| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mhm0 | Structured version Visualization version GIF version | ||
| Description: A monoid homomorphism preserves zero. (Contributed by Mario Carneiro, 7-Mar-2015.) |
| Ref | Expression |
|---|---|
| mhm0.z | ⊢ 0 = (0g‘𝑆) |
| mhm0.y | ⊢ 𝑌 = (0g‘𝑇) |
| Ref | Expression |
|---|---|
| mhm0 | ⊢ (𝐹 ∈ (𝑆 MndHom 𝑇) → (𝐹‘ 0 ) = 𝑌) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2731 | . . . 4 ⊢ (Base‘𝑆) = (Base‘𝑆) | |
| 2 | eqid 2731 | . . . 4 ⊢ (Base‘𝑇) = (Base‘𝑇) | |
| 3 | eqid 2731 | . . . 4 ⊢ (+g‘𝑆) = (+g‘𝑆) | |
| 4 | eqid 2731 | . . . 4 ⊢ (+g‘𝑇) = (+g‘𝑇) | |
| 5 | mhm0.z | . . . 4 ⊢ 0 = (0g‘𝑆) | |
| 6 | mhm0.y | . . . 4 ⊢ 𝑌 = (0g‘𝑇) | |
| 7 | 1, 2, 3, 4, 5, 6 | ismhm 18690 | . . 3 ⊢ (𝐹 ∈ (𝑆 MndHom 𝑇) ↔ ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) ∧ (𝐹:(Base‘𝑆)⟶(Base‘𝑇) ∧ ∀𝑥 ∈ (Base‘𝑆)∀𝑦 ∈ (Base‘𝑆)(𝐹‘(𝑥(+g‘𝑆)𝑦)) = ((𝐹‘𝑥)(+g‘𝑇)(𝐹‘𝑦)) ∧ (𝐹‘ 0 ) = 𝑌))) |
| 8 | 7 | simprbi 496 | . 2 ⊢ (𝐹 ∈ (𝑆 MndHom 𝑇) → (𝐹:(Base‘𝑆)⟶(Base‘𝑇) ∧ ∀𝑥 ∈ (Base‘𝑆)∀𝑦 ∈ (Base‘𝑆)(𝐹‘(𝑥(+g‘𝑆)𝑦)) = ((𝐹‘𝑥)(+g‘𝑇)(𝐹‘𝑦)) ∧ (𝐹‘ 0 ) = 𝑌)) |
| 9 | 8 | simp3d 1144 | 1 ⊢ (𝐹 ∈ (𝑆 MndHom 𝑇) → (𝐹‘ 0 ) = 𝑌) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 ∀wral 3047 ⟶wf 6477 ‘cfv 6481 (class class class)co 7346 Basecbs 17117 +gcplusg 17158 0gc0g 17340 Mndcmnd 18639 MndHom cmhm 18686 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3742 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-map 8752 df-mhm 18688 |
| This theorem is referenced by: mhmf1o 18701 resmhm 18725 resmhm2 18726 resmhm2b 18727 mhmco 18728 mhmima 18730 mhmeql 18731 pwsco2mhm 18738 gsumwmhm 18750 mhmmulg 19025 gsumzmhm 19847 rhm1 20404 rhmpreimaidl 21212 mhmcompl 22293 madetsumid 22374 mdetunilem7 22531 pm2mp 22738 dchrzrh1 27180 dchrmulcl 27185 dchrn0 27186 dchrinvcl 27189 dchrfi 27191 dchrabs 27196 sumdchr2 27206 rpvmasum2 27448 fxpsubm 33136 selvvvval 42617 |
| Copyright terms: Public domain | W3C validator |