Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  homf0 Structured version   Visualization version   GIF version

Theorem homf0 48971
Description: The base is empty iff the functionalized Hom-set operation is empty. (Contributed by Zhi Wang, 23-Oct-2025.)
Assertion
Ref Expression
homf0 ((Base‘𝐶) = ∅ ↔ (Homf𝐶) = ∅)

Proof of Theorem homf0
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2729 . . . 4 (Homf𝐶) = (Homf𝐶)
2 eqid 2729 . . . 4 (Base‘𝐶) = (Base‘𝐶)
3 eqid 2729 . . . 4 (Hom ‘𝐶) = (Hom ‘𝐶)
41, 2, 3homffval 17627 . . 3 (Homf𝐶) = (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ (𝑥(Hom ‘𝐶)𝑦))
5 0mpo0 7452 . . . 4 (((Base‘𝐶) = ∅ ∨ (Base‘𝐶) = ∅) → (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ (𝑥(Hom ‘𝐶)𝑦)) = ∅)
65orcs 875 . . 3 ((Base‘𝐶) = ∅ → (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ (𝑥(Hom ‘𝐶)𝑦)) = ∅)
74, 6eqtrid 2776 . 2 ((Base‘𝐶) = ∅ → (Homf𝐶) = ∅)
81, 2homffn 17630 . . . 4 (Homf𝐶) Fn ((Base‘𝐶) × (Base‘𝐶))
9 f0bi 6725 . . . . 5 ((Homf𝐶):∅⟶∅ ↔ (Homf𝐶) = ∅)
10 ffn 6670 . . . . 5 ((Homf𝐶):∅⟶∅ → (Homf𝐶) Fn ∅)
119, 10sylbir 235 . . . 4 ((Homf𝐶) = ∅ → (Homf𝐶) Fn ∅)
12 fndmu 6607 . . . 4 (((Homf𝐶) Fn ((Base‘𝐶) × (Base‘𝐶)) ∧ (Homf𝐶) Fn ∅) → ((Base‘𝐶) × (Base‘𝐶)) = ∅)
138, 11, 12sylancr 587 . . 3 ((Homf𝐶) = ∅ → ((Base‘𝐶) × (Base‘𝐶)) = ∅)
14 xpeq0 6121 . . . 4 (((Base‘𝐶) × (Base‘𝐶)) = ∅ ↔ ((Base‘𝐶) = ∅ ∨ (Base‘𝐶) = ∅))
15 pm4.25 905 . . . 4 ((Base‘𝐶) = ∅ ↔ ((Base‘𝐶) = ∅ ∨ (Base‘𝐶) = ∅))
1614, 15bitr4i 278 . . 3 (((Base‘𝐶) × (Base‘𝐶)) = ∅ ↔ (Base‘𝐶) = ∅)
1713, 16sylib 218 . 2 ((Homf𝐶) = ∅ → (Base‘𝐶) = ∅)
187, 17impbii 209 1 ((Base‘𝐶) = ∅ ↔ (Homf𝐶) = ∅)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wo 847   = wceq 1540  c0 4292   × cxp 5629   Fn wfn 6494  wf 6495  cfv 6499  (class class class)co 7369  cmpo 7371  Basecbs 17155  Hom chom 17207  Homf chomf 17603
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-ov 7372  df-oprab 7373  df-mpo 7374  df-1st 7947  df-2nd 7948  df-homf 17607
This theorem is referenced by:  initopropdlem  49202  termopropdlem  49203
  Copyright terms: Public domain W3C validator