| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > homf0 | Structured version Visualization version GIF version | ||
| Description: The base is empty iff the functionalized Hom-set operation is empty. (Contributed by Zhi Wang, 23-Oct-2025.) |
| Ref | Expression |
|---|---|
| homf0 | ⊢ ((Base‘𝐶) = ∅ ↔ (Homf ‘𝐶) = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2730 | . . . 4 ⊢ (Homf ‘𝐶) = (Homf ‘𝐶) | |
| 2 | eqid 2730 | . . . 4 ⊢ (Base‘𝐶) = (Base‘𝐶) | |
| 3 | eqid 2730 | . . . 4 ⊢ (Hom ‘𝐶) = (Hom ‘𝐶) | |
| 4 | 1, 2, 3 | homffval 17657 | . . 3 ⊢ (Homf ‘𝐶) = (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ (𝑥(Hom ‘𝐶)𝑦)) |
| 5 | 0mpo0 7474 | . . . 4 ⊢ (((Base‘𝐶) = ∅ ∨ (Base‘𝐶) = ∅) → (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ (𝑥(Hom ‘𝐶)𝑦)) = ∅) | |
| 6 | 5 | orcs 875 | . . 3 ⊢ ((Base‘𝐶) = ∅ → (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ (𝑥(Hom ‘𝐶)𝑦)) = ∅) |
| 7 | 4, 6 | eqtrid 2777 | . 2 ⊢ ((Base‘𝐶) = ∅ → (Homf ‘𝐶) = ∅) |
| 8 | 1, 2 | homffn 17660 | . . . 4 ⊢ (Homf ‘𝐶) Fn ((Base‘𝐶) × (Base‘𝐶)) |
| 9 | f0bi 6745 | . . . . 5 ⊢ ((Homf ‘𝐶):∅⟶∅ ↔ (Homf ‘𝐶) = ∅) | |
| 10 | ffn 6690 | . . . . 5 ⊢ ((Homf ‘𝐶):∅⟶∅ → (Homf ‘𝐶) Fn ∅) | |
| 11 | 9, 10 | sylbir 235 | . . . 4 ⊢ ((Homf ‘𝐶) = ∅ → (Homf ‘𝐶) Fn ∅) |
| 12 | fndmu 6627 | . . . 4 ⊢ (((Homf ‘𝐶) Fn ((Base‘𝐶) × (Base‘𝐶)) ∧ (Homf ‘𝐶) Fn ∅) → ((Base‘𝐶) × (Base‘𝐶)) = ∅) | |
| 13 | 8, 11, 12 | sylancr 587 | . . 3 ⊢ ((Homf ‘𝐶) = ∅ → ((Base‘𝐶) × (Base‘𝐶)) = ∅) |
| 14 | xpeq0 6135 | . . . 4 ⊢ (((Base‘𝐶) × (Base‘𝐶)) = ∅ ↔ ((Base‘𝐶) = ∅ ∨ (Base‘𝐶) = ∅)) | |
| 15 | pm4.25 905 | . . . 4 ⊢ ((Base‘𝐶) = ∅ ↔ ((Base‘𝐶) = ∅ ∨ (Base‘𝐶) = ∅)) | |
| 16 | 14, 15 | bitr4i 278 | . . 3 ⊢ (((Base‘𝐶) × (Base‘𝐶)) = ∅ ↔ (Base‘𝐶) = ∅) |
| 17 | 13, 16 | sylib 218 | . 2 ⊢ ((Homf ‘𝐶) = ∅ → (Base‘𝐶) = ∅) |
| 18 | 7, 17 | impbii 209 | 1 ⊢ ((Base‘𝐶) = ∅ ↔ (Homf ‘𝐶) = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∨ wo 847 = wceq 1540 ∅c0 4298 × cxp 5638 Fn wfn 6508 ⟶wf 6509 ‘cfv 6513 (class class class)co 7389 ∈ cmpo 7391 Basecbs 17185 Hom chom 17237 Homf chomf 17633 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5236 ax-sep 5253 ax-nul 5263 ax-pow 5322 ax-pr 5389 ax-un 7713 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3756 df-csb 3865 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-iun 4959 df-br 5110 df-opab 5172 df-mpt 5191 df-id 5535 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-res 5652 df-ima 5653 df-iota 6466 df-fun 6515 df-fn 6516 df-f 6517 df-f1 6518 df-fo 6519 df-f1o 6520 df-fv 6521 df-ov 7392 df-oprab 7393 df-mpo 7394 df-1st 7970 df-2nd 7971 df-homf 17637 |
| This theorem is referenced by: initopropdlem 49211 termopropdlem 49212 |
| Copyright terms: Public domain | W3C validator |