 2739 . . 3 (𝐴 = 𝐵 → ((𝐴𝐷𝐵) = 𝑈 ↔ (𝐵𝐷𝐵) = 𝑈))
85, 7syl5ibrcom 250 . 2 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋𝐵𝑋) → (𝐴 = 𝐵 → (𝐴𝐷𝐵) = 𝑈))
9 oveq1 7220 . . 3 ((𝐴𝐷𝐵) = 𝑈 → ((𝐴𝐷𝐵)𝐺𝐵) = (𝑈𝐺𝐵))
101, 2grponpcan 28624 . . . 4 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋𝐵𝑋) → ((𝐴𝐷𝐵)𝐺𝐵) = 𝐴)
111, 3grpolid 28597 . . . . 5 ((𝐺 ∈ GrpOp ∧ 𝐵𝑋) → (𝑈𝐺𝐵) = 𝐵)
12113adant2 1133 . . . 4 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋𝐵𝑋) → (𝑈𝐺𝐵) = 𝐵)
1310, 12eqeq12d 2753 . . 3 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋𝐵𝑋) → (((𝐴𝐷𝐵)𝐺𝐵) = (𝑈𝐺𝐵) ↔ 𝐴 = 𝐵))
149, 13syl5ib 247 . 2 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋𝐵𝑋) → ((𝐴𝐷𝐵) = 𝑈𝐴 = 𝐵))
158, 14impbid 215 1 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋𝐵𝑋) → (𝐴 = 𝐵 ↔ (𝐴𝐷𝐵) = 𝑈))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  w3a 1089   = wceq 1543  wcel 2110  ran crn 5552  cfv 6380  (class class class)co 7213  GrpOpcgr 28570  GIdcgi 28571   /𝑔 cgs 28573
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-rep 5179  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-ral 3066  df-rex 3067  df-reu 3068  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-op 4548  df-uni 4820  df-iun 4906  df-br 5054  df-opab 5116  df-mpt 5136  df-id 5455  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-riota 7170  df-ov 7216  df-oprab 7217  df-mpo 7218  df-1st 7761  df-2nd 7762  df-grpo 28574  df-gid 28575  df-ginv 28576  df-gdiv 28577
This theorem is referenced by:  grpokerinj  35788  dmncan1  35971
  Copyright terms: Public domain W3C validator