| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xrleidd | Structured version Visualization version GIF version | ||
| Description: 'Less than or equal to' is reflexive for extended reals. Deduction form of xrleid 13111. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| Ref | Expression |
|---|---|
| xrleidd.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ*) |
| Ref | Expression |
|---|---|
| xrleidd | ⊢ (𝜑 → 𝐴 ≤ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xrleidd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ*) | |
| 2 | xrleid 13111 | . 2 ⊢ (𝐴 ∈ ℝ* → 𝐴 ≤ 𝐴) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → 𝐴 ≤ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 class class class wbr 5107 ℝ*cxr 11207 ≤ cle 11209 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-pre-lttri 11142 ax-pre-lttrn 11143 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-po 5546 df-so 5547 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 |
| This theorem is referenced by: xleadd1a 13213 supxrre 13287 infxrre 13297 icossico2d 13382 ioounsn 13438 snunioo 13439 snunico 13440 limsupgre 15447 limsupbnd1 15448 limsupbnd2 15449 pcdvdstr 16847 pcadd 16860 imasdsf1olem 24261 blssps 24312 blss 24313 blcld 24393 nmolb 24605 metds0 24739 metdstri 24740 metdseq0 24743 itg2eqa 25646 mdeglt 25970 deg1lt 26002 eliccelico 32700 elicoelioo 32701 difioo 32705 xrge0omnd 33025 ply1degltel 33560 ply1degleel 33561 ply1degltlss 33562 esumpmono 34069 signsply0 34542 iocinico 43201 xadd0ge 45317 infxrpnf 45442 monoordxrv 45477 iooiinioc 45554 limcresiooub 45640 liminflelimsupuz 45783 ismbl4 45991 sge0prle 46399 iunhoiioo 46674 iccpartleu 47429 iccpartgel 47430 iccdisj2 48885 |
| Copyright terms: Public domain | W3C validator |