Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iinfssclem2 Structured version   Visualization version   GIF version

Theorem iinfssclem2 49040
Description: Lemma for iinfssc 49042. (Contributed by Zhi Wang, 31-Oct-2025.)
Hypotheses
Ref Expression
iinfssc.1 (𝜑𝐴 ≠ ∅)
iinfssc.2 ((𝜑𝑥𝐴) → 𝐻cat 𝐽)
iinfssc.3 (𝜑𝐾 = (𝑦 𝑥𝐴 dom 𝐻 𝑥𝐴 (𝐻𝑦)))
iinfssclem1.4 ((𝜑𝑥𝐴) → 𝑆 = dom dom 𝐻)
iinfssclem1.5 𝑥𝜑
Assertion
Ref Expression
iinfssclem2 (𝜑𝐾 Fn ( 𝑥𝐴 𝑆 × 𝑥𝐴 𝑆))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑦,𝐻   𝑦,𝑆
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝑆(𝑥)   𝐻(𝑥)   𝐽(𝑥,𝑦)   𝐾(𝑥,𝑦)

Proof of Theorem iinfssclem2
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 iinfssc.1 . . . . . 6 (𝜑𝐴 ≠ ∅)
2 ovex 7382 . . . . . . 7 (𝑧𝐻𝑤) ∈ V
32rgenw 3048 . . . . . 6 𝑥𝐴 (𝑧𝐻𝑤) ∈ V
4 iinexg 5287 . . . . . 6 ((𝐴 ≠ ∅ ∧ ∀𝑥𝐴 (𝑧𝐻𝑤) ∈ V) → 𝑥𝐴 (𝑧𝐻𝑤) ∈ V)
51, 3, 4sylancl 586 . . . . 5 (𝜑 𝑥𝐴 (𝑧𝐻𝑤) ∈ V)
65adantr 480 . . . 4 ((𝜑 ∧ (𝑧 𝑥𝐴 𝑆𝑤 𝑥𝐴 𝑆)) → 𝑥𝐴 (𝑧𝐻𝑤) ∈ V)
76ralrimivva 3172 . . 3 (𝜑 → ∀𝑧 𝑥𝐴 𝑆𝑤 𝑥𝐴 𝑆 𝑥𝐴 (𝑧𝐻𝑤) ∈ V)
8 eqid 2729 . . . 4 (𝑧 𝑥𝐴 𝑆, 𝑤 𝑥𝐴 𝑆 𝑥𝐴 (𝑧𝐻𝑤)) = (𝑧 𝑥𝐴 𝑆, 𝑤 𝑥𝐴 𝑆 𝑥𝐴 (𝑧𝐻𝑤))
98fnmpo 8004 . . 3 (∀𝑧 𝑥𝐴 𝑆𝑤 𝑥𝐴 𝑆 𝑥𝐴 (𝑧𝐻𝑤) ∈ V → (𝑧 𝑥𝐴 𝑆, 𝑤 𝑥𝐴 𝑆 𝑥𝐴 (𝑧𝐻𝑤)) Fn ( 𝑥𝐴 𝑆 × 𝑥𝐴 𝑆))
107, 9syl 17 . 2 (𝜑 → (𝑧 𝑥𝐴 𝑆, 𝑤 𝑥𝐴 𝑆 𝑥𝐴 (𝑧𝐻𝑤)) Fn ( 𝑥𝐴 𝑆 × 𝑥𝐴 𝑆))
11 iinfssc.2 . . . 4 ((𝜑𝑥𝐴) → 𝐻cat 𝐽)
12 iinfssc.3 . . . 4 (𝜑𝐾 = (𝑦 𝑥𝐴 dom 𝐻 𝑥𝐴 (𝐻𝑦)))
13 iinfssclem1.4 . . . 4 ((𝜑𝑥𝐴) → 𝑆 = dom dom 𝐻)
14 iinfssclem1.5 . . . 4 𝑥𝜑
151, 11, 12, 13, 14iinfssclem1 49039 . . 3 (𝜑𝐾 = (𝑧 𝑥𝐴 𝑆, 𝑤 𝑥𝐴 𝑆 𝑥𝐴 (𝑧𝐻𝑤)))
1615fneq1d 6575 . 2 (𝜑 → (𝐾 Fn ( 𝑥𝐴 𝑆 × 𝑥𝐴 𝑆) ↔ (𝑧 𝑥𝐴 𝑆, 𝑤 𝑥𝐴 𝑆 𝑥𝐴 (𝑧𝐻𝑤)) Fn ( 𝑥𝐴 𝑆 × 𝑥𝐴 𝑆)))
1710, 16mpbird 257 1 (𝜑𝐾 Fn ( 𝑥𝐴 𝑆 × 𝑥𝐴 𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wnf 1783  wcel 2109  wne 2925  wral 3044  Vcvv 3436  c0 4284   ciin 4942   class class class wbr 5092  cmpt 5173   × cxp 5617  dom cdm 5619   Fn wfn 6477  cfv 6482  (class class class)co 7349  cmpo 7351  cat cssc 17714
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-iin 4944  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-ov 7352  df-oprab 7353  df-mpo 7354  df-1st 7924  df-2nd 7925  df-ixp 8825  df-ssc 17717
This theorem is referenced by:  iinfssc  49042  iinfsubc  49043
  Copyright terms: Public domain W3C validator