| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > homf0 | Structured version Visualization version GIF version | ||
| Description: The base is empty iff the functionalized Hom-set operation is empty. (Contributed by Zhi Wang, 23-Oct-2025.) |
| Ref | Expression |
|---|---|
| homf0 | ⊢ ((Base‘𝐶) = ∅ ↔ (Homf ‘𝐶) = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . . . 4 ⊢ (Homf ‘𝐶) = (Homf ‘𝐶) | |
| 2 | eqid 2729 | . . . 4 ⊢ (Base‘𝐶) = (Base‘𝐶) | |
| 3 | eqid 2729 | . . . 4 ⊢ (Hom ‘𝐶) = (Hom ‘𝐶) | |
| 4 | 1, 2, 3 | homffval 17596 | . . 3 ⊢ (Homf ‘𝐶) = (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ (𝑥(Hom ‘𝐶)𝑦)) |
| 5 | 0mpo0 7432 | . . . 4 ⊢ (((Base‘𝐶) = ∅ ∨ (Base‘𝐶) = ∅) → (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ (𝑥(Hom ‘𝐶)𝑦)) = ∅) | |
| 6 | 5 | orcs 875 | . . 3 ⊢ ((Base‘𝐶) = ∅ → (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ (𝑥(Hom ‘𝐶)𝑦)) = ∅) |
| 7 | 4, 6 | eqtrid 2776 | . 2 ⊢ ((Base‘𝐶) = ∅ → (Homf ‘𝐶) = ∅) |
| 8 | 1, 2 | homffn 17599 | . . . 4 ⊢ (Homf ‘𝐶) Fn ((Base‘𝐶) × (Base‘𝐶)) |
| 9 | f0bi 6707 | . . . . 5 ⊢ ((Homf ‘𝐶):∅⟶∅ ↔ (Homf ‘𝐶) = ∅) | |
| 10 | ffn 6652 | . . . . 5 ⊢ ((Homf ‘𝐶):∅⟶∅ → (Homf ‘𝐶) Fn ∅) | |
| 11 | 9, 10 | sylbir 235 | . . . 4 ⊢ ((Homf ‘𝐶) = ∅ → (Homf ‘𝐶) Fn ∅) |
| 12 | fndmu 6589 | . . . 4 ⊢ (((Homf ‘𝐶) Fn ((Base‘𝐶) × (Base‘𝐶)) ∧ (Homf ‘𝐶) Fn ∅) → ((Base‘𝐶) × (Base‘𝐶)) = ∅) | |
| 13 | 8, 11, 12 | sylancr 587 | . . 3 ⊢ ((Homf ‘𝐶) = ∅ → ((Base‘𝐶) × (Base‘𝐶)) = ∅) |
| 14 | xpeq0 6109 | . . . 4 ⊢ (((Base‘𝐶) × (Base‘𝐶)) = ∅ ↔ ((Base‘𝐶) = ∅ ∨ (Base‘𝐶) = ∅)) | |
| 15 | pm4.25 905 | . . . 4 ⊢ ((Base‘𝐶) = ∅ ↔ ((Base‘𝐶) = ∅ ∨ (Base‘𝐶) = ∅)) | |
| 16 | 14, 15 | bitr4i 278 | . . 3 ⊢ (((Base‘𝐶) × (Base‘𝐶)) = ∅ ↔ (Base‘𝐶) = ∅) |
| 17 | 13, 16 | sylib 218 | . 2 ⊢ ((Homf ‘𝐶) = ∅ → (Base‘𝐶) = ∅) |
| 18 | 7, 17 | impbii 209 | 1 ⊢ ((Base‘𝐶) = ∅ ↔ (Homf ‘𝐶) = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∨ wo 847 = wceq 1540 ∅c0 4284 × cxp 5617 Fn wfn 6477 ⟶wf 6478 ‘cfv 6482 (class class class)co 7349 ∈ cmpo 7351 Basecbs 17120 Hom chom 17172 Homf chomf 17572 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-ov 7352 df-oprab 7353 df-mpo 7354 df-1st 7924 df-2nd 7925 df-homf 17576 |
| This theorem is referenced by: initopropdlem 49225 termopropdlem 49226 |
| Copyright terms: Public domain | W3C validator |