| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xrleidd | Structured version Visualization version GIF version | ||
| Description: 'Less than or equal to' is reflexive for extended reals. Deduction form of xrleid 13118. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| Ref | Expression |
|---|---|
| xrleidd.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ*) |
| Ref | Expression |
|---|---|
| xrleidd | ⊢ (𝜑 → 𝐴 ≤ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xrleidd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ*) | |
| 2 | xrleid 13118 | . 2 ⊢ (𝐴 ∈ ℝ* → 𝐴 ≤ 𝐴) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → 𝐴 ≤ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 class class class wbr 5110 ℝ*cxr 11214 ≤ cle 11216 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-pre-lttri 11149 ax-pre-lttrn 11150 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-po 5549 df-so 5550 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 |
| This theorem is referenced by: xleadd1a 13220 supxrre 13294 infxrre 13304 icossico2d 13389 ioounsn 13445 snunioo 13446 snunico 13447 limsupgre 15454 limsupbnd1 15455 limsupbnd2 15456 pcdvdstr 16854 pcadd 16867 imasdsf1olem 24268 blssps 24319 blss 24320 blcld 24400 nmolb 24612 metds0 24746 metdstri 24747 metdseq0 24750 itg2eqa 25653 mdeglt 25977 deg1lt 26009 eliccelico 32707 elicoelioo 32708 difioo 32712 xrge0omnd 33032 ply1degltel 33567 ply1degleel 33568 ply1degltlss 33569 esumpmono 34076 signsply0 34549 iocinico 43208 xadd0ge 45324 infxrpnf 45449 monoordxrv 45484 iooiinioc 45561 limcresiooub 45647 liminflelimsupuz 45790 ismbl4 45998 sge0prle 46406 iunhoiioo 46681 iccpartleu 47433 iccpartgel 47434 iccdisj2 48889 |
| Copyright terms: Public domain | W3C validator |