| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > homf0 | Structured version Visualization version GIF version | ||
| Description: The base is empty iff the functionalized Hom-set operation is empty. (Contributed by Zhi Wang, 23-Oct-2025.) |
| Ref | Expression |
|---|---|
| homf0 | ⊢ ((Base‘𝐶) = ∅ ↔ (Homf ‘𝐶) = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2734 | . . . 4 ⊢ (Homf ‘𝐶) = (Homf ‘𝐶) | |
| 2 | eqid 2734 | . . . 4 ⊢ (Base‘𝐶) = (Base‘𝐶) | |
| 3 | eqid 2734 | . . . 4 ⊢ (Hom ‘𝐶) = (Hom ‘𝐶) | |
| 4 | 1, 2, 3 | homffval 17687 | . . 3 ⊢ (Homf ‘𝐶) = (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ (𝑥(Hom ‘𝐶)𝑦)) |
| 5 | 0mpo0 7484 | . . . 4 ⊢ (((Base‘𝐶) = ∅ ∨ (Base‘𝐶) = ∅) → (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ (𝑥(Hom ‘𝐶)𝑦)) = ∅) | |
| 6 | 5 | orcs 875 | . . 3 ⊢ ((Base‘𝐶) = ∅ → (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ (𝑥(Hom ‘𝐶)𝑦)) = ∅) |
| 7 | 4, 6 | eqtrid 2781 | . 2 ⊢ ((Base‘𝐶) = ∅ → (Homf ‘𝐶) = ∅) |
| 8 | 1, 2 | homffn 17690 | . . . 4 ⊢ (Homf ‘𝐶) Fn ((Base‘𝐶) × (Base‘𝐶)) |
| 9 | f0bi 6757 | . . . . 5 ⊢ ((Homf ‘𝐶):∅⟶∅ ↔ (Homf ‘𝐶) = ∅) | |
| 10 | ffn 6702 | . . . . 5 ⊢ ((Homf ‘𝐶):∅⟶∅ → (Homf ‘𝐶) Fn ∅) | |
| 11 | 9, 10 | sylbir 235 | . . . 4 ⊢ ((Homf ‘𝐶) = ∅ → (Homf ‘𝐶) Fn ∅) |
| 12 | fndmu 6641 | . . . 4 ⊢ (((Homf ‘𝐶) Fn ((Base‘𝐶) × (Base‘𝐶)) ∧ (Homf ‘𝐶) Fn ∅) → ((Base‘𝐶) × (Base‘𝐶)) = ∅) | |
| 13 | 8, 11, 12 | sylancr 587 | . . 3 ⊢ ((Homf ‘𝐶) = ∅ → ((Base‘𝐶) × (Base‘𝐶)) = ∅) |
| 14 | xpeq0 6146 | . . . 4 ⊢ (((Base‘𝐶) × (Base‘𝐶)) = ∅ ↔ ((Base‘𝐶) = ∅ ∨ (Base‘𝐶) = ∅)) | |
| 15 | pm4.25 905 | . . . 4 ⊢ ((Base‘𝐶) = ∅ ↔ ((Base‘𝐶) = ∅ ∨ (Base‘𝐶) = ∅)) | |
| 16 | 14, 15 | bitr4i 278 | . . 3 ⊢ (((Base‘𝐶) × (Base‘𝐶)) = ∅ ↔ (Base‘𝐶) = ∅) |
| 17 | 13, 16 | sylib 218 | . 2 ⊢ ((Homf ‘𝐶) = ∅ → (Base‘𝐶) = ∅) |
| 18 | 7, 17 | impbii 209 | 1 ⊢ ((Base‘𝐶) = ∅ ↔ (Homf ‘𝐶) = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∨ wo 847 = wceq 1539 ∅c0 4306 × cxp 5649 Fn wfn 6522 ⟶wf 6523 ‘cfv 6527 (class class class)co 7399 ∈ cmpo 7401 Basecbs 17213 Hom chom 17267 Homf chomf 17663 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5246 ax-sep 5263 ax-nul 5273 ax-pow 5332 ax-pr 5399 ax-un 7723 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-reu 3358 df-rab 3414 df-v 3459 df-sbc 3764 df-csb 3873 df-dif 3927 df-un 3929 df-in 3931 df-ss 3941 df-nul 4307 df-if 4499 df-pw 4575 df-sn 4600 df-pr 4602 df-op 4606 df-uni 4881 df-iun 4966 df-br 5117 df-opab 5179 df-mpt 5199 df-id 5545 df-xp 5657 df-rel 5658 df-cnv 5659 df-co 5660 df-dm 5661 df-rn 5662 df-res 5663 df-ima 5664 df-iota 6480 df-fun 6529 df-fn 6530 df-f 6531 df-f1 6532 df-fo 6533 df-f1o 6534 df-fv 6535 df-ov 7402 df-oprab 7403 df-mpo 7404 df-1st 7982 df-2nd 7983 df-homf 17667 |
| This theorem is referenced by: initopropdlem 48963 termopropdlem 48964 |
| Copyright terms: Public domain | W3C validator |