| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xrleidd | Structured version Visualization version GIF version | ||
| Description: 'Less than or equal to' is reflexive for extended reals. Deduction form of xrleid 13071. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| Ref | Expression |
|---|---|
| xrleidd.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ*) |
| Ref | Expression |
|---|---|
| xrleidd | ⊢ (𝜑 → 𝐴 ≤ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xrleidd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ*) | |
| 2 | xrleid 13071 | . 2 ⊢ (𝐴 ∈ ℝ* → 𝐴 ≤ 𝐴) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → 𝐴 ≤ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 class class class wbr 5095 ℝ*cxr 11167 ≤ cle 11169 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-pre-lttri 11102 ax-pre-lttrn 11103 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-po 5531 df-so 5532 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-er 8632 df-en 8880 df-dom 8881 df-sdom 8882 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 |
| This theorem is referenced by: xleadd1a 13173 supxrre 13247 infxrre 13257 icossico2d 13342 ioounsn 13398 snunioo 13399 snunico 13400 limsupgre 15406 limsupbnd1 15407 limsupbnd2 15408 pcdvdstr 16806 pcadd 16819 xrge0omnd 21370 imasdsf1olem 24277 blssps 24328 blss 24329 blcld 24409 nmolb 24621 metds0 24755 metdstri 24756 metdseq0 24759 itg2eqa 25662 mdeglt 25986 deg1lt 26018 eliccelico 32733 elicoelioo 32734 difioo 32738 ply1degltel 33536 ply1degleel 33537 ply1degltlss 33538 esumpmono 34045 signsply0 34518 iocinico 43185 xadd0ge 45301 infxrpnf 45426 monoordxrv 45461 iooiinioc 45538 limcresiooub 45624 liminflelimsupuz 45767 ismbl4 45975 sge0prle 46383 iunhoiioo 46658 iccpartleu 47413 iccpartgel 47414 iccdisj2 48869 |
| Copyright terms: Public domain | W3C validator |