MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  idmhm Structured version   Visualization version   GIF version

Theorem idmhm 18439
Description: The identity homomorphism on a monoid. (Contributed by AV, 14-Feb-2020.)
Hypothesis
Ref Expression
idmhm.b 𝐵 = (Base‘𝑀)
Assertion
Ref Expression
idmhm (𝑀 ∈ Mnd → ( I ↾ 𝐵) ∈ (𝑀 MndHom 𝑀))

Proof of Theorem idmhm
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 id 22 . 2 (𝑀 ∈ Mnd → 𝑀 ∈ Mnd)
2 f1oi 6754 . . . 4 ( I ↾ 𝐵):𝐵1-1-onto𝐵
3 f1of 6716 . . . 4 (( I ↾ 𝐵):𝐵1-1-onto𝐵 → ( I ↾ 𝐵):𝐵𝐵)
42, 3mp1i 13 . . 3 (𝑀 ∈ Mnd → ( I ↾ 𝐵):𝐵𝐵)
5 idmhm.b . . . . . . . 8 𝐵 = (Base‘𝑀)
6 eqid 2738 . . . . . . . 8 (+g𝑀) = (+g𝑀)
75, 6mndcl 18393 . . . . . . 7 ((𝑀 ∈ Mnd ∧ 𝑎𝐵𝑏𝐵) → (𝑎(+g𝑀)𝑏) ∈ 𝐵)
873expb 1119 . . . . . 6 ((𝑀 ∈ Mnd ∧ (𝑎𝐵𝑏𝐵)) → (𝑎(+g𝑀)𝑏) ∈ 𝐵)
9 fvresi 7045 . . . . . 6 ((𝑎(+g𝑀)𝑏) ∈ 𝐵 → (( I ↾ 𝐵)‘(𝑎(+g𝑀)𝑏)) = (𝑎(+g𝑀)𝑏))
108, 9syl 17 . . . . 5 ((𝑀 ∈ Mnd ∧ (𝑎𝐵𝑏𝐵)) → (( I ↾ 𝐵)‘(𝑎(+g𝑀)𝑏)) = (𝑎(+g𝑀)𝑏))
11 fvresi 7045 . . . . . . 7 (𝑎𝐵 → (( I ↾ 𝐵)‘𝑎) = 𝑎)
12 fvresi 7045 . . . . . . 7 (𝑏𝐵 → (( I ↾ 𝐵)‘𝑏) = 𝑏)
1311, 12oveqan12d 7294 . . . . . 6 ((𝑎𝐵𝑏𝐵) → ((( I ↾ 𝐵)‘𝑎)(+g𝑀)(( I ↾ 𝐵)‘𝑏)) = (𝑎(+g𝑀)𝑏))
1413adantl 482 . . . . 5 ((𝑀 ∈ Mnd ∧ (𝑎𝐵𝑏𝐵)) → ((( I ↾ 𝐵)‘𝑎)(+g𝑀)(( I ↾ 𝐵)‘𝑏)) = (𝑎(+g𝑀)𝑏))
1510, 14eqtr4d 2781 . . . 4 ((𝑀 ∈ Mnd ∧ (𝑎𝐵𝑏𝐵)) → (( I ↾ 𝐵)‘(𝑎(+g𝑀)𝑏)) = ((( I ↾ 𝐵)‘𝑎)(+g𝑀)(( I ↾ 𝐵)‘𝑏)))
1615ralrimivva 3123 . . 3 (𝑀 ∈ Mnd → ∀𝑎𝐵𝑏𝐵 (( I ↾ 𝐵)‘(𝑎(+g𝑀)𝑏)) = ((( I ↾ 𝐵)‘𝑎)(+g𝑀)(( I ↾ 𝐵)‘𝑏)))
17 eqid 2738 . . . . 5 (0g𝑀) = (0g𝑀)
185, 17mndidcl 18400 . . . 4 (𝑀 ∈ Mnd → (0g𝑀) ∈ 𝐵)
19 fvresi 7045 . . . 4 ((0g𝑀) ∈ 𝐵 → (( I ↾ 𝐵)‘(0g𝑀)) = (0g𝑀))
2018, 19syl 17 . . 3 (𝑀 ∈ Mnd → (( I ↾ 𝐵)‘(0g𝑀)) = (0g𝑀))
214, 16, 203jca 1127 . 2 (𝑀 ∈ Mnd → (( I ↾ 𝐵):𝐵𝐵 ∧ ∀𝑎𝐵𝑏𝐵 (( I ↾ 𝐵)‘(𝑎(+g𝑀)𝑏)) = ((( I ↾ 𝐵)‘𝑎)(+g𝑀)(( I ↾ 𝐵)‘𝑏)) ∧ (( I ↾ 𝐵)‘(0g𝑀)) = (0g𝑀)))
225, 5, 6, 6, 17, 17ismhm 18432 . 2 (( I ↾ 𝐵) ∈ (𝑀 MndHom 𝑀) ↔ ((𝑀 ∈ Mnd ∧ 𝑀 ∈ Mnd) ∧ (( I ↾ 𝐵):𝐵𝐵 ∧ ∀𝑎𝐵𝑏𝐵 (( I ↾ 𝐵)‘(𝑎(+g𝑀)𝑏)) = ((( I ↾ 𝐵)‘𝑎)(+g𝑀)(( I ↾ 𝐵)‘𝑏)) ∧ (( I ↾ 𝐵)‘(0g𝑀)) = (0g𝑀))))
231, 1, 21, 22syl21anbrc 1343 1 (𝑀 ∈ Mnd → ( I ↾ 𝐵) ∈ (𝑀 MndHom 𝑀))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086   = wceq 1539  wcel 2106  wral 3064   I cid 5488  cres 5591  wf 6429  1-1-ontowf1o 6432  cfv 6433  (class class class)co 7275  Basecbs 16912  +gcplusg 16962  0gc0g 17150  Mndcmnd 18385   MndHom cmhm 18428
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-map 8617  df-0g 17152  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-mhm 18430
This theorem is referenced by:  idrhm  19975
  Copyright terms: Public domain W3C validator