HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hvmulcli Structured version   Visualization version   GIF version

Theorem hvmulcli 31037
Description: Closure inference for scalar multiplication. (Contributed by NM, 1-Aug-1999.) (New usage is discouraged.)
Hypotheses
Ref Expression
hvmulcl.1 𝐴 ∈ ℂ
hvmulcl.2 𝐵 ∈ ℋ
Assertion
Ref Expression
hvmulcli (𝐴 · 𝐵) ∈ ℋ

Proof of Theorem hvmulcli
StepHypRef Expression
1 hvmulcl.1 . 2 𝐴 ∈ ℂ
2 hvmulcl.2 . 2 𝐵 ∈ ℋ
3 hvmulcl 31036 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) → (𝐴 · 𝐵) ∈ ℋ)
41, 2, 3mp2an 691 1 (𝐴 · 𝐵) ∈ ℋ
Colors of variables: wff setvar class
Syntax hints:  wcel 2103  (class class class)co 7445  cc 11178  chba 30942   · csm 30944
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2105  ax-9 2113  ax-10 2136  ax-11 2153  ax-12 2173  ax-ext 2705  ax-sep 5320  ax-nul 5327  ax-pr 5450  ax-hfvmul 31028
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2890  df-ne 2943  df-ral 3064  df-rex 3073  df-rab 3439  df-v 3484  df-sbc 3799  df-csb 3916  df-dif 3973  df-un 3975  df-ss 3987  df-nul 4348  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5021  df-br 5170  df-opab 5232  df-mpt 5253  df-id 5597  df-xp 5705  df-rel 5706  df-cnv 5707  df-co 5708  df-dm 5709  df-rn 5710  df-iota 6524  df-fun 6574  df-fn 6575  df-f 6576  df-fv 6580  df-ov 7448
This theorem is referenced by:  hvsubsub4i  31082  hvnegdii  31085  hvsubeq0i  31086  hvsubcan2i  31087  hvaddcani  31088  hvsubaddi  31089  normlem0  31132  normlem5  31137  normlem9  31141  bcseqi  31143  norm-iii-i  31162  norm3difi  31170  normpar2i  31179  polid2i  31180  polidi  31181  h1de2i  31576  pjsubii  31701  eigposi  31859  lnop0  31989  lnopunilem1  32033  lnophmlem2  32040  lnfn0i  32065
  Copyright terms: Public domain W3C validator