Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > hvmulcli | Structured version Visualization version GIF version |
Description: Closure inference for scalar multiplication. (Contributed by NM, 1-Aug-1999.) (New usage is discouraged.) |
Ref | Expression |
---|---|
hvmulcl.1 | ⊢ 𝐴 ∈ ℂ |
hvmulcl.2 | ⊢ 𝐵 ∈ ℋ |
Ref | Expression |
---|---|
hvmulcli | ⊢ (𝐴 ·ℎ 𝐵) ∈ ℋ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hvmulcl.1 | . 2 ⊢ 𝐴 ∈ ℂ | |
2 | hvmulcl.2 | . 2 ⊢ 𝐵 ∈ ℋ | |
3 | hvmulcl 29276 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) → (𝐴 ·ℎ 𝐵) ∈ ℋ) | |
4 | 1, 2, 3 | mp2an 688 | 1 ⊢ (𝐴 ·ℎ 𝐵) ∈ ℋ |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2108 (class class class)co 7255 ℂcc 10800 ℋchba 29182 ·ℎ csm 29184 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 ax-hfvmul 29268 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-fv 6426 df-ov 7258 |
This theorem is referenced by: hvsubsub4i 29322 hvnegdii 29325 hvsubeq0i 29326 hvsubcan2i 29327 hvaddcani 29328 hvsubaddi 29329 normlem0 29372 normlem5 29377 normlem9 29381 bcseqi 29383 norm-iii-i 29402 norm3difi 29410 normpar2i 29419 polid2i 29420 polidi 29421 h1de2i 29816 pjsubii 29941 eigposi 30099 lnop0 30229 lnopunilem1 30273 lnophmlem2 30280 lnfn0i 30305 |
Copyright terms: Public domain | W3C validator |