![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > hlne2 | Structured version Visualization version GIF version |
Description: The half-line relation implies inequality. (Contributed by Thierry Arnoux, 22-Feb-2020.) |
Ref | Expression |
---|---|
ishlg.p | β’ π = (BaseβπΊ) |
ishlg.i | β’ πΌ = (ItvβπΊ) |
ishlg.k | β’ πΎ = (hlGβπΊ) |
ishlg.a | β’ (π β π΄ β π) |
ishlg.b | β’ (π β π΅ β π) |
ishlg.c | β’ (π β πΆ β π) |
ishlg.g | β’ (π β πΊ β π) |
hlcomd.1 | β’ (π β π΄(πΎβπΆ)π΅) |
Ref | Expression |
---|---|
hlne2 | β’ (π β π΅ β πΆ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hlcomd.1 | . . 3 β’ (π β π΄(πΎβπΆ)π΅) | |
2 | ishlg.p | . . . 4 β’ π = (BaseβπΊ) | |
3 | ishlg.i | . . . 4 β’ πΌ = (ItvβπΊ) | |
4 | ishlg.k | . . . 4 β’ πΎ = (hlGβπΊ) | |
5 | ishlg.a | . . . 4 β’ (π β π΄ β π) | |
6 | ishlg.b | . . . 4 β’ (π β π΅ β π) | |
7 | ishlg.c | . . . 4 β’ (π β πΆ β π) | |
8 | ishlg.g | . . . 4 β’ (π β πΊ β π) | |
9 | 2, 3, 4, 5, 6, 7, 8 | ishlg 27853 | . . 3 β’ (π β (π΄(πΎβπΆ)π΅ β (π΄ β πΆ β§ π΅ β πΆ β§ (π΄ β (πΆπΌπ΅) β¨ π΅ β (πΆπΌπ΄))))) |
10 | 1, 9 | mpbid 231 | . 2 β’ (π β (π΄ β πΆ β§ π΅ β πΆ β§ (π΄ β (πΆπΌπ΅) β¨ π΅ β (πΆπΌπ΄)))) |
11 | 10 | simp2d 1144 | 1 β’ (π β π΅ β πΆ) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β¨ wo 846 β§ w3a 1088 = wceq 1542 β wcel 2107 β wne 2941 class class class wbr 5149 βcfv 6544 (class class class)co 7409 Basecbs 17144 Itvcitv 27684 hlGchlg 27851 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-ov 7412 df-hlg 27852 |
This theorem is referenced by: hltr 27861 hlperpnel 27976 opphllem4 28001 opphllem5 28002 opphl 28005 hlpasch 28007 colhp 28021 iscgra1 28061 cgrane3 28065 cgrane4 28066 cgracgr 28069 inaghl 28096 |
Copyright terms: Public domain | W3C validator |