MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  qtopid Structured version   Visualization version   GIF version

Theorem qtopid 23200
Description: A quotient map is a continuous function into its quotient topology. (Contributed by Mario Carneiro, 23-Mar-2015.)
Assertion
Ref Expression
qtopid ((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐹 Fn 𝑋) β†’ 𝐹 ∈ (𝐽 Cn (𝐽 qTop 𝐹)))

Proof of Theorem qtopid
Dummy variable π‘₯ is distinct from all other variables.
StepHypRef Expression
1 simpr 485 . . . 4 ((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐹 Fn 𝑋) β†’ 𝐹 Fn 𝑋)
2 dffn4 6808 . . . 4 (𝐹 Fn 𝑋 ↔ 𝐹:𝑋–ontoβ†’ran 𝐹)
31, 2sylib 217 . . 3 ((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐹 Fn 𝑋) β†’ 𝐹:𝑋–ontoβ†’ran 𝐹)
4 fof 6802 . . 3 (𝐹:𝑋–ontoβ†’ran 𝐹 β†’ 𝐹:π‘‹βŸΆran 𝐹)
53, 4syl 17 . 2 ((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐹 Fn 𝑋) β†’ 𝐹:π‘‹βŸΆran 𝐹)
6 elqtop3 23198 . . . . 5 ((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐹:𝑋–ontoβ†’ran 𝐹) β†’ (π‘₯ ∈ (𝐽 qTop 𝐹) ↔ (π‘₯ βŠ† ran 𝐹 ∧ (◑𝐹 β€œ π‘₯) ∈ 𝐽)))
73, 6syldan 591 . . . 4 ((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐹 Fn 𝑋) β†’ (π‘₯ ∈ (𝐽 qTop 𝐹) ↔ (π‘₯ βŠ† ran 𝐹 ∧ (◑𝐹 β€œ π‘₯) ∈ 𝐽)))
87simplbda 500 . . 3 (((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐹 Fn 𝑋) ∧ π‘₯ ∈ (𝐽 qTop 𝐹)) β†’ (◑𝐹 β€œ π‘₯) ∈ 𝐽)
98ralrimiva 3146 . 2 ((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐹 Fn 𝑋) β†’ βˆ€π‘₯ ∈ (𝐽 qTop 𝐹)(◑𝐹 β€œ π‘₯) ∈ 𝐽)
10 qtoptopon 23199 . . . 4 ((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐹:𝑋–ontoβ†’ran 𝐹) β†’ (𝐽 qTop 𝐹) ∈ (TopOnβ€˜ran 𝐹))
113, 10syldan 591 . . 3 ((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐹 Fn 𝑋) β†’ (𝐽 qTop 𝐹) ∈ (TopOnβ€˜ran 𝐹))
12 iscn 22730 . . 3 ((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ (𝐽 qTop 𝐹) ∈ (TopOnβ€˜ran 𝐹)) β†’ (𝐹 ∈ (𝐽 Cn (𝐽 qTop 𝐹)) ↔ (𝐹:π‘‹βŸΆran 𝐹 ∧ βˆ€π‘₯ ∈ (𝐽 qTop 𝐹)(◑𝐹 β€œ π‘₯) ∈ 𝐽)))
1311, 12syldan 591 . 2 ((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐹 Fn 𝑋) β†’ (𝐹 ∈ (𝐽 Cn (𝐽 qTop 𝐹)) ↔ (𝐹:π‘‹βŸΆran 𝐹 ∧ βˆ€π‘₯ ∈ (𝐽 qTop 𝐹)(◑𝐹 β€œ π‘₯) ∈ 𝐽)))
145, 9, 13mpbir2and 711 1 ((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐹 Fn 𝑋) β†’ 𝐹 ∈ (𝐽 Cn (𝐽 qTop 𝐹)))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 396   ∈ wcel 2106  βˆ€wral 3061   βŠ† wss 3947  β—‘ccnv 5674  ran crn 5676   β€œ cima 5678   Fn wfn 6535  βŸΆwf 6536  β€“ontoβ†’wfo 6538  β€˜cfv 6540  (class class class)co 7405   qTop cqtop 17445  TopOnctopon 22403   Cn ccn 22719
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-ov 7408  df-oprab 7409  df-mpo 7410  df-map 8818  df-qtop 17449  df-top 22387  df-topon 22404  df-cn 22722
This theorem is referenced by:  qtopcmplem  23202  qtopkgen  23205  qtoprest  23212  kqid  23223  qtopf1  23311  qtophmeo  23312  qustgplem  23616  circcn  32806
  Copyright terms: Public domain W3C validator