HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  normlem5 Structured version   Visualization version   GIF version

Theorem normlem5 28891
Description: Lemma used to derive properties of norm. Part of Theorem 3.3(ii) of [Beran] p. 97. (Contributed by NM, 10-Aug-1999.) (New usage is discouraged.)
Hypotheses
Ref Expression
normlem1.1 𝑆 ∈ ℂ
normlem1.2 𝐹 ∈ ℋ
normlem1.3 𝐺 ∈ ℋ
normlem2.4 𝐵 = -(((∗‘𝑆) · (𝐹 ·ih 𝐺)) + (𝑆 · (𝐺 ·ih 𝐹)))
normlem3.5 𝐴 = (𝐺 ·ih 𝐺)
normlem3.6 𝐶 = (𝐹 ·ih 𝐹)
normlem4.7 𝑅 ∈ ℝ
normlem4.8 (abs‘𝑆) = 1
Assertion
Ref Expression
normlem5 0 ≤ (((𝐴 · (𝑅↑2)) + (𝐵 · 𝑅)) + 𝐶)

Proof of Theorem normlem5
StepHypRef Expression
1 normlem1.2 . . . 4 𝐹 ∈ ℋ
2 normlem1.1 . . . . . 6 𝑆 ∈ ℂ
3 normlem4.7 . . . . . . 7 𝑅 ∈ ℝ
43recni 10655 . . . . . 6 𝑅 ∈ ℂ
52, 4mulcli 10648 . . . . 5 (𝑆 · 𝑅) ∈ ℂ
6 normlem1.3 . . . . 5 𝐺 ∈ ℋ
75, 6hvmulcli 28791 . . . 4 ((𝑆 · 𝑅) · 𝐺) ∈ ℋ
81, 7hvsubcli 28798 . . 3 (𝐹 ((𝑆 · 𝑅) · 𝐺)) ∈ ℋ
9 hiidge0 28875 . . 3 ((𝐹 ((𝑆 · 𝑅) · 𝐺)) ∈ ℋ → 0 ≤ ((𝐹 ((𝑆 · 𝑅) · 𝐺)) ·ih (𝐹 ((𝑆 · 𝑅) · 𝐺))))
108, 9ax-mp 5 . 2 0 ≤ ((𝐹 ((𝑆 · 𝑅) · 𝐺)) ·ih (𝐹 ((𝑆 · 𝑅) · 𝐺)))
11 normlem2.4 . . 3 𝐵 = -(((∗‘𝑆) · (𝐹 ·ih 𝐺)) + (𝑆 · (𝐺 ·ih 𝐹)))
12 normlem3.5 . . 3 𝐴 = (𝐺 ·ih 𝐺)
13 normlem3.6 . . 3 𝐶 = (𝐹 ·ih 𝐹)
14 normlem4.8 . . 3 (abs‘𝑆) = 1
152, 1, 6, 11, 12, 13, 3, 14normlem4 28890 . 2 ((𝐹 ((𝑆 · 𝑅) · 𝐺)) ·ih (𝐹 ((𝑆 · 𝑅) · 𝐺))) = (((𝐴 · (𝑅↑2)) + (𝐵 · 𝑅)) + 𝐶)
1610, 15breqtri 5091 1 0 ≤ (((𝐴 · (𝑅↑2)) + (𝐵 · 𝑅)) + 𝐶)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1537  wcel 2114   class class class wbr 5066  cfv 6355  (class class class)co 7156  cc 10535  cr 10536  0cc0 10537  1c1 10538   + caddc 10540   · cmul 10542  cle 10676  -cneg 10871  2c2 11693  cexp 13430  ccj 14455  abscabs 14593  chba 28696   · csm 28698   ·ih csp 28699   cmv 28702
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614  ax-pre-sup 10615  ax-hfvadd 28777  ax-hv0cl 28780  ax-hfvmul 28782  ax-hvmulass 28784  ax-hvmul0 28787  ax-hfi 28856  ax-his1 28859  ax-his2 28860  ax-his3 28861  ax-his4 28862
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-er 8289  df-en 8510  df-dom 8511  df-sdom 8512  df-sup 8906  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-div 11298  df-nn 11639  df-2 11701  df-3 11702  df-n0 11899  df-z 11983  df-uz 12245  df-rp 12391  df-seq 13371  df-exp 13431  df-cj 14458  df-re 14459  df-im 14460  df-sqrt 14594  df-abs 14595  df-hvsub 28748
This theorem is referenced by:  normlem6  28892
  Copyright terms: Public domain W3C validator