HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hvmulcli Structured version   Visualization version   GIF version

Theorem hvmulcli 30958
Description: Closure inference for scalar multiplication. (Contributed by NM, 1-Aug-1999.) (New usage is discouraged.)
Hypotheses
Ref Expression
hvmulcl.1 𝐴 ∈ ℂ
hvmulcl.2 𝐵 ∈ ℋ
Assertion
Ref Expression
hvmulcli (𝐴 · 𝐵) ∈ ℋ

Proof of Theorem hvmulcli
StepHypRef Expression
1 hvmulcl.1 . 2 𝐴 ∈ ℂ
2 hvmulcl.2 . 2 𝐵 ∈ ℋ
3 hvmulcl 30957 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) → (𝐴 · 𝐵) ∈ ℋ)
41, 2, 3mp2an 692 1 (𝐴 · 𝐵) ∈ ℋ
Colors of variables: wff setvar class
Syntax hints:  wcel 2109  (class class class)co 7349  cc 11007  chba 30863   · csm 30865
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pr 5371  ax-hfvmul 30949
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-ss 3920  df-nul 4285  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-fv 6490  df-ov 7352
This theorem is referenced by:  hvsubsub4i  31003  hvnegdii  31006  hvsubeq0i  31007  hvsubcan2i  31008  hvaddcani  31009  hvsubaddi  31010  normlem0  31053  normlem5  31058  normlem9  31062  bcseqi  31064  norm-iii-i  31083  norm3difi  31091  normpar2i  31100  polid2i  31101  polidi  31102  h1de2i  31497  pjsubii  31622  eigposi  31780  lnop0  31910  lnopunilem1  31954  lnophmlem2  31961  lnfn0i  31986
  Copyright terms: Public domain W3C validator