Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > xrleidd | Structured version Visualization version GIF version |
Description: 'Less than or equal to' is reflexive for extended reals. Deduction form of xrleid 12885. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
Ref | Expression |
---|---|
xrleidd.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ*) |
Ref | Expression |
---|---|
xrleidd | ⊢ (𝜑 → 𝐴 ≤ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xrleidd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ*) | |
2 | xrleid 12885 | . 2 ⊢ (𝐴 ∈ ℝ* → 𝐴 ≤ 𝐴) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → 𝐴 ≤ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2106 class class class wbr 5074 ℝ*cxr 11008 ≤ cle 11010 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-pre-lttri 10945 ax-pre-lttrn 10946 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-po 5503 df-so 5504 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 |
This theorem is referenced by: xleadd1a 12987 supxrre 13061 infxrre 13070 ioounsn 13209 snunioo 13210 snunico 13211 limsupgre 15190 limsupbnd1 15191 limsupbnd2 15192 pcdvdstr 16577 pcadd 16590 imasdsf1olem 23526 blssps 23577 blss 23578 blcld 23661 nmolb 23881 metds0 24013 metdstri 24014 metdseq0 24017 itg2eqa 24910 mdeglt 25230 deg1lt 25262 eliccelico 31098 elicoelioo 31099 difioo 31103 xrge0omnd 31337 esumpmono 32047 signsply0 32530 iocinico 41043 xadd0ge 42859 infxrpnf 42986 monoordxrv 43022 iooiinioc 43094 icossico2 43102 limcresiooub 43183 liminflelimsupuz 43326 ismbl4 43534 sge0prle 43939 iunhoiioo 44214 iccpartleu 44880 iccpartgel 44881 iccdisj2 46191 |
Copyright terms: Public domain | W3C validator |