MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hlne2 Structured version   Visualization version   GIF version

Theorem hlne2 26721
Description: The half-line relation implies inequality. (Contributed by Thierry Arnoux, 22-Feb-2020.)
Hypotheses
Ref Expression
ishlg.p 𝑃 = (Base‘𝐺)
ishlg.i 𝐼 = (Itv‘𝐺)
ishlg.k 𝐾 = (hlG‘𝐺)
ishlg.a (𝜑𝐴𝑃)
ishlg.b (𝜑𝐵𝑃)
ishlg.c (𝜑𝐶𝑃)
ishlg.g (𝜑𝐺𝑉)
hlcomd.1 (𝜑𝐴(𝐾𝐶)𝐵)
Assertion
Ref Expression
hlne2 (𝜑𝐵𝐶)

Proof of Theorem hlne2
StepHypRef Expression
1 hlcomd.1 . . 3 (𝜑𝐴(𝐾𝐶)𝐵)
2 ishlg.p . . . 4 𝑃 = (Base‘𝐺)
3 ishlg.i . . . 4 𝐼 = (Itv‘𝐺)
4 ishlg.k . . . 4 𝐾 = (hlG‘𝐺)
5 ishlg.a . . . 4 (𝜑𝐴𝑃)
6 ishlg.b . . . 4 (𝜑𝐵𝑃)
7 ishlg.c . . . 4 (𝜑𝐶𝑃)
8 ishlg.g . . . 4 (𝜑𝐺𝑉)
92, 3, 4, 5, 6, 7, 8ishlg 26717 . . 3 (𝜑 → (𝐴(𝐾𝐶)𝐵 ↔ (𝐴𝐶𝐵𝐶 ∧ (𝐴 ∈ (𝐶𝐼𝐵) ∨ 𝐵 ∈ (𝐶𝐼𝐴)))))
101, 9mpbid 235 . 2 (𝜑 → (𝐴𝐶𝐵𝐶 ∧ (𝐴 ∈ (𝐶𝐼𝐵) ∨ 𝐵 ∈ (𝐶𝐼𝐴))))
1110simp2d 1145 1 (𝜑𝐵𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 847  w3a 1089   = wceq 1543  wcel 2111  wne 2941   class class class wbr 5067  cfv 6397  (class class class)co 7231  Basecbs 16784  Itvcitv 26551  hlGchlg 26715
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2159  ax-12 2176  ax-ext 2709  ax-rep 5193  ax-sep 5206  ax-nul 5213  ax-pow 5272  ax-pr 5336  ax-un 7541
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2072  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2887  df-ne 2942  df-ral 3067  df-rex 3068  df-reu 3069  df-rab 3071  df-v 3422  df-sbc 3709  df-csb 3826  df-dif 3883  df-un 3885  df-in 3887  df-ss 3897  df-nul 4252  df-if 4454  df-pw 4529  df-sn 4556  df-pr 4558  df-op 4562  df-uni 4834  df-iun 4920  df-br 5068  df-opab 5130  df-mpt 5150  df-id 5469  df-xp 5571  df-rel 5572  df-cnv 5573  df-co 5574  df-dm 5575  df-rn 5576  df-res 5577  df-ima 5578  df-iota 6355  df-fun 6399  df-fn 6400  df-f 6401  df-f1 6402  df-fo 6403  df-f1o 6404  df-fv 6405  df-ov 7234  df-hlg 26716
This theorem is referenced by:  hltr  26725  hlperpnel  26840  opphllem4  26865  opphllem5  26866  opphl  26869  hlpasch  26871  colhp  26885  iscgra1  26925  cgrane3  26929  cgrane4  26930  cgracgr  26933  inaghl  26960
  Copyright terms: Public domain W3C validator