MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hlne2 Structured version   Visualization version   GIF version

Theorem hlne2 28533
Description: The half-line relation implies inequality. (Contributed by Thierry Arnoux, 22-Feb-2020.)
Hypotheses
Ref Expression
ishlg.p 𝑃 = (Base‘𝐺)
ishlg.i 𝐼 = (Itv‘𝐺)
ishlg.k 𝐾 = (hlG‘𝐺)
ishlg.a (𝜑𝐴𝑃)
ishlg.b (𝜑𝐵𝑃)
ishlg.c (𝜑𝐶𝑃)
ishlg.g (𝜑𝐺𝑉)
hlcomd.1 (𝜑𝐴(𝐾𝐶)𝐵)
Assertion
Ref Expression
hlne2 (𝜑𝐵𝐶)

Proof of Theorem hlne2
StepHypRef Expression
1 hlcomd.1 . . 3 (𝜑𝐴(𝐾𝐶)𝐵)
2 ishlg.p . . . 4 𝑃 = (Base‘𝐺)
3 ishlg.i . . . 4 𝐼 = (Itv‘𝐺)
4 ishlg.k . . . 4 𝐾 = (hlG‘𝐺)
5 ishlg.a . . . 4 (𝜑𝐴𝑃)
6 ishlg.b . . . 4 (𝜑𝐵𝑃)
7 ishlg.c . . . 4 (𝜑𝐶𝑃)
8 ishlg.g . . . 4 (𝜑𝐺𝑉)
92, 3, 4, 5, 6, 7, 8ishlg 28529 . . 3 (𝜑 → (𝐴(𝐾𝐶)𝐵 ↔ (𝐴𝐶𝐵𝐶 ∧ (𝐴 ∈ (𝐶𝐼𝐵) ∨ 𝐵 ∈ (𝐶𝐼𝐴)))))
101, 9mpbid 232 . 2 (𝜑 → (𝐴𝐶𝐵𝐶 ∧ (𝐴 ∈ (𝐶𝐼𝐵) ∨ 𝐵 ∈ (𝐶𝐼𝐴))))
1110simp2d 1143 1 (𝜑𝐵𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 847  w3a 1086   = wceq 1540  wcel 2109  wne 2925   class class class wbr 5107  cfv 6511  (class class class)co 7387  Basecbs 17179  Itvcitv 28360  hlGchlg 28527
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-hlg 28528
This theorem is referenced by:  hltr  28537  hlperpnel  28652  opphllem4  28677  opphllem5  28678  opphl  28681  hlpasch  28683  colhp  28697  iscgra1  28737  cgrane3  28741  cgrane4  28742  cgracgr  28745  inaghl  28772
  Copyright terms: Public domain W3C validator