| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xrleidd | Structured version Visualization version GIF version | ||
| Description: 'Less than or equal to' is reflexive for extended reals. Deduction form of xrleid 13160. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| Ref | Expression |
|---|---|
| xrleidd.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ*) |
| Ref | Expression |
|---|---|
| xrleidd | ⊢ (𝜑 → 𝐴 ≤ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xrleidd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ*) | |
| 2 | xrleid 13160 | . 2 ⊢ (𝐴 ∈ ℝ* → 𝐴 ≤ 𝐴) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → 𝐴 ≤ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2107 class class class wbr 5117 ℝ*cxr 11261 ≤ cle 11263 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5264 ax-nul 5274 ax-pow 5333 ax-pr 5400 ax-un 7724 ax-cnex 11178 ax-resscn 11179 ax-pre-lttri 11196 ax-pre-lttrn 11197 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rab 3414 df-v 3459 df-sbc 3764 df-csb 3873 df-dif 3927 df-un 3929 df-in 3931 df-ss 3941 df-nul 4307 df-if 4499 df-pw 4575 df-sn 4600 df-pr 4602 df-op 4606 df-uni 4882 df-br 5118 df-opab 5180 df-mpt 5200 df-id 5546 df-po 5559 df-so 5560 df-xp 5658 df-rel 5659 df-cnv 5660 df-co 5661 df-dm 5662 df-rn 5663 df-res 5664 df-ima 5665 df-iota 6481 df-fun 6530 df-fn 6531 df-f 6532 df-f1 6533 df-fo 6534 df-f1o 6535 df-fv 6536 df-er 8714 df-en 8955 df-dom 8956 df-sdom 8957 df-pnf 11264 df-mnf 11265 df-xr 11266 df-ltxr 11267 df-le 11268 |
| This theorem is referenced by: xleadd1a 13262 supxrre 13336 infxrre 13345 ioounsn 13484 snunioo 13485 snunico 13486 limsupgre 15486 limsupbnd1 15487 limsupbnd2 15488 pcdvdstr 16883 pcadd 16896 imasdsf1olem 24299 blssps 24350 blss 24351 blcld 24431 nmolb 24643 metds0 24777 metdstri 24778 metdseq0 24781 itg2eqa 25685 mdeglt 26009 deg1lt 26041 eliccelico 32691 elicoelioo 32692 difioo 32696 xrge0omnd 33016 ply1degltel 33539 ply1degleel 33540 ply1degltlss 33541 esumpmono 34039 signsply0 34512 iocinico 43168 xadd0ge 45282 infxrpnf 45407 monoordxrv 45442 iooiinioc 45519 icossico2 45527 limcresiooub 45607 liminflelimsupuz 45750 ismbl4 45958 sge0prle 46366 iunhoiioo 46641 iccpartleu 47368 iccpartgel 47369 iccdisj2 48765 |
| Copyright terms: Public domain | W3C validator |