![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > xrleidd | Structured version Visualization version GIF version |
Description: 'Less than or equal to' is reflexive for extended reals. Deduction form of xrleid 13190. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
Ref | Expression |
---|---|
xrleidd.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ*) |
Ref | Expression |
---|---|
xrleidd | ⊢ (𝜑 → 𝐴 ≤ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xrleidd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ*) | |
2 | xrleid 13190 | . 2 ⊢ (𝐴 ∈ ℝ* → 𝐴 ≤ 𝐴) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → 𝐴 ≤ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2106 class class class wbr 5148 ℝ*cxr 11292 ≤ cle 11294 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-cnex 11209 ax-resscn 11210 ax-pre-lttri 11227 ax-pre-lttrn 11228 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-po 5597 df-so 5598 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-er 8744 df-en 8985 df-dom 8986 df-sdom 8987 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 |
This theorem is referenced by: xleadd1a 13292 supxrre 13366 infxrre 13375 ioounsn 13514 snunioo 13515 snunico 13516 limsupgre 15514 limsupbnd1 15515 limsupbnd2 15516 pcdvdstr 16910 pcadd 16923 imasdsf1olem 24399 blssps 24450 blss 24451 blcld 24534 nmolb 24754 metds0 24886 metdstri 24887 metdseq0 24890 itg2eqa 25795 mdeglt 26119 deg1lt 26151 eliccelico 32786 elicoelioo 32787 difioo 32791 xrge0omnd 33071 ply1degltel 33595 ply1degleel 33596 ply1degltlss 33597 esumpmono 34060 signsply0 34545 iocinico 43201 xadd0ge 45271 infxrpnf 45396 monoordxrv 45432 iooiinioc 45509 icossico2 45517 limcresiooub 45598 liminflelimsupuz 45741 ismbl4 45949 sge0prle 46357 iunhoiioo 46632 iccpartleu 47353 iccpartgel 47354 iccdisj2 48694 |
Copyright terms: Public domain | W3C validator |