| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > asclcom | Structured version Visualization version GIF version | ||
| Description: Scalars are commutative
after being lifted.
However, the scalars themselves are not necessarily commutative if the algebra is not a faithful module. For example, Let 𝐹 be the 2 by 2 upper triangular matrix algebra over a commutative ring 𝑊. It is provable that 𝐹 is in general non-commutative. Define scalar multiplication 𝐶 · 𝑋 as multipying the top-left entry, which is a "vector" element of 𝑊, of the "scalar" 𝐶, which is now an upper triangular matrix, with the "vector" 𝑋 ∈ (Base‘𝑊). Equivalently, the algebra scalar lifting function is not necessarily injective unless the algebra is faithful. Therefore, all "scalar injection" was renamed. Alternate proof involves assa2ass 21798, assa2ass2 21799, and asclval 21815, by setting 𝑋 and 𝑌 the multiplicative identity of the algebra. (Contributed by Zhi Wang, 11-Sep-2025.) |
| Ref | Expression |
|---|---|
| asclelbas.a | ⊢ 𝐴 = (algSc‘𝑊) |
| asclelbas.f | ⊢ 𝐹 = (Scalar‘𝑊) |
| asclelbas.b | ⊢ 𝐵 = (Base‘𝐹) |
| asclelbas.w | ⊢ (𝜑 → 𝑊 ∈ AssAlg) |
| asclelbas.c | ⊢ (𝜑 → 𝐶 ∈ 𝐵) |
| asclcom.m | ⊢ ∗ = (.r‘𝐹) |
| asclcom.d | ⊢ (𝜑 → 𝐷 ∈ 𝐵) |
| Ref | Expression |
|---|---|
| asclcom | ⊢ (𝜑 → (𝐴‘(𝐶 ∗ 𝐷)) = (𝐴‘(𝐷 ∗ 𝐶))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | asclelbas.w | . . 3 ⊢ (𝜑 → 𝑊 ∈ AssAlg) | |
| 2 | asclelbas.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ 𝐵) | |
| 3 | asclelbas.a | . . . 4 ⊢ 𝐴 = (algSc‘𝑊) | |
| 4 | asclelbas.f | . . . 4 ⊢ 𝐹 = (Scalar‘𝑊) | |
| 5 | asclelbas.b | . . . 4 ⊢ 𝐵 = (Base‘𝐹) | |
| 6 | asclcom.d | . . . 4 ⊢ (𝜑 → 𝐷 ∈ 𝐵) | |
| 7 | 3, 4, 5, 1, 6 | asclelbas 49036 | . . 3 ⊢ (𝜑 → (𝐴‘𝐷) ∈ (Base‘𝑊)) |
| 8 | eqid 2731 | . . . . 5 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
| 9 | eqid 2731 | . . . . 5 ⊢ (.r‘𝑊) = (.r‘𝑊) | |
| 10 | eqid 2731 | . . . . 5 ⊢ ( ·𝑠 ‘𝑊) = ( ·𝑠 ‘𝑊) | |
| 11 | 3, 4, 5, 8, 9, 10 | asclmul1 21821 | . . . 4 ⊢ ((𝑊 ∈ AssAlg ∧ 𝐶 ∈ 𝐵 ∧ (𝐴‘𝐷) ∈ (Base‘𝑊)) → ((𝐴‘𝐶)(.r‘𝑊)(𝐴‘𝐷)) = (𝐶( ·𝑠 ‘𝑊)(𝐴‘𝐷))) |
| 12 | 3, 4, 5, 8, 9, 10 | asclmul2 21822 | . . . 4 ⊢ ((𝑊 ∈ AssAlg ∧ 𝐶 ∈ 𝐵 ∧ (𝐴‘𝐷) ∈ (Base‘𝑊)) → ((𝐴‘𝐷)(.r‘𝑊)(𝐴‘𝐶)) = (𝐶( ·𝑠 ‘𝑊)(𝐴‘𝐷))) |
| 13 | 11, 12 | eqtr4d 2769 | . . 3 ⊢ ((𝑊 ∈ AssAlg ∧ 𝐶 ∈ 𝐵 ∧ (𝐴‘𝐷) ∈ (Base‘𝑊)) → ((𝐴‘𝐶)(.r‘𝑊)(𝐴‘𝐷)) = ((𝐴‘𝐷)(.r‘𝑊)(𝐴‘𝐶))) |
| 14 | 1, 2, 7, 13 | syl3anc 1373 | . 2 ⊢ (𝜑 → ((𝐴‘𝐶)(.r‘𝑊)(𝐴‘𝐷)) = ((𝐴‘𝐷)(.r‘𝑊)(𝐴‘𝐶))) |
| 15 | asclcom.m | . . . 4 ⊢ ∗ = (.r‘𝐹) | |
| 16 | 3, 4, 5, 9, 15 | ascldimul 21823 | . . 3 ⊢ ((𝑊 ∈ AssAlg ∧ 𝐶 ∈ 𝐵 ∧ 𝐷 ∈ 𝐵) → (𝐴‘(𝐶 ∗ 𝐷)) = ((𝐴‘𝐶)(.r‘𝑊)(𝐴‘𝐷))) |
| 17 | 1, 2, 6, 16 | syl3anc 1373 | . 2 ⊢ (𝜑 → (𝐴‘(𝐶 ∗ 𝐷)) = ((𝐴‘𝐶)(.r‘𝑊)(𝐴‘𝐷))) |
| 18 | 3, 4, 5, 9, 15 | ascldimul 21823 | . . 3 ⊢ ((𝑊 ∈ AssAlg ∧ 𝐷 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵) → (𝐴‘(𝐷 ∗ 𝐶)) = ((𝐴‘𝐷)(.r‘𝑊)(𝐴‘𝐶))) |
| 19 | 1, 6, 2, 18 | syl3anc 1373 | . 2 ⊢ (𝜑 → (𝐴‘(𝐷 ∗ 𝐶)) = ((𝐴‘𝐷)(.r‘𝑊)(𝐴‘𝐶))) |
| 20 | 14, 17, 19 | 3eqtr4d 2776 | 1 ⊢ (𝜑 → (𝐴‘(𝐶 ∗ 𝐷)) = (𝐴‘(𝐷 ∗ 𝐶))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 ‘cfv 6481 (class class class)co 7346 Basecbs 17117 .rcmulr 17159 Scalarcsca 17161 ·𝑠 cvsca 17162 AssAlgcasa 21785 algSccascl 21787 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11059 ax-resscn 11060 ax-1cn 11061 ax-icn 11062 ax-addcl 11063 ax-addrcl 11064 ax-mulcl 11065 ax-mulrcl 11066 ax-mulcom 11067 ax-addass 11068 ax-mulass 11069 ax-distr 11070 ax-i2m1 11071 ax-1ne0 11072 ax-1rid 11073 ax-rnegex 11074 ax-rrecex 11075 ax-cnre 11076 ax-pre-lttri 11077 ax-pre-lttrn 11078 ax-pre-ltadd 11079 ax-pre-mulgt0 11080 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11145 df-mnf 11146 df-xr 11147 df-ltxr 11148 df-le 11149 df-sub 11343 df-neg 11344 df-nn 12123 df-2 12185 df-sets 17072 df-slot 17090 df-ndx 17102 df-base 17118 df-plusg 17171 df-0g 17342 df-mgm 18545 df-sgrp 18624 df-mnd 18640 df-mgp 20057 df-ur 20098 df-ring 20151 df-lmod 20793 df-assa 21788 df-ascl 21790 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |