Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mhm0 | Structured version Visualization version GIF version |
Description: A monoid homomorphism preserves zero. (Contributed by Mario Carneiro, 7-Mar-2015.) |
Ref | Expression |
---|---|
mhm0.z | ⊢ 0 = (0g‘𝑆) |
mhm0.y | ⊢ 𝑌 = (0g‘𝑇) |
Ref | Expression |
---|---|
mhm0 | ⊢ (𝐹 ∈ (𝑆 MndHom 𝑇) → (𝐹‘ 0 ) = 𝑌) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2738 | . . . 4 ⊢ (Base‘𝑆) = (Base‘𝑆) | |
2 | eqid 2738 | . . . 4 ⊢ (Base‘𝑇) = (Base‘𝑇) | |
3 | eqid 2738 | . . . 4 ⊢ (+g‘𝑆) = (+g‘𝑆) | |
4 | eqid 2738 | . . . 4 ⊢ (+g‘𝑇) = (+g‘𝑇) | |
5 | mhm0.z | . . . 4 ⊢ 0 = (0g‘𝑆) | |
6 | mhm0.y | . . . 4 ⊢ 𝑌 = (0g‘𝑇) | |
7 | 1, 2, 3, 4, 5, 6 | ismhm 18432 | . . 3 ⊢ (𝐹 ∈ (𝑆 MndHom 𝑇) ↔ ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) ∧ (𝐹:(Base‘𝑆)⟶(Base‘𝑇) ∧ ∀𝑥 ∈ (Base‘𝑆)∀𝑦 ∈ (Base‘𝑆)(𝐹‘(𝑥(+g‘𝑆)𝑦)) = ((𝐹‘𝑥)(+g‘𝑇)(𝐹‘𝑦)) ∧ (𝐹‘ 0 ) = 𝑌))) |
8 | 7 | simprbi 497 | . 2 ⊢ (𝐹 ∈ (𝑆 MndHom 𝑇) → (𝐹:(Base‘𝑆)⟶(Base‘𝑇) ∧ ∀𝑥 ∈ (Base‘𝑆)∀𝑦 ∈ (Base‘𝑆)(𝐹‘(𝑥(+g‘𝑆)𝑦)) = ((𝐹‘𝑥)(+g‘𝑇)(𝐹‘𝑦)) ∧ (𝐹‘ 0 ) = 𝑌)) |
9 | 8 | simp3d 1143 | 1 ⊢ (𝐹 ∈ (𝑆 MndHom 𝑇) → (𝐹‘ 0 ) = 𝑌) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1086 = wceq 1539 ∈ wcel 2106 ∀wral 3064 ⟶wf 6429 ‘cfv 6433 (class class class)co 7275 Basecbs 16912 +gcplusg 16962 0gc0g 17150 Mndcmnd 18385 MndHom cmhm 18428 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-sbc 3717 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-fv 6441 df-ov 7278 df-oprab 7279 df-mpo 7280 df-map 8617 df-mhm 18430 |
This theorem is referenced by: mhmf1o 18440 resmhm 18459 resmhm2 18460 resmhm2b 18461 mhmco 18462 mhmima 18463 mhmeql 18464 pwsco2mhm 18471 gsumwmhm 18484 mhmmulg 18744 gsumzmhm 19538 rhm1 19974 madetsumid 21610 mdetunilem7 21767 pm2mp 21974 dchrzrh1 26392 dchrmulcl 26397 dchrn0 26398 dchrinvcl 26401 dchrfi 26403 dchrabs 26408 sumdchr2 26418 rpvmasum2 26660 rhmpreimaidl 31603 |
Copyright terms: Public domain | W3C validator |