MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  idmhm Structured version   Visualization version   GIF version

Theorem idmhm 18698
Description: The identity homomorphism on a monoid. (Contributed by AV, 14-Feb-2020.)
Hypothesis
Ref Expression
idmhm.b 𝐵 = (Base‘𝑀)
Assertion
Ref Expression
idmhm (𝑀 ∈ Mnd → ( I ↾ 𝐵) ∈ (𝑀 MndHom 𝑀))

Proof of Theorem idmhm
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 id 22 . 2 (𝑀 ∈ Mnd → 𝑀 ∈ Mnd)
2 f1oi 6820 . . . 4 ( I ↾ 𝐵):𝐵1-1-onto𝐵
3 f1of 6782 . . . 4 (( I ↾ 𝐵):𝐵1-1-onto𝐵 → ( I ↾ 𝐵):𝐵𝐵)
42, 3mp1i 13 . . 3 (𝑀 ∈ Mnd → ( I ↾ 𝐵):𝐵𝐵)
5 idmhm.b . . . . . . . 8 𝐵 = (Base‘𝑀)
6 eqid 2729 . . . . . . . 8 (+g𝑀) = (+g𝑀)
75, 6mndcl 18645 . . . . . . 7 ((𝑀 ∈ Mnd ∧ 𝑎𝐵𝑏𝐵) → (𝑎(+g𝑀)𝑏) ∈ 𝐵)
873expb 1120 . . . . . 6 ((𝑀 ∈ Mnd ∧ (𝑎𝐵𝑏𝐵)) → (𝑎(+g𝑀)𝑏) ∈ 𝐵)
9 fvresi 7129 . . . . . 6 ((𝑎(+g𝑀)𝑏) ∈ 𝐵 → (( I ↾ 𝐵)‘(𝑎(+g𝑀)𝑏)) = (𝑎(+g𝑀)𝑏))
108, 9syl 17 . . . . 5 ((𝑀 ∈ Mnd ∧ (𝑎𝐵𝑏𝐵)) → (( I ↾ 𝐵)‘(𝑎(+g𝑀)𝑏)) = (𝑎(+g𝑀)𝑏))
11 fvresi 7129 . . . . . . 7 (𝑎𝐵 → (( I ↾ 𝐵)‘𝑎) = 𝑎)
12 fvresi 7129 . . . . . . 7 (𝑏𝐵 → (( I ↾ 𝐵)‘𝑏) = 𝑏)
1311, 12oveqan12d 7388 . . . . . 6 ((𝑎𝐵𝑏𝐵) → ((( I ↾ 𝐵)‘𝑎)(+g𝑀)(( I ↾ 𝐵)‘𝑏)) = (𝑎(+g𝑀)𝑏))
1413adantl 481 . . . . 5 ((𝑀 ∈ Mnd ∧ (𝑎𝐵𝑏𝐵)) → ((( I ↾ 𝐵)‘𝑎)(+g𝑀)(( I ↾ 𝐵)‘𝑏)) = (𝑎(+g𝑀)𝑏))
1510, 14eqtr4d 2767 . . . 4 ((𝑀 ∈ Mnd ∧ (𝑎𝐵𝑏𝐵)) → (( I ↾ 𝐵)‘(𝑎(+g𝑀)𝑏)) = ((( I ↾ 𝐵)‘𝑎)(+g𝑀)(( I ↾ 𝐵)‘𝑏)))
1615ralrimivva 3178 . . 3 (𝑀 ∈ Mnd → ∀𝑎𝐵𝑏𝐵 (( I ↾ 𝐵)‘(𝑎(+g𝑀)𝑏)) = ((( I ↾ 𝐵)‘𝑎)(+g𝑀)(( I ↾ 𝐵)‘𝑏)))
17 eqid 2729 . . . . 5 (0g𝑀) = (0g𝑀)
185, 17mndidcl 18652 . . . 4 (𝑀 ∈ Mnd → (0g𝑀) ∈ 𝐵)
19 fvresi 7129 . . . 4 ((0g𝑀) ∈ 𝐵 → (( I ↾ 𝐵)‘(0g𝑀)) = (0g𝑀))
2018, 19syl 17 . . 3 (𝑀 ∈ Mnd → (( I ↾ 𝐵)‘(0g𝑀)) = (0g𝑀))
214, 16, 203jca 1128 . 2 (𝑀 ∈ Mnd → (( I ↾ 𝐵):𝐵𝐵 ∧ ∀𝑎𝐵𝑏𝐵 (( I ↾ 𝐵)‘(𝑎(+g𝑀)𝑏)) = ((( I ↾ 𝐵)‘𝑎)(+g𝑀)(( I ↾ 𝐵)‘𝑏)) ∧ (( I ↾ 𝐵)‘(0g𝑀)) = (0g𝑀)))
225, 5, 6, 6, 17, 17ismhm 18688 . 2 (( I ↾ 𝐵) ∈ (𝑀 MndHom 𝑀) ↔ ((𝑀 ∈ Mnd ∧ 𝑀 ∈ Mnd) ∧ (( I ↾ 𝐵):𝐵𝐵 ∧ ∀𝑎𝐵𝑏𝐵 (( I ↾ 𝐵)‘(𝑎(+g𝑀)𝑏)) = ((( I ↾ 𝐵)‘𝑎)(+g𝑀)(( I ↾ 𝐵)‘𝑏)) ∧ (( I ↾ 𝐵)‘(0g𝑀)) = (0g𝑀))))
231, 1, 21, 22syl21anbrc 1345 1 (𝑀 ∈ Mnd → ( I ↾ 𝐵) ∈ (𝑀 MndHom 𝑀))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3044   I cid 5525  cres 5633  wf 6495  1-1-ontowf1o 6498  cfv 6499  (class class class)co 7369  Basecbs 17155  +gcplusg 17196  0gc0g 17378  Mndcmnd 18637   MndHom cmhm 18684
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-map 8778  df-0g 17380  df-mgm 18543  df-sgrp 18622  df-mnd 18638  df-mhm 18686
This theorem is referenced by:  idrhm  20375
  Copyright terms: Public domain W3C validator