| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > hvmulcli | Structured version Visualization version GIF version | ||
| Description: Closure inference for scalar multiplication. (Contributed by NM, 1-Aug-1999.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| hvmulcl.1 | ⊢ 𝐴 ∈ ℂ |
| hvmulcl.2 | ⊢ 𝐵 ∈ ℋ |
| Ref | Expression |
|---|---|
| hvmulcli | ⊢ (𝐴 ·ℎ 𝐵) ∈ ℋ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hvmulcl.1 | . 2 ⊢ 𝐴 ∈ ℂ | |
| 2 | hvmulcl.2 | . 2 ⊢ 𝐵 ∈ ℋ | |
| 3 | hvmulcl 30993 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) → (𝐴 ·ℎ 𝐵) ∈ ℋ) | |
| 4 | 1, 2, 3 | mp2an 692 | 1 ⊢ (𝐴 ·ℎ 𝐵) ∈ ℋ |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2111 (class class class)co 7346 ℂcc 11004 ℋchba 30899 ·ℎ csm 30901 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 ax-hfvmul 30985 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-fv 6489 df-ov 7349 |
| This theorem is referenced by: hvsubsub4i 31039 hvnegdii 31042 hvsubeq0i 31043 hvsubcan2i 31044 hvaddcani 31045 hvsubaddi 31046 normlem0 31089 normlem5 31094 normlem9 31098 bcseqi 31100 norm-iii-i 31119 norm3difi 31127 normpar2i 31136 polid2i 31137 polidi 31138 h1de2i 31533 pjsubii 31658 eigposi 31816 lnop0 31946 lnopunilem1 31990 lnophmlem2 31997 lnfn0i 32022 |
| Copyright terms: Public domain | W3C validator |