Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > grpoeqdivid | Structured version Visualization version GIF version |
Description: Two group elements are equal iff their quotient is the identity. (Contributed by Jeff Madsen, 6-Jan-2011.) |
Ref | Expression |
---|---|
grpeqdivid.1 | ⊢ 𝑋 = ran 𝐺 |
grpeqdivid.2 | ⊢ 𝑈 = (GId‘𝐺) |
grpeqdivid.3 | ⊢ 𝐷 = ( /𝑔 ‘𝐺) |
Ref | Expression |
---|---|
grpoeqdivid | ⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴 = 𝐵 ↔ (𝐴𝐷𝐵) = 𝑈)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | grpeqdivid.1 | . . . . 5 ⊢ 𝑋 = ran 𝐺 | |
2 | grpeqdivid.3 | . . . . 5 ⊢ 𝐷 = ( /𝑔 ‘𝐺) | |
3 | grpeqdivid.2 | . . . . 5 ⊢ 𝑈 = (GId‘𝐺) | |
4 | 1, 2, 3 | grpodivid 28805 | . . . 4 ⊢ ((𝐺 ∈ GrpOp ∧ 𝐵 ∈ 𝑋) → (𝐵𝐷𝐵) = 𝑈) |
5 | 4 | 3adant2 1129 | . . 3 ⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐵𝐷𝐵) = 𝑈) |
6 | oveq1 7262 | . . . 4 ⊢ (𝐴 = 𝐵 → (𝐴𝐷𝐵) = (𝐵𝐷𝐵)) | |
7 | 6 | eqeq1d 2740 | . . 3 ⊢ (𝐴 = 𝐵 → ((𝐴𝐷𝐵) = 𝑈 ↔ (𝐵𝐷𝐵) = 𝑈)) |
8 | 5, 7 | syl5ibrcom 246 | . 2 ⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴 = 𝐵 → (𝐴𝐷𝐵) = 𝑈)) |
9 | oveq1 7262 | . . 3 ⊢ ((𝐴𝐷𝐵) = 𝑈 → ((𝐴𝐷𝐵)𝐺𝐵) = (𝑈𝐺𝐵)) | |
10 | 1, 2 | grponpcan 28806 | . . . 4 ⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((𝐴𝐷𝐵)𝐺𝐵) = 𝐴) |
11 | 1, 3 | grpolid 28779 | . . . . 5 ⊢ ((𝐺 ∈ GrpOp ∧ 𝐵 ∈ 𝑋) → (𝑈𝐺𝐵) = 𝐵) |
12 | 11 | 3adant2 1129 | . . . 4 ⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝑈𝐺𝐵) = 𝐵) |
13 | 10, 12 | eqeq12d 2754 | . . 3 ⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (((𝐴𝐷𝐵)𝐺𝐵) = (𝑈𝐺𝐵) ↔ 𝐴 = 𝐵)) |
14 | 9, 13 | syl5ib 243 | . 2 ⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((𝐴𝐷𝐵) = 𝑈 → 𝐴 = 𝐵)) |
15 | 8, 14 | impbid 211 | 1 ⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴 = 𝐵 ↔ (𝐴𝐷𝐵) = 𝑈)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 ran crn 5581 ‘cfv 6418 (class class class)co 7255 GrpOpcgr 28752 GIdcgi 28753 /𝑔 cgs 28755 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-1st 7804 df-2nd 7805 df-grpo 28756 df-gid 28757 df-ginv 28758 df-gdiv 28759 |
This theorem is referenced by: grpokerinj 35978 dmncan1 36161 |
Copyright terms: Public domain | W3C validator |