MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xrleidd Structured version   Visualization version   GIF version

Theorem xrleidd 13072
Description: 'Less than or equal to' is reflexive for extended reals. Deduction form of xrleid 13071. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypothesis
Ref Expression
xrleidd.1 (𝜑𝐴 ∈ ℝ*)
Assertion
Ref Expression
xrleidd (𝜑𝐴𝐴)

Proof of Theorem xrleidd
StepHypRef Expression
1 xrleidd.1 . 2 (𝜑𝐴 ∈ ℝ*)
2 xrleid 13071 . 2 (𝐴 ∈ ℝ*𝐴𝐴)
31, 2syl 17 1 (𝜑𝐴𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2109   class class class wbr 5095  *cxr 11167  cle 11169
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-pre-lttri 11102  ax-pre-lttrn 11103
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-po 5531  df-so 5532  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-er 8632  df-en 8880  df-dom 8881  df-sdom 8882  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174
This theorem is referenced by:  xleadd1a  13173  supxrre  13247  infxrre  13257  icossico2d  13342  ioounsn  13398  snunioo  13399  snunico  13400  limsupgre  15406  limsupbnd1  15407  limsupbnd2  15408  pcdvdstr  16806  pcadd  16819  xrge0omnd  21370  imasdsf1olem  24277  blssps  24328  blss  24329  blcld  24409  nmolb  24621  metds0  24755  metdstri  24756  metdseq0  24759  itg2eqa  25662  mdeglt  25986  deg1lt  26018  eliccelico  32733  elicoelioo  32734  difioo  32738  ply1degltel  33536  ply1degleel  33537  ply1degltlss  33538  esumpmono  34045  signsply0  34518  iocinico  43185  xadd0ge  45301  infxrpnf  45426  monoordxrv  45461  iooiinioc  45538  limcresiooub  45624  liminflelimsupuz  45767  ismbl4  45975  sge0prle  46383  iunhoiioo  46658  iccpartleu  47413  iccpartgel  47414  iccdisj2  48869
  Copyright terms: Public domain W3C validator