| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > hvmulcli | Structured version Visualization version GIF version | ||
| Description: Closure inference for scalar multiplication. (Contributed by NM, 1-Aug-1999.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| hvmulcl.1 | ⊢ 𝐴 ∈ ℂ |
| hvmulcl.2 | ⊢ 𝐵 ∈ ℋ |
| Ref | Expression |
|---|---|
| hvmulcli | ⊢ (𝐴 ·ℎ 𝐵) ∈ ℋ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hvmulcl.1 | . 2 ⊢ 𝐴 ∈ ℂ | |
| 2 | hvmulcl.2 | . 2 ⊢ 𝐵 ∈ ℋ | |
| 3 | hvmulcl 30948 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) → (𝐴 ·ℎ 𝐵) ∈ ℋ) | |
| 4 | 1, 2, 3 | mp2an 692 | 1 ⊢ (𝐴 ·ℎ 𝐵) ∈ ℋ |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 (class class class)co 7389 ℂcc 11072 ℋchba 30854 ·ℎ csm 30856 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5253 ax-nul 5263 ax-pr 5389 ax-hfvmul 30940 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3756 df-csb 3865 df-dif 3919 df-un 3921 df-ss 3933 df-nul 4299 df-if 4491 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-iun 4959 df-br 5110 df-opab 5172 df-mpt 5191 df-id 5535 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-iota 6466 df-fun 6515 df-fn 6516 df-f 6517 df-fv 6521 df-ov 7392 |
| This theorem is referenced by: hvsubsub4i 30994 hvnegdii 30997 hvsubeq0i 30998 hvsubcan2i 30999 hvaddcani 31000 hvsubaddi 31001 normlem0 31044 normlem5 31049 normlem9 31053 bcseqi 31055 norm-iii-i 31074 norm3difi 31082 normpar2i 31091 polid2i 31092 polidi 31093 h1de2i 31488 pjsubii 31613 eigposi 31771 lnop0 31901 lnopunilem1 31945 lnophmlem2 31952 lnfn0i 31977 |
| Copyright terms: Public domain | W3C validator |