Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  grpoeqdivid Structured version   Visualization version   GIF version

Theorem grpoeqdivid 36039
Description: Two group elements are equal iff their quotient is the identity. (Contributed by Jeff Madsen, 6-Jan-2011.)
Hypotheses
Ref Expression
grpeqdivid.1 𝑋 = ran 𝐺
grpeqdivid.2 𝑈 = (GId‘𝐺)
grpeqdivid.3 𝐷 = ( /𝑔𝐺)
Assertion
Ref Expression
grpoeqdivid ((𝐺 ∈ GrpOp ∧ 𝐴𝑋𝐵𝑋) → (𝐴 = 𝐵 ↔ (𝐴𝐷𝐵) = 𝑈))

Proof of Theorem grpoeqdivid
StepHypRef Expression
1 grpeqdivid.1 . . . . 5 𝑋 = ran 𝐺
2 grpeqdivid.3 . . . . 5 𝐷 = ( /𝑔𝐺)
3 grpeqdivid.2 . . . . 5 𝑈 = (GId‘𝐺)
41, 2, 3grpodivid 28904 . . . 4 ((𝐺 ∈ GrpOp ∧ 𝐵𝑋) → (𝐵𝐷𝐵) = 𝑈)
543adant2 1130 . . 3 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋𝐵𝑋) → (𝐵𝐷𝐵) = 𝑈)
6 oveq1 7282 . . . 4 (𝐴 = 𝐵 → (𝐴𝐷𝐵) = (𝐵𝐷𝐵))
76eqeq1d 2740 . . 3 (𝐴 = 𝐵 → ((𝐴𝐷𝐵) = 𝑈 ↔ (𝐵𝐷𝐵) = 𝑈))
85, 7syl5ibrcom 246 . 2 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋𝐵𝑋) → (𝐴 = 𝐵 → (𝐴𝐷𝐵) = 𝑈))
9 oveq1 7282 . . 3 ((𝐴𝐷𝐵) = 𝑈 → ((𝐴𝐷𝐵)𝐺𝐵) = (𝑈𝐺𝐵))
101, 2grponpcan 28905 . . . 4 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋𝐵𝑋) → ((𝐴𝐷𝐵)𝐺𝐵) = 𝐴)
111, 3grpolid 28878 . . . . 5 ((𝐺 ∈ GrpOp ∧ 𝐵𝑋) → (𝑈𝐺𝐵) = 𝐵)
12113adant2 1130 . . . 4 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋𝐵𝑋) → (𝑈𝐺𝐵) = 𝐵)
1310, 12eqeq12d 2754 . . 3 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋𝐵𝑋) → (((𝐴𝐷𝐵)𝐺𝐵) = (𝑈𝐺𝐵) ↔ 𝐴 = 𝐵))
149, 13syl5ib 243 . 2 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋𝐵𝑋) → ((𝐴𝐷𝐵) = 𝑈𝐴 = 𝐵))
158, 14impbid 211 1 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋𝐵𝑋) → (𝐴 = 𝐵 ↔ (𝐴𝐷𝐵) = 𝑈))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  w3a 1086   = wceq 1539  wcel 2106  ran crn 5590  cfv 6433  (class class class)co 7275  GrpOpcgr 28851  GIdcgi 28852   /𝑔 cgs 28854
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-1st 7831  df-2nd 7832  df-grpo 28855  df-gid 28856  df-ginv 28857  df-gdiv 28858
This theorem is referenced by:  grpokerinj  36051  dmncan1  36234
  Copyright terms: Public domain W3C validator