Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  homf0 Structured version   Visualization version   GIF version

Theorem homf0 48863
Description: The base is empty iff the functionalized Hom-set operation is empty. (Contributed by Zhi Wang, 23-Oct-2025.)
Assertion
Ref Expression
homf0 ((Base‘𝐶) = ∅ ↔ (Homf𝐶) = ∅)

Proof of Theorem homf0
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2734 . . . 4 (Homf𝐶) = (Homf𝐶)
2 eqid 2734 . . . 4 (Base‘𝐶) = (Base‘𝐶)
3 eqid 2734 . . . 4 (Hom ‘𝐶) = (Hom ‘𝐶)
41, 2, 3homffval 17687 . . 3 (Homf𝐶) = (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ (𝑥(Hom ‘𝐶)𝑦))
5 0mpo0 7484 . . . 4 (((Base‘𝐶) = ∅ ∨ (Base‘𝐶) = ∅) → (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ (𝑥(Hom ‘𝐶)𝑦)) = ∅)
65orcs 875 . . 3 ((Base‘𝐶) = ∅ → (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ (𝑥(Hom ‘𝐶)𝑦)) = ∅)
74, 6eqtrid 2781 . 2 ((Base‘𝐶) = ∅ → (Homf𝐶) = ∅)
81, 2homffn 17690 . . . 4 (Homf𝐶) Fn ((Base‘𝐶) × (Base‘𝐶))
9 f0bi 6757 . . . . 5 ((Homf𝐶):∅⟶∅ ↔ (Homf𝐶) = ∅)
10 ffn 6702 . . . . 5 ((Homf𝐶):∅⟶∅ → (Homf𝐶) Fn ∅)
119, 10sylbir 235 . . . 4 ((Homf𝐶) = ∅ → (Homf𝐶) Fn ∅)
12 fndmu 6641 . . . 4 (((Homf𝐶) Fn ((Base‘𝐶) × (Base‘𝐶)) ∧ (Homf𝐶) Fn ∅) → ((Base‘𝐶) × (Base‘𝐶)) = ∅)
138, 11, 12sylancr 587 . . 3 ((Homf𝐶) = ∅ → ((Base‘𝐶) × (Base‘𝐶)) = ∅)
14 xpeq0 6146 . . . 4 (((Base‘𝐶) × (Base‘𝐶)) = ∅ ↔ ((Base‘𝐶) = ∅ ∨ (Base‘𝐶) = ∅))
15 pm4.25 905 . . . 4 ((Base‘𝐶) = ∅ ↔ ((Base‘𝐶) = ∅ ∨ (Base‘𝐶) = ∅))
1614, 15bitr4i 278 . . 3 (((Base‘𝐶) × (Base‘𝐶)) = ∅ ↔ (Base‘𝐶) = ∅)
1713, 16sylib 218 . 2 ((Homf𝐶) = ∅ → (Base‘𝐶) = ∅)
187, 17impbii 209 1 ((Base‘𝐶) = ∅ ↔ (Homf𝐶) = ∅)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wo 847   = wceq 1539  c0 4306   × cxp 5649   Fn wfn 6522  wf 6523  cfv 6527  (class class class)co 7399  cmpo 7401  Basecbs 17213  Hom chom 17267  Homf chomf 17663
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5246  ax-sep 5263  ax-nul 5273  ax-pow 5332  ax-pr 5399  ax-un 7723
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-reu 3358  df-rab 3414  df-v 3459  df-sbc 3764  df-csb 3873  df-dif 3927  df-un 3929  df-in 3931  df-ss 3941  df-nul 4307  df-if 4499  df-pw 4575  df-sn 4600  df-pr 4602  df-op 4606  df-uni 4881  df-iun 4966  df-br 5117  df-opab 5179  df-mpt 5199  df-id 5545  df-xp 5657  df-rel 5658  df-cnv 5659  df-co 5660  df-dm 5661  df-rn 5662  df-res 5663  df-ima 5664  df-iota 6480  df-fun 6529  df-fn 6530  df-f 6531  df-f1 6532  df-fo 6533  df-f1o 6534  df-fv 6535  df-ov 7402  df-oprab 7403  df-mpo 7404  df-1st 7982  df-2nd 7983  df-homf 17667
This theorem is referenced by:  initopropdlem  48963  termopropdlem  48964
  Copyright terms: Public domain W3C validator