MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mhm0 Structured version   Visualization version   GIF version

Theorem mhm0 18719
Description: A monoid homomorphism preserves zero. (Contributed by Mario Carneiro, 7-Mar-2015.)
Hypotheses
Ref Expression
mhm0.z 0 = (0g𝑆)
mhm0.y 𝑌 = (0g𝑇)
Assertion
Ref Expression
mhm0 (𝐹 ∈ (𝑆 MndHom 𝑇) → (𝐹0 ) = 𝑌)

Proof of Theorem mhm0
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2731 . . . 4 (Base‘𝑆) = (Base‘𝑆)
2 eqid 2731 . . . 4 (Base‘𝑇) = (Base‘𝑇)
3 eqid 2731 . . . 4 (+g𝑆) = (+g𝑆)
4 eqid 2731 . . . 4 (+g𝑇) = (+g𝑇)
5 mhm0.z . . . 4 0 = (0g𝑆)
6 mhm0.y . . . 4 𝑌 = (0g𝑇)
71, 2, 3, 4, 5, 6ismhm 18710 . . 3 (𝐹 ∈ (𝑆 MndHom 𝑇) ↔ ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) ∧ (𝐹:(Base‘𝑆)⟶(Base‘𝑇) ∧ ∀𝑥 ∈ (Base‘𝑆)∀𝑦 ∈ (Base‘𝑆)(𝐹‘(𝑥(+g𝑆)𝑦)) = ((𝐹𝑥)(+g𝑇)(𝐹𝑦)) ∧ (𝐹0 ) = 𝑌)))
87simprbi 496 . 2 (𝐹 ∈ (𝑆 MndHom 𝑇) → (𝐹:(Base‘𝑆)⟶(Base‘𝑇) ∧ ∀𝑥 ∈ (Base‘𝑆)∀𝑦 ∈ (Base‘𝑆)(𝐹‘(𝑥(+g𝑆)𝑦)) = ((𝐹𝑥)(+g𝑇)(𝐹𝑦)) ∧ (𝐹0 ) = 𝑌))
98simp3d 1143 1 (𝐹 ∈ (𝑆 MndHom 𝑇) → (𝐹0 ) = 𝑌)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2105  wral 3060  wf 6539  cfv 6543  (class class class)co 7412  Basecbs 17151  +gcplusg 17204  0gc0g 17392  Mndcmnd 18662   MndHom cmhm 18706
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7729
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-rab 3432  df-v 3475  df-sbc 3778  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-fv 6551  df-ov 7415  df-oprab 7416  df-mpo 7417  df-map 8828  df-mhm 18708
This theorem is referenced by:  mhmf1o  18721  resmhm  18740  resmhm2  18741  resmhm2b  18742  mhmco  18743  mhmima  18745  mhmeql  18746  pwsco2mhm  18753  gsumwmhm  18765  mhmmulg  19035  gsumzmhm  19850  rhm1  20384  madetsumid  22196  mdetunilem7  22353  pm2mp  22560  dchrzrh1  26998  dchrmulcl  27003  dchrn0  27004  dchrinvcl  27007  dchrfi  27009  dchrabs  27014  sumdchr2  27024  rpvmasum2  27266  rhmpreimaidl  32826  mhmcompl  41435  selvvvval  41472
  Copyright terms: Public domain W3C validator