| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xrleidd | Structured version Visualization version GIF version | ||
| Description: 'Less than or equal to' is reflexive for extended reals. Deduction form of xrleid 13060. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| Ref | Expression |
|---|---|
| xrleidd.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ*) |
| Ref | Expression |
|---|---|
| xrleidd | ⊢ (𝜑 → 𝐴 ≤ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xrleidd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ*) | |
| 2 | xrleid 13060 | . 2 ⊢ (𝐴 ∈ ℝ* → 𝐴 ≤ 𝐴) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → 𝐴 ≤ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2113 class class class wbr 5095 ℝ*cxr 11155 ≤ cle 11157 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-cnex 11072 ax-resscn 11073 ax-pre-lttri 11090 ax-pre-lttrn 11091 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2883 df-ne 2931 df-nel 3035 df-ral 3050 df-rex 3059 df-rab 3398 df-v 3440 df-sbc 3739 df-csb 3848 df-dif 3902 df-un 3904 df-in 3906 df-ss 3916 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5516 df-po 5529 df-so 5530 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-er 8631 df-en 8879 df-dom 8880 df-sdom 8881 df-pnf 11158 df-mnf 11159 df-xr 11160 df-ltxr 11161 df-le 11162 |
| This theorem is referenced by: xleadd1a 13162 supxrre 13236 infxrre 13246 icossico2d 13331 ioounsn 13387 snunioo 13388 snunico 13389 limsupgre 15398 limsupbnd1 15399 limsupbnd2 15400 pcdvdstr 16798 pcadd 16811 xrge0omnd 21392 imasdsf1olem 24298 blssps 24349 blss 24350 blcld 24430 nmolb 24642 metds0 24776 metdstri 24777 metdseq0 24780 itg2eqa 25683 mdeglt 26007 deg1lt 26039 eliccelico 32771 elicoelioo 32772 difioo 32776 ply1degltel 33566 ply1degleel 33567 ply1degltlss 33568 esumpmono 34103 signsply0 34575 iocinico 43319 xadd0ge 45434 infxrpnf 45558 monoordxrv 45593 iooiinioc 45670 limcresiooub 45754 liminflelimsupuz 45897 ismbl4 46105 sge0prle 46513 iunhoiioo 46788 iccpartleu 47542 iccpartgel 47543 iccdisj2 49011 |
| Copyright terms: Public domain | W3C validator |