HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hvmulcli Structured version   Visualization version   GIF version

Theorem hvmulcli 29385
Description: Closure inference for scalar multiplication. (Contributed by NM, 1-Aug-1999.) (New usage is discouraged.)
Hypotheses
Ref Expression
hvmulcl.1 𝐴 ∈ ℂ
hvmulcl.2 𝐵 ∈ ℋ
Assertion
Ref Expression
hvmulcli (𝐴 · 𝐵) ∈ ℋ

Proof of Theorem hvmulcli
StepHypRef Expression
1 hvmulcl.1 . 2 𝐴 ∈ ℂ
2 hvmulcl.2 . 2 𝐵 ∈ ℋ
3 hvmulcl 29384 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) → (𝐴 · 𝐵) ∈ ℋ)
41, 2, 3mp2an 689 1 (𝐴 · 𝐵) ∈ ℋ
Colors of variables: wff setvar class
Syntax hints:  wcel 2107  (class class class)co 7284  cc 10878  chba 29290   · csm 29292
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2710  ax-sep 5224  ax-nul 5231  ax-pr 5353  ax-hfvmul 29376
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ral 3070  df-rex 3071  df-rab 3074  df-v 3435  df-sbc 3718  df-csb 3834  df-dif 3891  df-un 3893  df-in 3895  df-ss 3905  df-nul 4258  df-if 4461  df-sn 4563  df-pr 4565  df-op 4569  df-uni 4841  df-iun 4927  df-br 5076  df-opab 5138  df-mpt 5159  df-id 5490  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-iota 6395  df-fun 6439  df-fn 6440  df-f 6441  df-fv 6445  df-ov 7287
This theorem is referenced by:  hvsubsub4i  29430  hvnegdii  29433  hvsubeq0i  29434  hvsubcan2i  29435  hvaddcani  29436  hvsubaddi  29437  normlem0  29480  normlem5  29485  normlem9  29489  bcseqi  29491  norm-iii-i  29510  norm3difi  29518  normpar2i  29527  polid2i  29528  polidi  29529  h1de2i  29924  pjsubii  30049  eigposi  30207  lnop0  30337  lnopunilem1  30381  lnophmlem2  30388  lnfn0i  30413
  Copyright terms: Public domain W3C validator