| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > qtopid | Structured version Visualization version GIF version | ||
| Description: A quotient map is a continuous function into its quotient topology. (Contributed by Mario Carneiro, 23-Mar-2015.) |
| Ref | Expression |
|---|---|
| qtopid | ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 Fn 𝑋) → 𝐹 ∈ (𝐽 Cn (𝐽 qTop 𝐹))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr 484 | . . . 4 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 Fn 𝑋) → 𝐹 Fn 𝑋) | |
| 2 | dffn4 6778 | . . . 4 ⊢ (𝐹 Fn 𝑋 ↔ 𝐹:𝑋–onto→ran 𝐹) | |
| 3 | 1, 2 | sylib 218 | . . 3 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 Fn 𝑋) → 𝐹:𝑋–onto→ran 𝐹) |
| 4 | fof 6772 | . . 3 ⊢ (𝐹:𝑋–onto→ran 𝐹 → 𝐹:𝑋⟶ran 𝐹) | |
| 5 | 3, 4 | syl 17 | . 2 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 Fn 𝑋) → 𝐹:𝑋⟶ran 𝐹) |
| 6 | elqtop3 23590 | . . . . 5 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹:𝑋–onto→ran 𝐹) → (𝑥 ∈ (𝐽 qTop 𝐹) ↔ (𝑥 ⊆ ran 𝐹 ∧ (◡𝐹 “ 𝑥) ∈ 𝐽))) | |
| 7 | 3, 6 | syldan 591 | . . . 4 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 Fn 𝑋) → (𝑥 ∈ (𝐽 qTop 𝐹) ↔ (𝑥 ⊆ ran 𝐹 ∧ (◡𝐹 “ 𝑥) ∈ 𝐽))) |
| 8 | 7 | simplbda 499 | . . 3 ⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 Fn 𝑋) ∧ 𝑥 ∈ (𝐽 qTop 𝐹)) → (◡𝐹 “ 𝑥) ∈ 𝐽) |
| 9 | 8 | ralrimiva 3125 | . 2 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 Fn 𝑋) → ∀𝑥 ∈ (𝐽 qTop 𝐹)(◡𝐹 “ 𝑥) ∈ 𝐽) |
| 10 | qtoptopon 23591 | . . . 4 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹:𝑋–onto→ran 𝐹) → (𝐽 qTop 𝐹) ∈ (TopOn‘ran 𝐹)) | |
| 11 | 3, 10 | syldan 591 | . . 3 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 Fn 𝑋) → (𝐽 qTop 𝐹) ∈ (TopOn‘ran 𝐹)) |
| 12 | iscn 23122 | . . 3 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ (𝐽 qTop 𝐹) ∈ (TopOn‘ran 𝐹)) → (𝐹 ∈ (𝐽 Cn (𝐽 qTop 𝐹)) ↔ (𝐹:𝑋⟶ran 𝐹 ∧ ∀𝑥 ∈ (𝐽 qTop 𝐹)(◡𝐹 “ 𝑥) ∈ 𝐽))) | |
| 13 | 11, 12 | syldan 591 | . 2 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 Fn 𝑋) → (𝐹 ∈ (𝐽 Cn (𝐽 qTop 𝐹)) ↔ (𝐹:𝑋⟶ran 𝐹 ∧ ∀𝑥 ∈ (𝐽 qTop 𝐹)(◡𝐹 “ 𝑥) ∈ 𝐽))) |
| 14 | 5, 9, 13 | mpbir2and 713 | 1 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 Fn 𝑋) → 𝐹 ∈ (𝐽 Cn (𝐽 qTop 𝐹))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2109 ∀wral 3044 ⊆ wss 3914 ◡ccnv 5637 ran crn 5639 “ cima 5641 Fn wfn 6506 ⟶wf 6507 –onto→wfo 6509 ‘cfv 6511 (class class class)co 7387 qTop cqtop 17466 TopOnctopon 22797 Cn ccn 23111 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 df-map 8801 df-qtop 17470 df-top 22781 df-topon 22798 df-cn 23114 |
| This theorem is referenced by: qtopcmplem 23594 qtopkgen 23597 qtoprest 23604 kqid 23615 qtopf1 23703 qtophmeo 23704 qustgplem 24008 circcn 33828 |
| Copyright terms: Public domain | W3C validator |