MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hlne2 Structured version   Visualization version   GIF version

Theorem hlne2 25957
Description: The half-line relation implies inequality. (Contributed by Thierry Arnoux, 22-Feb-2020.)
Hypotheses
Ref Expression
ishlg.p 𝑃 = (Base‘𝐺)
ishlg.i 𝐼 = (Itv‘𝐺)
ishlg.k 𝐾 = (hlG‘𝐺)
ishlg.a (𝜑𝐴𝑃)
ishlg.b (𝜑𝐵𝑃)
ishlg.c (𝜑𝐶𝑃)
ishlg.g (𝜑𝐺𝑉)
hlcomd.1 (𝜑𝐴(𝐾𝐶)𝐵)
Assertion
Ref Expression
hlne2 (𝜑𝐵𝐶)

Proof of Theorem hlne2
StepHypRef Expression
1 hlcomd.1 . . 3 (𝜑𝐴(𝐾𝐶)𝐵)
2 ishlg.p . . . 4 𝑃 = (Base‘𝐺)
3 ishlg.i . . . 4 𝐼 = (Itv‘𝐺)
4 ishlg.k . . . 4 𝐾 = (hlG‘𝐺)
5 ishlg.a . . . 4 (𝜑𝐴𝑃)
6 ishlg.b . . . 4 (𝜑𝐵𝑃)
7 ishlg.c . . . 4 (𝜑𝐶𝑃)
8 ishlg.g . . . 4 (𝜑𝐺𝑉)
92, 3, 4, 5, 6, 7, 8ishlg 25953 . . 3 (𝜑 → (𝐴(𝐾𝐶)𝐵 ↔ (𝐴𝐶𝐵𝐶 ∧ (𝐴 ∈ (𝐶𝐼𝐵) ∨ 𝐵 ∈ (𝐶𝐼𝐴)))))
101, 9mpbid 224 . 2 (𝜑 → (𝐴𝐶𝐵𝐶 ∧ (𝐴 ∈ (𝐶𝐼𝐵) ∨ 𝐵 ∈ (𝐶𝐼𝐴))))
1110simp2d 1134 1 (𝜑𝐵𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 836  w3a 1071   = wceq 1601  wcel 2106  wne 2968   class class class wbr 4886  cfv 6135  (class class class)co 6922  Basecbs 16255  Itvcitv 25787  hlGchlg 25951
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2054  ax-8 2108  ax-9 2115  ax-10 2134  ax-11 2149  ax-12 2162  ax-13 2333  ax-ext 2753  ax-rep 5006  ax-sep 5017  ax-nul 5025  ax-pow 5077  ax-pr 5138  ax-un 7226
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2550  df-eu 2586  df-clab 2763  df-cleq 2769  df-clel 2773  df-nfc 2920  df-ne 2969  df-ral 3094  df-rex 3095  df-reu 3096  df-rab 3098  df-v 3399  df-sbc 3652  df-csb 3751  df-dif 3794  df-un 3796  df-in 3798  df-ss 3805  df-nul 4141  df-if 4307  df-pw 4380  df-sn 4398  df-pr 4400  df-op 4404  df-uni 4672  df-iun 4755  df-br 4887  df-opab 4949  df-mpt 4966  df-id 5261  df-xp 5361  df-rel 5362  df-cnv 5363  df-co 5364  df-dm 5365  df-rn 5366  df-res 5367  df-ima 5368  df-iota 6099  df-fun 6137  df-fn 6138  df-f 6139  df-f1 6140  df-fo 6141  df-f1o 6142  df-fv 6143  df-ov 6925  df-hlg 25952
This theorem is referenced by:  hltr  25961  opphllem5  26099  hlpasch  26104  colhp  26118  iscgra1  26158  cgrane3  26162  cgrane4  26163  inaghl  26194
  Copyright terms: Public domain W3C validator