Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > hvmulcli | Structured version Visualization version GIF version |
Description: Closure inference for scalar multiplication. (Contributed by NM, 1-Aug-1999.) (New usage is discouraged.) |
Ref | Expression |
---|---|
hvmulcl.1 | ⊢ 𝐴 ∈ ℂ |
hvmulcl.2 | ⊢ 𝐵 ∈ ℋ |
Ref | Expression |
---|---|
hvmulcli | ⊢ (𝐴 ·ℎ 𝐵) ∈ ℋ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hvmulcl.1 | . 2 ⊢ 𝐴 ∈ ℂ | |
2 | hvmulcl.2 | . 2 ⊢ 𝐵 ∈ ℋ | |
3 | hvmulcl 29384 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) → (𝐴 ·ℎ 𝐵) ∈ ℋ) | |
4 | 1, 2, 3 | mp2an 689 | 1 ⊢ (𝐴 ·ℎ 𝐵) ∈ ℋ |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2107 (class class class)co 7284 ℂcc 10878 ℋchba 29290 ·ℎ csm 29292 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2710 ax-sep 5224 ax-nul 5231 ax-pr 5353 ax-hfvmul 29376 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ral 3070 df-rex 3071 df-rab 3074 df-v 3435 df-sbc 3718 df-csb 3834 df-dif 3891 df-un 3893 df-in 3895 df-ss 3905 df-nul 4258 df-if 4461 df-sn 4563 df-pr 4565 df-op 4569 df-uni 4841 df-iun 4927 df-br 5076 df-opab 5138 df-mpt 5159 df-id 5490 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-iota 6395 df-fun 6439 df-fn 6440 df-f 6441 df-fv 6445 df-ov 7287 |
This theorem is referenced by: hvsubsub4i 29430 hvnegdii 29433 hvsubeq0i 29434 hvsubcan2i 29435 hvaddcani 29436 hvsubaddi 29437 normlem0 29480 normlem5 29485 normlem9 29489 bcseqi 29491 norm-iii-i 29510 norm3difi 29518 normpar2i 29527 polid2i 29528 polidi 29529 h1de2i 29924 pjsubii 30049 eigposi 30207 lnop0 30337 lnopunilem1 30381 lnophmlem2 30388 lnfn0i 30413 |
Copyright terms: Public domain | W3C validator |