Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  homf0 Structured version   Visualization version   GIF version

Theorem homf0 49049
Description: The base is empty iff the functionalized Hom-set operation is empty. (Contributed by Zhi Wang, 23-Oct-2025.)
Assertion
Ref Expression
homf0 ((Base‘𝐶) = ∅ ↔ (Homf𝐶) = ∅)

Proof of Theorem homf0
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2731 . . . 4 (Homf𝐶) = (Homf𝐶)
2 eqid 2731 . . . 4 (Base‘𝐶) = (Base‘𝐶)
3 eqid 2731 . . . 4 (Hom ‘𝐶) = (Hom ‘𝐶)
41, 2, 3homffval 17596 . . 3 (Homf𝐶) = (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ (𝑥(Hom ‘𝐶)𝑦))
5 0mpo0 7429 . . . 4 (((Base‘𝐶) = ∅ ∨ (Base‘𝐶) = ∅) → (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ (𝑥(Hom ‘𝐶)𝑦)) = ∅)
65orcs 875 . . 3 ((Base‘𝐶) = ∅ → (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ (𝑥(Hom ‘𝐶)𝑦)) = ∅)
74, 6eqtrid 2778 . 2 ((Base‘𝐶) = ∅ → (Homf𝐶) = ∅)
81, 2homffn 17599 . . . 4 (Homf𝐶) Fn ((Base‘𝐶) × (Base‘𝐶))
9 f0bi 6706 . . . . 5 ((Homf𝐶):∅⟶∅ ↔ (Homf𝐶) = ∅)
10 ffn 6651 . . . . 5 ((Homf𝐶):∅⟶∅ → (Homf𝐶) Fn ∅)
119, 10sylbir 235 . . . 4 ((Homf𝐶) = ∅ → (Homf𝐶) Fn ∅)
12 fndmu 6588 . . . 4 (((Homf𝐶) Fn ((Base‘𝐶) × (Base‘𝐶)) ∧ (Homf𝐶) Fn ∅) → ((Base‘𝐶) × (Base‘𝐶)) = ∅)
138, 11, 12sylancr 587 . . 3 ((Homf𝐶) = ∅ → ((Base‘𝐶) × (Base‘𝐶)) = ∅)
14 xpeq0 6107 . . . 4 (((Base‘𝐶) × (Base‘𝐶)) = ∅ ↔ ((Base‘𝐶) = ∅ ∨ (Base‘𝐶) = ∅))
15 pm4.25 905 . . . 4 ((Base‘𝐶) = ∅ ↔ ((Base‘𝐶) = ∅ ∨ (Base‘𝐶) = ∅))
1614, 15bitr4i 278 . . 3 (((Base‘𝐶) × (Base‘𝐶)) = ∅ ↔ (Base‘𝐶) = ∅)
1713, 16sylib 218 . 2 ((Homf𝐶) = ∅ → (Base‘𝐶) = ∅)
187, 17impbii 209 1 ((Base‘𝐶) = ∅ ↔ (Homf𝐶) = ∅)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wo 847   = wceq 1541  c0 4280   × cxp 5612   Fn wfn 6476  wf 6477  cfv 6481  (class class class)co 7346  cmpo 7348  Basecbs 17120  Hom chom 17172  Homf chomf 17572
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-1st 7921  df-2nd 7922  df-homf 17576
This theorem is referenced by:  initopropdlem  49280  termopropdlem  49281
  Copyright terms: Public domain W3C validator