Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > qtopid | Structured version Visualization version GIF version |
Description: A quotient map is a continuous function into its quotient topology. (Contributed by Mario Carneiro, 23-Mar-2015.) |
Ref | Expression |
---|---|
qtopid | ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 Fn 𝑋) → 𝐹 ∈ (𝐽 Cn (𝐽 qTop 𝐹))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 484 | . . . 4 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 Fn 𝑋) → 𝐹 Fn 𝑋) | |
2 | dffn4 6678 | . . . 4 ⊢ (𝐹 Fn 𝑋 ↔ 𝐹:𝑋–onto→ran 𝐹) | |
3 | 1, 2 | sylib 217 | . . 3 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 Fn 𝑋) → 𝐹:𝑋–onto→ran 𝐹) |
4 | fof 6672 | . . 3 ⊢ (𝐹:𝑋–onto→ran 𝐹 → 𝐹:𝑋⟶ran 𝐹) | |
5 | 3, 4 | syl 17 | . 2 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 Fn 𝑋) → 𝐹:𝑋⟶ran 𝐹) |
6 | elqtop3 22762 | . . . . 5 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹:𝑋–onto→ran 𝐹) → (𝑥 ∈ (𝐽 qTop 𝐹) ↔ (𝑥 ⊆ ran 𝐹 ∧ (◡𝐹 “ 𝑥) ∈ 𝐽))) | |
7 | 3, 6 | syldan 590 | . . . 4 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 Fn 𝑋) → (𝑥 ∈ (𝐽 qTop 𝐹) ↔ (𝑥 ⊆ ran 𝐹 ∧ (◡𝐹 “ 𝑥) ∈ 𝐽))) |
8 | 7 | simplbda 499 | . . 3 ⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 Fn 𝑋) ∧ 𝑥 ∈ (𝐽 qTop 𝐹)) → (◡𝐹 “ 𝑥) ∈ 𝐽) |
9 | 8 | ralrimiva 3107 | . 2 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 Fn 𝑋) → ∀𝑥 ∈ (𝐽 qTop 𝐹)(◡𝐹 “ 𝑥) ∈ 𝐽) |
10 | qtoptopon 22763 | . . . 4 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹:𝑋–onto→ran 𝐹) → (𝐽 qTop 𝐹) ∈ (TopOn‘ran 𝐹)) | |
11 | 3, 10 | syldan 590 | . . 3 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 Fn 𝑋) → (𝐽 qTop 𝐹) ∈ (TopOn‘ran 𝐹)) |
12 | iscn 22294 | . . 3 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ (𝐽 qTop 𝐹) ∈ (TopOn‘ran 𝐹)) → (𝐹 ∈ (𝐽 Cn (𝐽 qTop 𝐹)) ↔ (𝐹:𝑋⟶ran 𝐹 ∧ ∀𝑥 ∈ (𝐽 qTop 𝐹)(◡𝐹 “ 𝑥) ∈ 𝐽))) | |
13 | 11, 12 | syldan 590 | . 2 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 Fn 𝑋) → (𝐹 ∈ (𝐽 Cn (𝐽 qTop 𝐹)) ↔ (𝐹:𝑋⟶ran 𝐹 ∧ ∀𝑥 ∈ (𝐽 qTop 𝐹)(◡𝐹 “ 𝑥) ∈ 𝐽))) |
14 | 5, 9, 13 | mpbir2and 709 | 1 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 Fn 𝑋) → 𝐹 ∈ (𝐽 Cn (𝐽 qTop 𝐹))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∈ wcel 2108 ∀wral 3063 ⊆ wss 3883 ◡ccnv 5579 ran crn 5581 “ cima 5583 Fn wfn 6413 ⟶wf 6414 –onto→wfo 6416 ‘cfv 6418 (class class class)co 7255 qTop cqtop 17131 TopOnctopon 21967 Cn ccn 22283 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-map 8575 df-qtop 17135 df-top 21951 df-topon 21968 df-cn 22286 |
This theorem is referenced by: qtopcmplem 22766 qtopkgen 22769 qtoprest 22776 kqid 22787 qtopf1 22875 qtophmeo 22876 qustgplem 23180 circcn 31690 |
Copyright terms: Public domain | W3C validator |