MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xrleidd Structured version   Visualization version   GIF version

Theorem xrleidd 12815
Description: 'Less than or equal to' is reflexive for extended reals. Deduction form of xrleid 12814. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypothesis
Ref Expression
xrleidd.1 (𝜑𝐴 ∈ ℝ*)
Assertion
Ref Expression
xrleidd (𝜑𝐴𝐴)

Proof of Theorem xrleidd
StepHypRef Expression
1 xrleidd.1 . 2 (𝜑𝐴 ∈ ℝ*)
2 xrleid 12814 . 2 (𝐴 ∈ ℝ*𝐴𝐴)
31, 2syl 17 1 (𝜑𝐴𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2108   class class class wbr 5070  *cxr 10939  cle 10941
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-pre-lttri 10876  ax-pre-lttrn 10877
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-po 5494  df-so 5495  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946
This theorem is referenced by:  xleadd1a  12916  supxrre  12990  infxrre  12999  ioounsn  13138  snunioo  13139  snunico  13140  limsupgre  15118  limsupbnd1  15119  limsupbnd2  15120  pcdvdstr  16505  pcadd  16518  imasdsf1olem  23434  blssps  23485  blss  23486  blcld  23567  nmolb  23787  metds0  23919  metdstri  23920  metdseq0  23923  itg2eqa  24815  mdeglt  25135  deg1lt  25167  eliccelico  31000  elicoelioo  31001  difioo  31005  xrge0omnd  31239  esumpmono  31947  signsply0  32430  iocinico  40959  xadd0ge  42749  infxrpnf  42876  monoordxrv  42912  iooiinioc  42984  icossico2  42992  limcresiooub  43073  liminflelimsupuz  43216  ismbl4  43424  sge0prle  43829  iunhoiioo  44104  iccpartleu  44768  iccpartgel  44769  iccdisj2  46079
  Copyright terms: Public domain W3C validator