MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hlne2 Structured version   Visualization version   GIF version

Theorem hlne2 28590
Description: The half-line relation implies inequality. (Contributed by Thierry Arnoux, 22-Feb-2020.)
Hypotheses
Ref Expression
ishlg.p 𝑃 = (Base‘𝐺)
ishlg.i 𝐼 = (Itv‘𝐺)
ishlg.k 𝐾 = (hlG‘𝐺)
ishlg.a (𝜑𝐴𝑃)
ishlg.b (𝜑𝐵𝑃)
ishlg.c (𝜑𝐶𝑃)
ishlg.g (𝜑𝐺𝑉)
hlcomd.1 (𝜑𝐴(𝐾𝐶)𝐵)
Assertion
Ref Expression
hlne2 (𝜑𝐵𝐶)

Proof of Theorem hlne2
StepHypRef Expression
1 hlcomd.1 . . 3 (𝜑𝐴(𝐾𝐶)𝐵)
2 ishlg.p . . . 4 𝑃 = (Base‘𝐺)
3 ishlg.i . . . 4 𝐼 = (Itv‘𝐺)
4 ishlg.k . . . 4 𝐾 = (hlG‘𝐺)
5 ishlg.a . . . 4 (𝜑𝐴𝑃)
6 ishlg.b . . . 4 (𝜑𝐵𝑃)
7 ishlg.c . . . 4 (𝜑𝐶𝑃)
8 ishlg.g . . . 4 (𝜑𝐺𝑉)
92, 3, 4, 5, 6, 7, 8ishlg 28586 . . 3 (𝜑 → (𝐴(𝐾𝐶)𝐵 ↔ (𝐴𝐶𝐵𝐶 ∧ (𝐴 ∈ (𝐶𝐼𝐵) ∨ 𝐵 ∈ (𝐶𝐼𝐴)))))
101, 9mpbid 232 . 2 (𝜑 → (𝐴𝐶𝐵𝐶 ∧ (𝐴 ∈ (𝐶𝐼𝐵) ∨ 𝐵 ∈ (𝐶𝐼𝐴))))
1110simp2d 1143 1 (𝜑𝐵𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 847  w3a 1086   = wceq 1540  wcel 2109  wne 2933   class class class wbr 5124  cfv 6536  (class class class)co 7410  Basecbs 17233  Itvcitv 28417  hlGchlg 28584
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-ov 7413  df-hlg 28585
This theorem is referenced by:  hltr  28594  hlperpnel  28709  opphllem4  28734  opphllem5  28735  opphl  28738  hlpasch  28740  colhp  28754  iscgra1  28794  cgrane3  28798  cgrane4  28799  cgracgr  28802  inaghl  28829
  Copyright terms: Public domain W3C validator