| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > qtopid | Structured version Visualization version GIF version | ||
| Description: A quotient map is a continuous function into its quotient topology. (Contributed by Mario Carneiro, 23-Mar-2015.) |
| Ref | Expression |
|---|---|
| qtopid | ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 Fn 𝑋) → 𝐹 ∈ (𝐽 Cn (𝐽 qTop 𝐹))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr 484 | . . . 4 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 Fn 𝑋) → 𝐹 Fn 𝑋) | |
| 2 | dffn4 6760 | . . . 4 ⊢ (𝐹 Fn 𝑋 ↔ 𝐹:𝑋–onto→ran 𝐹) | |
| 3 | 1, 2 | sylib 218 | . . 3 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 Fn 𝑋) → 𝐹:𝑋–onto→ran 𝐹) |
| 4 | fof 6754 | . . 3 ⊢ (𝐹:𝑋–onto→ran 𝐹 → 𝐹:𝑋⟶ran 𝐹) | |
| 5 | 3, 4 | syl 17 | . 2 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 Fn 𝑋) → 𝐹:𝑋⟶ran 𝐹) |
| 6 | elqtop3 23566 | . . . . 5 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹:𝑋–onto→ran 𝐹) → (𝑥 ∈ (𝐽 qTop 𝐹) ↔ (𝑥 ⊆ ran 𝐹 ∧ (◡𝐹 “ 𝑥) ∈ 𝐽))) | |
| 7 | 3, 6 | syldan 591 | . . . 4 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 Fn 𝑋) → (𝑥 ∈ (𝐽 qTop 𝐹) ↔ (𝑥 ⊆ ran 𝐹 ∧ (◡𝐹 “ 𝑥) ∈ 𝐽))) |
| 8 | 7 | simplbda 499 | . . 3 ⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 Fn 𝑋) ∧ 𝑥 ∈ (𝐽 qTop 𝐹)) → (◡𝐹 “ 𝑥) ∈ 𝐽) |
| 9 | 8 | ralrimiva 3125 | . 2 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 Fn 𝑋) → ∀𝑥 ∈ (𝐽 qTop 𝐹)(◡𝐹 “ 𝑥) ∈ 𝐽) |
| 10 | qtoptopon 23567 | . . . 4 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹:𝑋–onto→ran 𝐹) → (𝐽 qTop 𝐹) ∈ (TopOn‘ran 𝐹)) | |
| 11 | 3, 10 | syldan 591 | . . 3 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 Fn 𝑋) → (𝐽 qTop 𝐹) ∈ (TopOn‘ran 𝐹)) |
| 12 | iscn 23098 | . . 3 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ (𝐽 qTop 𝐹) ∈ (TopOn‘ran 𝐹)) → (𝐹 ∈ (𝐽 Cn (𝐽 qTop 𝐹)) ↔ (𝐹:𝑋⟶ran 𝐹 ∧ ∀𝑥 ∈ (𝐽 qTop 𝐹)(◡𝐹 “ 𝑥) ∈ 𝐽))) | |
| 13 | 11, 12 | syldan 591 | . 2 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 Fn 𝑋) → (𝐹 ∈ (𝐽 Cn (𝐽 qTop 𝐹)) ↔ (𝐹:𝑋⟶ran 𝐹 ∧ ∀𝑥 ∈ (𝐽 qTop 𝐹)(◡𝐹 “ 𝑥) ∈ 𝐽))) |
| 14 | 5, 9, 13 | mpbir2and 713 | 1 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 Fn 𝑋) → 𝐹 ∈ (𝐽 Cn (𝐽 qTop 𝐹))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2109 ∀wral 3044 ⊆ wss 3911 ◡ccnv 5630 ran crn 5632 “ cima 5634 Fn wfn 6494 ⟶wf 6495 –onto→wfo 6497 ‘cfv 6499 (class class class)co 7369 qTop cqtop 17442 TopOnctopon 22773 Cn ccn 23087 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-ov 7372 df-oprab 7373 df-mpo 7374 df-map 8778 df-qtop 17446 df-top 22757 df-topon 22774 df-cn 23090 |
| This theorem is referenced by: qtopcmplem 23570 qtopkgen 23573 qtoprest 23580 kqid 23591 qtopf1 23679 qtophmeo 23680 qustgplem 23984 circcn 33801 |
| Copyright terms: Public domain | W3C validator |