Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  homf0 Structured version   Visualization version   GIF version

Theorem homf0 48994
Description: The base is empty iff the functionalized Hom-set operation is empty. (Contributed by Zhi Wang, 23-Oct-2025.)
Assertion
Ref Expression
homf0 ((Base‘𝐶) = ∅ ↔ (Homf𝐶) = ∅)

Proof of Theorem homf0
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2729 . . . 4 (Homf𝐶) = (Homf𝐶)
2 eqid 2729 . . . 4 (Base‘𝐶) = (Base‘𝐶)
3 eqid 2729 . . . 4 (Hom ‘𝐶) = (Hom ‘𝐶)
41, 2, 3homffval 17596 . . 3 (Homf𝐶) = (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ (𝑥(Hom ‘𝐶)𝑦))
5 0mpo0 7432 . . . 4 (((Base‘𝐶) = ∅ ∨ (Base‘𝐶) = ∅) → (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ (𝑥(Hom ‘𝐶)𝑦)) = ∅)
65orcs 875 . . 3 ((Base‘𝐶) = ∅ → (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ (𝑥(Hom ‘𝐶)𝑦)) = ∅)
74, 6eqtrid 2776 . 2 ((Base‘𝐶) = ∅ → (Homf𝐶) = ∅)
81, 2homffn 17599 . . . 4 (Homf𝐶) Fn ((Base‘𝐶) × (Base‘𝐶))
9 f0bi 6707 . . . . 5 ((Homf𝐶):∅⟶∅ ↔ (Homf𝐶) = ∅)
10 ffn 6652 . . . . 5 ((Homf𝐶):∅⟶∅ → (Homf𝐶) Fn ∅)
119, 10sylbir 235 . . . 4 ((Homf𝐶) = ∅ → (Homf𝐶) Fn ∅)
12 fndmu 6589 . . . 4 (((Homf𝐶) Fn ((Base‘𝐶) × (Base‘𝐶)) ∧ (Homf𝐶) Fn ∅) → ((Base‘𝐶) × (Base‘𝐶)) = ∅)
138, 11, 12sylancr 587 . . 3 ((Homf𝐶) = ∅ → ((Base‘𝐶) × (Base‘𝐶)) = ∅)
14 xpeq0 6109 . . . 4 (((Base‘𝐶) × (Base‘𝐶)) = ∅ ↔ ((Base‘𝐶) = ∅ ∨ (Base‘𝐶) = ∅))
15 pm4.25 905 . . . 4 ((Base‘𝐶) = ∅ ↔ ((Base‘𝐶) = ∅ ∨ (Base‘𝐶) = ∅))
1614, 15bitr4i 278 . . 3 (((Base‘𝐶) × (Base‘𝐶)) = ∅ ↔ (Base‘𝐶) = ∅)
1713, 16sylib 218 . 2 ((Homf𝐶) = ∅ → (Base‘𝐶) = ∅)
187, 17impbii 209 1 ((Base‘𝐶) = ∅ ↔ (Homf𝐶) = ∅)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wo 847   = wceq 1540  c0 4284   × cxp 5617   Fn wfn 6477  wf 6478  cfv 6482  (class class class)co 7349  cmpo 7351  Basecbs 17120  Hom chom 17172  Homf chomf 17572
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-ov 7352  df-oprab 7353  df-mpo 7354  df-1st 7924  df-2nd 7925  df-homf 17576
This theorem is referenced by:  initopropdlem  49225  termopropdlem  49226
  Copyright terms: Public domain W3C validator