![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > qtopid | Structured version Visualization version GIF version |
Description: A quotient map is a continuous function into its quotient topology. (Contributed by Mario Carneiro, 23-Mar-2015.) |
Ref | Expression |
---|---|
qtopid | β’ ((π½ β (TopOnβπ) β§ πΉ Fn π) β πΉ β (π½ Cn (π½ qTop πΉ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 485 | . . . 4 β’ ((π½ β (TopOnβπ) β§ πΉ Fn π) β πΉ Fn π) | |
2 | dffn4 6808 | . . . 4 β’ (πΉ Fn π β πΉ:πβontoβran πΉ) | |
3 | 1, 2 | sylib 217 | . . 3 β’ ((π½ β (TopOnβπ) β§ πΉ Fn π) β πΉ:πβontoβran πΉ) |
4 | fof 6802 | . . 3 β’ (πΉ:πβontoβran πΉ β πΉ:πβΆran πΉ) | |
5 | 3, 4 | syl 17 | . 2 β’ ((π½ β (TopOnβπ) β§ πΉ Fn π) β πΉ:πβΆran πΉ) |
6 | elqtop3 23198 | . . . . 5 β’ ((π½ β (TopOnβπ) β§ πΉ:πβontoβran πΉ) β (π₯ β (π½ qTop πΉ) β (π₯ β ran πΉ β§ (β‘πΉ β π₯) β π½))) | |
7 | 3, 6 | syldan 591 | . . . 4 β’ ((π½ β (TopOnβπ) β§ πΉ Fn π) β (π₯ β (π½ qTop πΉ) β (π₯ β ran πΉ β§ (β‘πΉ β π₯) β π½))) |
8 | 7 | simplbda 500 | . . 3 β’ (((π½ β (TopOnβπ) β§ πΉ Fn π) β§ π₯ β (π½ qTop πΉ)) β (β‘πΉ β π₯) β π½) |
9 | 8 | ralrimiva 3146 | . 2 β’ ((π½ β (TopOnβπ) β§ πΉ Fn π) β βπ₯ β (π½ qTop πΉ)(β‘πΉ β π₯) β π½) |
10 | qtoptopon 23199 | . . . 4 β’ ((π½ β (TopOnβπ) β§ πΉ:πβontoβran πΉ) β (π½ qTop πΉ) β (TopOnβran πΉ)) | |
11 | 3, 10 | syldan 591 | . . 3 β’ ((π½ β (TopOnβπ) β§ πΉ Fn π) β (π½ qTop πΉ) β (TopOnβran πΉ)) |
12 | iscn 22730 | . . 3 β’ ((π½ β (TopOnβπ) β§ (π½ qTop πΉ) β (TopOnβran πΉ)) β (πΉ β (π½ Cn (π½ qTop πΉ)) β (πΉ:πβΆran πΉ β§ βπ₯ β (π½ qTop πΉ)(β‘πΉ β π₯) β π½))) | |
13 | 11, 12 | syldan 591 | . 2 β’ ((π½ β (TopOnβπ) β§ πΉ Fn π) β (πΉ β (π½ Cn (π½ qTop πΉ)) β (πΉ:πβΆran πΉ β§ βπ₯ β (π½ qTop πΉ)(β‘πΉ β π₯) β π½))) |
14 | 5, 9, 13 | mpbir2and 711 | 1 β’ ((π½ β (TopOnβπ) β§ πΉ Fn π) β πΉ β (π½ Cn (π½ qTop πΉ))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ wa 396 β wcel 2106 βwral 3061 β wss 3947 β‘ccnv 5674 ran crn 5676 β cima 5678 Fn wfn 6535 βΆwf 6536 βontoβwfo 6538 βcfv 6540 (class class class)co 7405 qTop cqtop 17445 TopOnctopon 22403 Cn ccn 22719 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-ov 7408 df-oprab 7409 df-mpo 7410 df-map 8818 df-qtop 17449 df-top 22387 df-topon 22404 df-cn 22722 |
This theorem is referenced by: qtopcmplem 23202 qtopkgen 23205 qtoprest 23212 kqid 23223 qtopf1 23311 qtophmeo 23312 qustgplem 23616 circcn 32806 |
Copyright terms: Public domain | W3C validator |