MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  idmhm Structured version   Visualization version   GIF version

Theorem idmhm 17697
Description: The identity homomorphism on a monoid. (Contributed by AV, 14-Feb-2020.)
Hypothesis
Ref Expression
idmhm.b 𝐵 = (Base‘𝑀)
Assertion
Ref Expression
idmhm (𝑀 ∈ Mnd → ( I ↾ 𝐵) ∈ (𝑀 MndHom 𝑀))

Proof of Theorem idmhm
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 id 22 . . 3 (𝑀 ∈ Mnd → 𝑀 ∈ Mnd)
21ancri 547 . 2 (𝑀 ∈ Mnd → (𝑀 ∈ Mnd ∧ 𝑀 ∈ Mnd))
3 f1oi 6415 . . . 4 ( I ↾ 𝐵):𝐵1-1-onto𝐵
4 f1of 6378 . . . 4 (( I ↾ 𝐵):𝐵1-1-onto𝐵 → ( I ↾ 𝐵):𝐵𝐵)
53, 4mp1i 13 . . 3 (𝑀 ∈ Mnd → ( I ↾ 𝐵):𝐵𝐵)
6 idmhm.b . . . . . . . 8 𝐵 = (Base‘𝑀)
7 eqid 2825 . . . . . . . 8 (+g𝑀) = (+g𝑀)
86, 7mndcl 17654 . . . . . . 7 ((𝑀 ∈ Mnd ∧ 𝑎𝐵𝑏𝐵) → (𝑎(+g𝑀)𝑏) ∈ 𝐵)
983expb 1155 . . . . . 6 ((𝑀 ∈ Mnd ∧ (𝑎𝐵𝑏𝐵)) → (𝑎(+g𝑀)𝑏) ∈ 𝐵)
10 fvresi 6691 . . . . . 6 ((𝑎(+g𝑀)𝑏) ∈ 𝐵 → (( I ↾ 𝐵)‘(𝑎(+g𝑀)𝑏)) = (𝑎(+g𝑀)𝑏))
119, 10syl 17 . . . . 5 ((𝑀 ∈ Mnd ∧ (𝑎𝐵𝑏𝐵)) → (( I ↾ 𝐵)‘(𝑎(+g𝑀)𝑏)) = (𝑎(+g𝑀)𝑏))
12 fvresi 6691 . . . . . . 7 (𝑎𝐵 → (( I ↾ 𝐵)‘𝑎) = 𝑎)
13 fvresi 6691 . . . . . . 7 (𝑏𝐵 → (( I ↾ 𝐵)‘𝑏) = 𝑏)
1412, 13oveqan12d 6924 . . . . . 6 ((𝑎𝐵𝑏𝐵) → ((( I ↾ 𝐵)‘𝑎)(+g𝑀)(( I ↾ 𝐵)‘𝑏)) = (𝑎(+g𝑀)𝑏))
1514adantl 475 . . . . 5 ((𝑀 ∈ Mnd ∧ (𝑎𝐵𝑏𝐵)) → ((( I ↾ 𝐵)‘𝑎)(+g𝑀)(( I ↾ 𝐵)‘𝑏)) = (𝑎(+g𝑀)𝑏))
1611, 15eqtr4d 2864 . . . 4 ((𝑀 ∈ Mnd ∧ (𝑎𝐵𝑏𝐵)) → (( I ↾ 𝐵)‘(𝑎(+g𝑀)𝑏)) = ((( I ↾ 𝐵)‘𝑎)(+g𝑀)(( I ↾ 𝐵)‘𝑏)))
1716ralrimivva 3180 . . 3 (𝑀 ∈ Mnd → ∀𝑎𝐵𝑏𝐵 (( I ↾ 𝐵)‘(𝑎(+g𝑀)𝑏)) = ((( I ↾ 𝐵)‘𝑎)(+g𝑀)(( I ↾ 𝐵)‘𝑏)))
18 eqid 2825 . . . . 5 (0g𝑀) = (0g𝑀)
196, 18mndidcl 17661 . . . 4 (𝑀 ∈ Mnd → (0g𝑀) ∈ 𝐵)
20 fvresi 6691 . . . 4 ((0g𝑀) ∈ 𝐵 → (( I ↾ 𝐵)‘(0g𝑀)) = (0g𝑀))
2119, 20syl 17 . . 3 (𝑀 ∈ Mnd → (( I ↾ 𝐵)‘(0g𝑀)) = (0g𝑀))
225, 17, 213jca 1164 . 2 (𝑀 ∈ Mnd → (( I ↾ 𝐵):𝐵𝐵 ∧ ∀𝑎𝐵𝑏𝐵 (( I ↾ 𝐵)‘(𝑎(+g𝑀)𝑏)) = ((( I ↾ 𝐵)‘𝑎)(+g𝑀)(( I ↾ 𝐵)‘𝑏)) ∧ (( I ↾ 𝐵)‘(0g𝑀)) = (0g𝑀)))
236, 6, 7, 7, 18, 18ismhm 17690 . 2 (( I ↾ 𝐵) ∈ (𝑀 MndHom 𝑀) ↔ ((𝑀 ∈ Mnd ∧ 𝑀 ∈ Mnd) ∧ (( I ↾ 𝐵):𝐵𝐵 ∧ ∀𝑎𝐵𝑏𝐵 (( I ↾ 𝐵)‘(𝑎(+g𝑀)𝑏)) = ((( I ↾ 𝐵)‘𝑎)(+g𝑀)(( I ↾ 𝐵)‘𝑏)) ∧ (( I ↾ 𝐵)‘(0g𝑀)) = (0g𝑀))))
242, 22, 23sylanbrc 580 1 (𝑀 ∈ Mnd → ( I ↾ 𝐵) ∈ (𝑀 MndHom 𝑀))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 386  w3a 1113   = wceq 1658  wcel 2166  wral 3117   I cid 5249  cres 5344  wf 6119  1-1-ontowf1o 6122  cfv 6123  (class class class)co 6905  Basecbs 16222  +gcplusg 16305  0gc0g 16453  Mndcmnd 17647   MndHom cmhm 17686
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1896  ax-4 1910  ax-5 2011  ax-6 2077  ax-7 2114  ax-8 2168  ax-9 2175  ax-10 2194  ax-11 2209  ax-12 2222  ax-13 2391  ax-ext 2803  ax-sep 5005  ax-nul 5013  ax-pow 5065  ax-pr 5127  ax-un 7209
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 881  df-3an 1115  df-tru 1662  df-ex 1881  df-nf 1885  df-sb 2070  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-ral 3122  df-rex 3123  df-reu 3124  df-rmo 3125  df-rab 3126  df-v 3416  df-sbc 3663  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-nul 4145  df-if 4307  df-pw 4380  df-sn 4398  df-pr 4400  df-op 4404  df-uni 4659  df-br 4874  df-opab 4936  df-mpt 4953  df-id 5250  df-xp 5348  df-rel 5349  df-cnv 5350  df-co 5351  df-dm 5352  df-rn 5353  df-res 5354  df-ima 5355  df-iota 6086  df-fun 6125  df-fn 6126  df-f 6127  df-f1 6128  df-fo 6129  df-f1o 6130  df-fv 6131  df-riota 6866  df-ov 6908  df-oprab 6909  df-mpt2 6910  df-map 8124  df-0g 16455  df-mgm 17595  df-sgrp 17637  df-mnd 17648  df-mhm 17688
This theorem is referenced by:  idrhm  19087
  Copyright terms: Public domain W3C validator