Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > xrleidd | Structured version Visualization version GIF version |
Description: 'Less than or equal to' is reflexive for extended reals. Deduction form of xrleid 12830. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
Ref | Expression |
---|---|
xrleidd.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ*) |
Ref | Expression |
---|---|
xrleidd | ⊢ (𝜑 → 𝐴 ≤ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xrleidd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ*) | |
2 | xrleid 12830 | . 2 ⊢ (𝐴 ∈ ℝ* → 𝐴 ≤ 𝐴) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → 𝐴 ≤ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2107 class class class wbr 5075 ℝ*cxr 10955 ≤ cle 10957 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2708 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7571 ax-cnex 10874 ax-resscn 10875 ax-pre-lttri 10892 ax-pre-lttrn 10893 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3067 df-rex 3068 df-rab 3071 df-v 3429 df-sbc 3717 df-csb 3834 df-dif 3891 df-un 3893 df-in 3895 df-ss 3905 df-nul 4259 df-if 4462 df-pw 4537 df-sn 4564 df-pr 4566 df-op 4570 df-uni 4842 df-br 5076 df-opab 5138 df-mpt 5159 df-id 5485 df-po 5499 df-so 5500 df-xp 5591 df-rel 5592 df-cnv 5593 df-co 5594 df-dm 5595 df-rn 5596 df-res 5597 df-ima 5598 df-iota 6381 df-fun 6425 df-fn 6426 df-f 6427 df-f1 6428 df-fo 6429 df-f1o 6430 df-fv 6431 df-er 8461 df-en 8697 df-dom 8698 df-sdom 8699 df-pnf 10958 df-mnf 10959 df-xr 10960 df-ltxr 10961 df-le 10962 |
This theorem is referenced by: xleadd1a 12932 supxrre 13006 infxrre 13015 ioounsn 13154 snunioo 13155 snunico 13156 limsupgre 15134 limsupbnd1 15135 limsupbnd2 15136 pcdvdstr 16521 pcadd 16534 imasdsf1olem 23470 blssps 23521 blss 23522 blcld 23605 nmolb 23825 metds0 23957 metdstri 23958 metdseq0 23961 itg2eqa 24853 mdeglt 25173 deg1lt 25205 eliccelico 31040 elicoelioo 31041 difioo 31045 xrge0omnd 31279 esumpmono 31989 signsply0 32472 iocinico 41001 xadd0ge 42791 infxrpnf 42918 monoordxrv 42954 iooiinioc 43026 icossico2 43034 limcresiooub 43115 liminflelimsupuz 43258 ismbl4 43466 sge0prle 43871 iunhoiioo 44146 iccpartleu 44810 iccpartgel 44811 iccdisj2 46121 |
Copyright terms: Public domain | W3C validator |