HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  normlem5 Structured version   Visualization version   GIF version

Theorem normlem5 31016
Description: Lemma used to derive properties of norm. Part of Theorem 3.3(ii) of [Beran] p. 97. (Contributed by NM, 10-Aug-1999.) (New usage is discouraged.)
Hypotheses
Ref Expression
normlem1.1 𝑆 ∈ ℂ
normlem1.2 𝐹 ∈ ℋ
normlem1.3 𝐺 ∈ ℋ
normlem2.4 𝐵 = -(((∗‘𝑆) · (𝐹 ·ih 𝐺)) + (𝑆 · (𝐺 ·ih 𝐹)))
normlem3.5 𝐴 = (𝐺 ·ih 𝐺)
normlem3.6 𝐶 = (𝐹 ·ih 𝐹)
normlem4.7 𝑅 ∈ ℝ
normlem4.8 (abs‘𝑆) = 1
Assertion
Ref Expression
normlem5 0 ≤ (((𝐴 · (𝑅↑2)) + (𝐵 · 𝑅)) + 𝐶)

Proof of Theorem normlem5
StepHypRef Expression
1 normlem1.2 . . . 4 𝐹 ∈ ℋ
2 normlem1.1 . . . . . 6 𝑆 ∈ ℂ
3 normlem4.7 . . . . . . 7 𝑅 ∈ ℝ
43recni 11164 . . . . . 6 𝑅 ∈ ℂ
52, 4mulcli 11157 . . . . 5 (𝑆 · 𝑅) ∈ ℂ
6 normlem1.3 . . . . 5 𝐺 ∈ ℋ
75, 6hvmulcli 30916 . . . 4 ((𝑆 · 𝑅) · 𝐺) ∈ ℋ
81, 7hvsubcli 30923 . . 3 (𝐹 ((𝑆 · 𝑅) · 𝐺)) ∈ ℋ
9 hiidge0 31000 . . 3 ((𝐹 ((𝑆 · 𝑅) · 𝐺)) ∈ ℋ → 0 ≤ ((𝐹 ((𝑆 · 𝑅) · 𝐺)) ·ih (𝐹 ((𝑆 · 𝑅) · 𝐺))))
108, 9ax-mp 5 . 2 0 ≤ ((𝐹 ((𝑆 · 𝑅) · 𝐺)) ·ih (𝐹 ((𝑆 · 𝑅) · 𝐺)))
11 normlem2.4 . . 3 𝐵 = -(((∗‘𝑆) · (𝐹 ·ih 𝐺)) + (𝑆 · (𝐺 ·ih 𝐹)))
12 normlem3.5 . . 3 𝐴 = (𝐺 ·ih 𝐺)
13 normlem3.6 . . 3 𝐶 = (𝐹 ·ih 𝐹)
14 normlem4.8 . . 3 (abs‘𝑆) = 1
152, 1, 6, 11, 12, 13, 3, 14normlem4 31015 . 2 ((𝐹 ((𝑆 · 𝑅) · 𝐺)) ·ih (𝐹 ((𝑆 · 𝑅) · 𝐺))) = (((𝐴 · (𝑅↑2)) + (𝐵 · 𝑅)) + 𝐶)
1610, 15breqtri 5127 1 0 ≤ (((𝐴 · (𝑅↑2)) + (𝐵 · 𝑅)) + 𝐶)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wcel 2109   class class class wbr 5102  cfv 6499  (class class class)co 7369  cc 11042  cr 11043  0cc0 11044  1c1 11045   + caddc 11047   · cmul 11049  cle 11185  -cneg 11382  2c2 12217  cexp 14002  ccj 15038  abscabs 15176  chba 30821   · csm 30823   ·ih csp 30824   cmv 30827
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122  ax-hfvadd 30902  ax-hv0cl 30905  ax-hfvmul 30907  ax-hvmulass 30909  ax-hvmul0 30912  ax-hfi 30981  ax-his1 30984  ax-his2 30985  ax-his3 30986  ax-his4 30987
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-sup 9369  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-3 12226  df-n0 12419  df-z 12506  df-uz 12770  df-rp 12928  df-seq 13943  df-exp 14003  df-cj 15041  df-re 15042  df-im 15043  df-sqrt 15177  df-abs 15178  df-hvsub 30873
This theorem is referenced by:  normlem6  31017
  Copyright terms: Public domain W3C validator