![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mhm0 | Structured version Visualization version GIF version |
Description: A monoid homomorphism preserves zero. (Contributed by Mario Carneiro, 7-Mar-2015.) |
Ref | Expression |
---|---|
mhm0.z | ⊢ 0 = (0g‘𝑆) |
mhm0.y | ⊢ 𝑌 = (0g‘𝑇) |
Ref | Expression |
---|---|
mhm0 | ⊢ (𝐹 ∈ (𝑆 MndHom 𝑇) → (𝐹‘ 0 ) = 𝑌) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2778 | . . . 4 ⊢ (Base‘𝑆) = (Base‘𝑆) | |
2 | eqid 2778 | . . . 4 ⊢ (Base‘𝑇) = (Base‘𝑇) | |
3 | eqid 2778 | . . . 4 ⊢ (+g‘𝑆) = (+g‘𝑆) | |
4 | eqid 2778 | . . . 4 ⊢ (+g‘𝑇) = (+g‘𝑇) | |
5 | mhm0.z | . . . 4 ⊢ 0 = (0g‘𝑆) | |
6 | mhm0.y | . . . 4 ⊢ 𝑌 = (0g‘𝑇) | |
7 | 1, 2, 3, 4, 5, 6 | ismhm 17734 | . . 3 ⊢ (𝐹 ∈ (𝑆 MndHom 𝑇) ↔ ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) ∧ (𝐹:(Base‘𝑆)⟶(Base‘𝑇) ∧ ∀𝑥 ∈ (Base‘𝑆)∀𝑦 ∈ (Base‘𝑆)(𝐹‘(𝑥(+g‘𝑆)𝑦)) = ((𝐹‘𝑥)(+g‘𝑇)(𝐹‘𝑦)) ∧ (𝐹‘ 0 ) = 𝑌))) |
8 | 7 | simprbi 492 | . 2 ⊢ (𝐹 ∈ (𝑆 MndHom 𝑇) → (𝐹:(Base‘𝑆)⟶(Base‘𝑇) ∧ ∀𝑥 ∈ (Base‘𝑆)∀𝑦 ∈ (Base‘𝑆)(𝐹‘(𝑥(+g‘𝑆)𝑦)) = ((𝐹‘𝑥)(+g‘𝑇)(𝐹‘𝑦)) ∧ (𝐹‘ 0 ) = 𝑌)) |
9 | 8 | simp3d 1135 | 1 ⊢ (𝐹 ∈ (𝑆 MndHom 𝑇) → (𝐹‘ 0 ) = 𝑌) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 386 ∧ w3a 1071 = wceq 1601 ∈ wcel 2107 ∀wral 3090 ⟶wf 6133 ‘cfv 6137 (class class class)co 6924 Basecbs 16266 +gcplusg 16349 0gc0g 16497 Mndcmnd 17691 MndHom cmhm 17730 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-8 2109 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 ax-sep 5019 ax-nul 5027 ax-pow 5079 ax-pr 5140 ax-un 7228 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2551 df-eu 2587 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ral 3095 df-rex 3096 df-rab 3099 df-v 3400 df-sbc 3653 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-nul 4142 df-if 4308 df-pw 4381 df-sn 4399 df-pr 4401 df-op 4405 df-uni 4674 df-br 4889 df-opab 4951 df-id 5263 df-xp 5363 df-rel 5364 df-cnv 5365 df-co 5366 df-dm 5367 df-rn 5368 df-iota 6101 df-fun 6139 df-fn 6140 df-f 6141 df-fv 6145 df-ov 6927 df-oprab 6928 df-mpt2 6929 df-map 8144 df-mhm 17732 |
This theorem is referenced by: mhmf1o 17742 resmhm 17756 resmhm2 17757 resmhm2b 17758 mhmco 17759 mhmima 17760 mhmeql 17761 pwsco2mhm 17768 gsumwmhm 17780 mhmmulg 17978 gsumzmhm 18734 rhm1 19130 madetsumid 20683 mdetunilem7 20840 pm2mp 21048 dchrzrh1 25432 dchrmulcl 25437 dchrn0 25438 dchrinvcl 25441 dchrfi 25443 dchrabs 25448 sumdchr2 25458 rpvmasum2 25670 |
Copyright terms: Public domain | W3C validator |