MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mhm0 Structured version   Visualization version   GIF version

Theorem mhm0 18699
Description: A monoid homomorphism preserves zero. (Contributed by Mario Carneiro, 7-Mar-2015.)
Hypotheses
Ref Expression
mhm0.z 0 = (0g𝑆)
mhm0.y 𝑌 = (0g𝑇)
Assertion
Ref Expression
mhm0 (𝐹 ∈ (𝑆 MndHom 𝑇) → (𝐹0 ) = 𝑌)

Proof of Theorem mhm0
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2731 . . . 4 (Base‘𝑆) = (Base‘𝑆)
2 eqid 2731 . . . 4 (Base‘𝑇) = (Base‘𝑇)
3 eqid 2731 . . . 4 (+g𝑆) = (+g𝑆)
4 eqid 2731 . . . 4 (+g𝑇) = (+g𝑇)
5 mhm0.z . . . 4 0 = (0g𝑆)
6 mhm0.y . . . 4 𝑌 = (0g𝑇)
71, 2, 3, 4, 5, 6ismhm 18690 . . 3 (𝐹 ∈ (𝑆 MndHom 𝑇) ↔ ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) ∧ (𝐹:(Base‘𝑆)⟶(Base‘𝑇) ∧ ∀𝑥 ∈ (Base‘𝑆)∀𝑦 ∈ (Base‘𝑆)(𝐹‘(𝑥(+g𝑆)𝑦)) = ((𝐹𝑥)(+g𝑇)(𝐹𝑦)) ∧ (𝐹0 ) = 𝑌)))
87simprbi 496 . 2 (𝐹 ∈ (𝑆 MndHom 𝑇) → (𝐹:(Base‘𝑆)⟶(Base‘𝑇) ∧ ∀𝑥 ∈ (Base‘𝑆)∀𝑦 ∈ (Base‘𝑆)(𝐹‘(𝑥(+g𝑆)𝑦)) = ((𝐹𝑥)(+g𝑇)(𝐹𝑦)) ∧ (𝐹0 ) = 𝑌))
98simp3d 1144 1 (𝐹 ∈ (𝑆 MndHom 𝑇) → (𝐹0 ) = 𝑌)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2111  wral 3047  wf 6477  cfv 6481  (class class class)co 7346  Basecbs 17117  +gcplusg 17158  0gc0g 17340  Mndcmnd 18639   MndHom cmhm 18686
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3742  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-br 5092  df-opab 5154  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-map 8752  df-mhm 18688
This theorem is referenced by:  mhmf1o  18701  resmhm  18725  resmhm2  18726  resmhm2b  18727  mhmco  18728  mhmima  18730  mhmeql  18731  pwsco2mhm  18738  gsumwmhm  18750  mhmmulg  19025  gsumzmhm  19847  rhm1  20404  rhmpreimaidl  21212  mhmcompl  22293  madetsumid  22374  mdetunilem7  22531  pm2mp  22738  dchrzrh1  27180  dchrmulcl  27185  dchrn0  27186  dchrinvcl  27189  dchrfi  27191  dchrabs  27196  sumdchr2  27206  rpvmasum2  27448  fxpsubm  33136  selvvvval  42617
  Copyright terms: Public domain W3C validator