| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > hvmulcli | Structured version Visualization version GIF version | ||
| Description: Closure inference for scalar multiplication. (Contributed by NM, 1-Aug-1999.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| hvmulcl.1 | ⊢ 𝐴 ∈ ℂ |
| hvmulcl.2 | ⊢ 𝐵 ∈ ℋ |
| Ref | Expression |
|---|---|
| hvmulcli | ⊢ (𝐴 ·ℎ 𝐵) ∈ ℋ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hvmulcl.1 | . 2 ⊢ 𝐴 ∈ ℂ | |
| 2 | hvmulcl.2 | . 2 ⊢ 𝐵 ∈ ℋ | |
| 3 | hvmulcl 30992 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) → (𝐴 ·ℎ 𝐵) ∈ ℋ) | |
| 4 | 1, 2, 3 | mp2an 692 | 1 ⊢ (𝐴 ·ℎ 𝐵) ∈ ℋ |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 (class class class)co 7369 ℂcc 11042 ℋchba 30898 ·ℎ csm 30900 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 ax-hfvmul 30984 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-fv 6507 df-ov 7372 |
| This theorem is referenced by: hvsubsub4i 31038 hvnegdii 31041 hvsubeq0i 31042 hvsubcan2i 31043 hvaddcani 31044 hvsubaddi 31045 normlem0 31088 normlem5 31093 normlem9 31097 bcseqi 31099 norm-iii-i 31118 norm3difi 31126 normpar2i 31135 polid2i 31136 polidi 31137 h1de2i 31532 pjsubii 31657 eigposi 31815 lnop0 31945 lnopunilem1 31989 lnophmlem2 31996 lnfn0i 32021 |
| Copyright terms: Public domain | W3C validator |