![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > qtopid | Structured version Visualization version GIF version |
Description: A quotient map is a continuous function into its quotient topology. (Contributed by Mario Carneiro, 23-Mar-2015.) |
Ref | Expression |
---|---|
qtopid | ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 Fn 𝑋) → 𝐹 ∈ (𝐽 Cn (𝐽 qTop 𝐹))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 477 | . . . 4 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 Fn 𝑋) → 𝐹 Fn 𝑋) | |
2 | dffn4 6419 | . . . 4 ⊢ (𝐹 Fn 𝑋 ↔ 𝐹:𝑋–onto→ran 𝐹) | |
3 | 1, 2 | sylib 210 | . . 3 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 Fn 𝑋) → 𝐹:𝑋–onto→ran 𝐹) |
4 | fof 6413 | . . 3 ⊢ (𝐹:𝑋–onto→ran 𝐹 → 𝐹:𝑋⟶ran 𝐹) | |
5 | 3, 4 | syl 17 | . 2 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 Fn 𝑋) → 𝐹:𝑋⟶ran 𝐹) |
6 | elqtop3 22005 | . . . . 5 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹:𝑋–onto→ran 𝐹) → (𝑥 ∈ (𝐽 qTop 𝐹) ↔ (𝑥 ⊆ ran 𝐹 ∧ (◡𝐹 “ 𝑥) ∈ 𝐽))) | |
7 | 3, 6 | syldan 582 | . . . 4 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 Fn 𝑋) → (𝑥 ∈ (𝐽 qTop 𝐹) ↔ (𝑥 ⊆ ran 𝐹 ∧ (◡𝐹 “ 𝑥) ∈ 𝐽))) |
8 | 7 | simplbda 492 | . . 3 ⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 Fn 𝑋) ∧ 𝑥 ∈ (𝐽 qTop 𝐹)) → (◡𝐹 “ 𝑥) ∈ 𝐽) |
9 | 8 | ralrimiva 3126 | . 2 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 Fn 𝑋) → ∀𝑥 ∈ (𝐽 qTop 𝐹)(◡𝐹 “ 𝑥) ∈ 𝐽) |
10 | qtoptopon 22006 | . . . 4 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹:𝑋–onto→ran 𝐹) → (𝐽 qTop 𝐹) ∈ (TopOn‘ran 𝐹)) | |
11 | 3, 10 | syldan 582 | . . 3 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 Fn 𝑋) → (𝐽 qTop 𝐹) ∈ (TopOn‘ran 𝐹)) |
12 | iscn 21537 | . . 3 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ (𝐽 qTop 𝐹) ∈ (TopOn‘ran 𝐹)) → (𝐹 ∈ (𝐽 Cn (𝐽 qTop 𝐹)) ↔ (𝐹:𝑋⟶ran 𝐹 ∧ ∀𝑥 ∈ (𝐽 qTop 𝐹)(◡𝐹 “ 𝑥) ∈ 𝐽))) | |
13 | 11, 12 | syldan 582 | . 2 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 Fn 𝑋) → (𝐹 ∈ (𝐽 Cn (𝐽 qTop 𝐹)) ↔ (𝐹:𝑋⟶ran 𝐹 ∧ ∀𝑥 ∈ (𝐽 qTop 𝐹)(◡𝐹 “ 𝑥) ∈ 𝐽))) |
14 | 5, 9, 13 | mpbir2and 700 | 1 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 Fn 𝑋) → 𝐹 ∈ (𝐽 Cn (𝐽 qTop 𝐹))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 387 ∈ wcel 2048 ∀wral 3082 ⊆ wss 3825 ◡ccnv 5399 ran crn 5401 “ cima 5403 Fn wfn 6177 ⟶wf 6178 –onto→wfo 6180 ‘cfv 6182 (class class class)co 6970 qTop cqtop 16622 TopOnctopon 21212 Cn ccn 21526 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1964 ax-8 2050 ax-9 2057 ax-10 2077 ax-11 2091 ax-12 2104 ax-13 2299 ax-ext 2745 ax-rep 5043 ax-sep 5054 ax-nul 5061 ax-pow 5113 ax-pr 5180 ax-un 7273 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3an 1070 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2014 df-mo 2544 df-eu 2580 df-clab 2754 df-cleq 2765 df-clel 2840 df-nfc 2912 df-ne 2962 df-ral 3087 df-rex 3088 df-reu 3089 df-rab 3091 df-v 3411 df-sbc 3678 df-csb 3783 df-dif 3828 df-un 3830 df-in 3832 df-ss 3839 df-nul 4174 df-if 4345 df-pw 4418 df-sn 4436 df-pr 4438 df-op 4442 df-uni 4707 df-iun 4788 df-br 4924 df-opab 4986 df-mpt 5003 df-id 5305 df-xp 5406 df-rel 5407 df-cnv 5408 df-co 5409 df-dm 5410 df-rn 5411 df-res 5412 df-ima 5413 df-iota 6146 df-fun 6184 df-fn 6185 df-f 6186 df-f1 6187 df-fo 6188 df-f1o 6189 df-fv 6190 df-ov 6973 df-oprab 6974 df-mpo 6975 df-map 8200 df-qtop 16626 df-top 21196 df-topon 21213 df-cn 21529 |
This theorem is referenced by: qtopcmplem 22009 qtopkgen 22012 qtoprest 22019 kqid 22030 qtopf1 22118 qtophmeo 22119 qustgplem 22422 circcn 30703 |
Copyright terms: Public domain | W3C validator |