| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > iinfssclem2 | Structured version Visualization version GIF version | ||
| Description: Lemma for iinfssc 49089. (Contributed by Zhi Wang, 31-Oct-2025.) |
| Ref | Expression |
|---|---|
| iinfssc.1 | ⊢ (𝜑 → 𝐴 ≠ ∅) |
| iinfssc.2 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐻 ⊆cat 𝐽) |
| iinfssc.3 | ⊢ (𝜑 → 𝐾 = (𝑦 ∈ ∩ 𝑥 ∈ 𝐴 dom 𝐻 ↦ ∩ 𝑥 ∈ 𝐴 (𝐻‘𝑦))) |
| iinfssclem1.4 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑆 = dom dom 𝐻) |
| iinfssclem1.5 | ⊢ Ⅎ𝑥𝜑 |
| Ref | Expression |
|---|---|
| iinfssclem2 | ⊢ (𝜑 → 𝐾 Fn (∩ 𝑥 ∈ 𝐴 𝑆 × ∩ 𝑥 ∈ 𝐴 𝑆)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iinfssc.1 | . . . . . 6 ⊢ (𝜑 → 𝐴 ≠ ∅) | |
| 2 | ovex 7374 | . . . . . . 7 ⊢ (𝑧𝐻𝑤) ∈ V | |
| 3 | 2 | rgenw 3051 | . . . . . 6 ⊢ ∀𝑥 ∈ 𝐴 (𝑧𝐻𝑤) ∈ V |
| 4 | iinexg 5281 | . . . . . 6 ⊢ ((𝐴 ≠ ∅ ∧ ∀𝑥 ∈ 𝐴 (𝑧𝐻𝑤) ∈ V) → ∩ 𝑥 ∈ 𝐴 (𝑧𝐻𝑤) ∈ V) | |
| 5 | 1, 3, 4 | sylancl 586 | . . . . 5 ⊢ (𝜑 → ∩ 𝑥 ∈ 𝐴 (𝑧𝐻𝑤) ∈ V) |
| 6 | 5 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ (𝑧 ∈ ∩ 𝑥 ∈ 𝐴 𝑆 ∧ 𝑤 ∈ ∩ 𝑥 ∈ 𝐴 𝑆)) → ∩ 𝑥 ∈ 𝐴 (𝑧𝐻𝑤) ∈ V) |
| 7 | 6 | ralrimivva 3175 | . . 3 ⊢ (𝜑 → ∀𝑧 ∈ ∩ 𝑥 ∈ 𝐴 𝑆∀𝑤 ∈ ∩ 𝑥 ∈ 𝐴 𝑆∩ 𝑥 ∈ 𝐴 (𝑧𝐻𝑤) ∈ V) |
| 8 | eqid 2731 | . . . 4 ⊢ (𝑧 ∈ ∩ 𝑥 ∈ 𝐴 𝑆, 𝑤 ∈ ∩ 𝑥 ∈ 𝐴 𝑆 ↦ ∩ 𝑥 ∈ 𝐴 (𝑧𝐻𝑤)) = (𝑧 ∈ ∩ 𝑥 ∈ 𝐴 𝑆, 𝑤 ∈ ∩ 𝑥 ∈ 𝐴 𝑆 ↦ ∩ 𝑥 ∈ 𝐴 (𝑧𝐻𝑤)) | |
| 9 | 8 | fnmpo 7996 | . . 3 ⊢ (∀𝑧 ∈ ∩ 𝑥 ∈ 𝐴 𝑆∀𝑤 ∈ ∩ 𝑥 ∈ 𝐴 𝑆∩ 𝑥 ∈ 𝐴 (𝑧𝐻𝑤) ∈ V → (𝑧 ∈ ∩ 𝑥 ∈ 𝐴 𝑆, 𝑤 ∈ ∩ 𝑥 ∈ 𝐴 𝑆 ↦ ∩ 𝑥 ∈ 𝐴 (𝑧𝐻𝑤)) Fn (∩ 𝑥 ∈ 𝐴 𝑆 × ∩ 𝑥 ∈ 𝐴 𝑆)) |
| 10 | 7, 9 | syl 17 | . 2 ⊢ (𝜑 → (𝑧 ∈ ∩ 𝑥 ∈ 𝐴 𝑆, 𝑤 ∈ ∩ 𝑥 ∈ 𝐴 𝑆 ↦ ∩ 𝑥 ∈ 𝐴 (𝑧𝐻𝑤)) Fn (∩ 𝑥 ∈ 𝐴 𝑆 × ∩ 𝑥 ∈ 𝐴 𝑆)) |
| 11 | iinfssc.2 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐻 ⊆cat 𝐽) | |
| 12 | iinfssc.3 | . . . 4 ⊢ (𝜑 → 𝐾 = (𝑦 ∈ ∩ 𝑥 ∈ 𝐴 dom 𝐻 ↦ ∩ 𝑥 ∈ 𝐴 (𝐻‘𝑦))) | |
| 13 | iinfssclem1.4 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑆 = dom dom 𝐻) | |
| 14 | iinfssclem1.5 | . . . 4 ⊢ Ⅎ𝑥𝜑 | |
| 15 | 1, 11, 12, 13, 14 | iinfssclem1 49086 | . . 3 ⊢ (𝜑 → 𝐾 = (𝑧 ∈ ∩ 𝑥 ∈ 𝐴 𝑆, 𝑤 ∈ ∩ 𝑥 ∈ 𝐴 𝑆 ↦ ∩ 𝑥 ∈ 𝐴 (𝑧𝐻𝑤))) |
| 16 | 15 | fneq1d 6569 | . 2 ⊢ (𝜑 → (𝐾 Fn (∩ 𝑥 ∈ 𝐴 𝑆 × ∩ 𝑥 ∈ 𝐴 𝑆) ↔ (𝑧 ∈ ∩ 𝑥 ∈ 𝐴 𝑆, 𝑤 ∈ ∩ 𝑥 ∈ 𝐴 𝑆 ↦ ∩ 𝑥 ∈ 𝐴 (𝑧𝐻𝑤)) Fn (∩ 𝑥 ∈ 𝐴 𝑆 × ∩ 𝑥 ∈ 𝐴 𝑆))) |
| 17 | 10, 16 | mpbird 257 | 1 ⊢ (𝜑 → 𝐾 Fn (∩ 𝑥 ∈ 𝐴 𝑆 × ∩ 𝑥 ∈ 𝐴 𝑆)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 Ⅎwnf 1784 ∈ wcel 2111 ≠ wne 2928 ∀wral 3047 Vcvv 3436 ∅c0 4278 ∩ ciin 4937 class class class wbr 5086 ↦ cmpt 5167 × cxp 5609 dom cdm 5611 Fn wfn 6471 ‘cfv 6476 (class class class)co 7341 ∈ cmpo 7343 ⊆cat cssc 17709 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5212 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-int 4893 df-iun 4938 df-iin 4939 df-br 5087 df-opab 5149 df-mpt 5168 df-id 5506 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-ov 7344 df-oprab 7345 df-mpo 7346 df-1st 7916 df-2nd 7917 df-ixp 8817 df-ssc 17712 |
| This theorem is referenced by: iinfssc 49089 iinfsubc 49090 |
| Copyright terms: Public domain | W3C validator |