![]() |
Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > grpoeqdivid | Structured version Visualization version GIF version |
Description: Two group elements are equal iff their quotient is the identity. (Contributed by Jeff Madsen, 6-Jan-2011.) |
Ref | Expression |
---|---|
grpeqdivid.1 | ⊢ 𝑋 = ran 𝐺 |
grpeqdivid.2 | ⊢ 𝑈 = (GId‘𝐺) |
grpeqdivid.3 | ⊢ 𝐷 = ( /𝑔 ‘𝐺) |
Ref | Expression |
---|---|
grpoeqdivid | ⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴 = 𝐵 ↔ (𝐴𝐷𝐵) = 𝑈)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | grpeqdivid.1 | . . . . 5 ⊢ 𝑋 = ran 𝐺 | |
2 | grpeqdivid.3 | . . . . 5 ⊢ 𝐷 = ( /𝑔 ‘𝐺) | |
3 | grpeqdivid.2 | . . . . 5 ⊢ 𝑈 = (GId‘𝐺) | |
4 | 1, 2, 3 | grpodivid 30372 | . . . 4 ⊢ ((𝐺 ∈ GrpOp ∧ 𝐵 ∈ 𝑋) → (𝐵𝐷𝐵) = 𝑈) |
5 | 4 | 3adant2 1128 | . . 3 ⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐵𝐷𝐵) = 𝑈) |
6 | oveq1 7433 | . . . 4 ⊢ (𝐴 = 𝐵 → (𝐴𝐷𝐵) = (𝐵𝐷𝐵)) | |
7 | 6 | eqeq1d 2730 | . . 3 ⊢ (𝐴 = 𝐵 → ((𝐴𝐷𝐵) = 𝑈 ↔ (𝐵𝐷𝐵) = 𝑈)) |
8 | 5, 7 | syl5ibrcom 246 | . 2 ⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴 = 𝐵 → (𝐴𝐷𝐵) = 𝑈)) |
9 | oveq1 7433 | . . 3 ⊢ ((𝐴𝐷𝐵) = 𝑈 → ((𝐴𝐷𝐵)𝐺𝐵) = (𝑈𝐺𝐵)) | |
10 | 1, 2 | grponpcan 30373 | . . . 4 ⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((𝐴𝐷𝐵)𝐺𝐵) = 𝐴) |
11 | 1, 3 | grpolid 30346 | . . . . 5 ⊢ ((𝐺 ∈ GrpOp ∧ 𝐵 ∈ 𝑋) → (𝑈𝐺𝐵) = 𝐵) |
12 | 11 | 3adant2 1128 | . . . 4 ⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝑈𝐺𝐵) = 𝐵) |
13 | 10, 12 | eqeq12d 2744 | . . 3 ⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (((𝐴𝐷𝐵)𝐺𝐵) = (𝑈𝐺𝐵) ↔ 𝐴 = 𝐵)) |
14 | 9, 13 | imbitrid 243 | . 2 ⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((𝐴𝐷𝐵) = 𝑈 → 𝐴 = 𝐵)) |
15 | 8, 14 | impbid 211 | 1 ⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴 = 𝐵 ↔ (𝐴𝐷𝐵) = 𝑈)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ w3a 1084 = wceq 1533 ∈ wcel 2098 ran crn 5683 ‘cfv 6553 (class class class)co 7426 GrpOpcgr 30319 GIdcgi 30320 /𝑔 cgs 30322 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2699 ax-rep 5289 ax-sep 5303 ax-nul 5310 ax-pow 5369 ax-pr 5433 ax-un 7746 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-ral 3059 df-rex 3068 df-reu 3375 df-rab 3431 df-v 3475 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4327 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4913 df-iun 5002 df-br 5153 df-opab 5215 df-mpt 5236 df-id 5580 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-iota 6505 df-fun 6555 df-fn 6556 df-f 6557 df-f1 6558 df-fo 6559 df-f1o 6560 df-fv 6561 df-riota 7382 df-ov 7429 df-oprab 7430 df-mpo 7431 df-1st 7999 df-2nd 8000 df-grpo 30323 df-gid 30324 df-ginv 30325 df-gdiv 30326 |
This theorem is referenced by: grpokerinj 37399 dmncan1 37582 |
Copyright terms: Public domain | W3C validator |