Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  grpoeqdivid Structured version   Visualization version   GIF version

Theorem grpoeqdivid 37875
Description: Two group elements are equal iff their quotient is the identity. (Contributed by Jeff Madsen, 6-Jan-2011.)
Hypotheses
Ref Expression
grpeqdivid.1 𝑋 = ran 𝐺
grpeqdivid.2 𝑈 = (GId‘𝐺)
grpeqdivid.3 𝐷 = ( /𝑔𝐺)
Assertion
Ref Expression
grpoeqdivid ((𝐺 ∈ GrpOp ∧ 𝐴𝑋𝐵𝑋) → (𝐴 = 𝐵 ↔ (𝐴𝐷𝐵) = 𝑈))

Proof of Theorem grpoeqdivid
StepHypRef Expression
1 grpeqdivid.1 . . . . 5 𝑋 = ran 𝐺
2 grpeqdivid.3 . . . . 5 𝐷 = ( /𝑔𝐺)
3 grpeqdivid.2 . . . . 5 𝑈 = (GId‘𝐺)
41, 2, 3grpodivid 30471 . . . 4 ((𝐺 ∈ GrpOp ∧ 𝐵𝑋) → (𝐵𝐷𝐵) = 𝑈)
543adant2 1131 . . 3 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋𝐵𝑋) → (𝐵𝐷𝐵) = 𝑈)
6 oveq1 7394 . . . 4 (𝐴 = 𝐵 → (𝐴𝐷𝐵) = (𝐵𝐷𝐵))
76eqeq1d 2731 . . 3 (𝐴 = 𝐵 → ((𝐴𝐷𝐵) = 𝑈 ↔ (𝐵𝐷𝐵) = 𝑈))
85, 7syl5ibrcom 247 . 2 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋𝐵𝑋) → (𝐴 = 𝐵 → (𝐴𝐷𝐵) = 𝑈))
9 oveq1 7394 . . 3 ((𝐴𝐷𝐵) = 𝑈 → ((𝐴𝐷𝐵)𝐺𝐵) = (𝑈𝐺𝐵))
101, 2grponpcan 30472 . . . 4 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋𝐵𝑋) → ((𝐴𝐷𝐵)𝐺𝐵) = 𝐴)
111, 3grpolid 30445 . . . . 5 ((𝐺 ∈ GrpOp ∧ 𝐵𝑋) → (𝑈𝐺𝐵) = 𝐵)
12113adant2 1131 . . . 4 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋𝐵𝑋) → (𝑈𝐺𝐵) = 𝐵)
1310, 12eqeq12d 2745 . . 3 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋𝐵𝑋) → (((𝐴𝐷𝐵)𝐺𝐵) = (𝑈𝐺𝐵) ↔ 𝐴 = 𝐵))
149, 13imbitrid 244 . 2 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋𝐵𝑋) → ((𝐴𝐷𝐵) = 𝑈𝐴 = 𝐵))
158, 14impbid 212 1 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋𝐵𝑋) → (𝐴 = 𝐵 ↔ (𝐴𝐷𝐵) = 𝑈))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  w3a 1086   = wceq 1540  wcel 2109  ran crn 5639  cfv 6511  (class class class)co 7387  GrpOpcgr 30418  GIdcgi 30419   /𝑔 cgs 30421
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-1st 7968  df-2nd 7969  df-grpo 30422  df-gid 30423  df-ginv 30424  df-gdiv 30425
This theorem is referenced by:  grpokerinj  37887  dmncan1  38070
  Copyright terms: Public domain W3C validator