Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iinfssclem2 Structured version   Visualization version   GIF version

Theorem iinfssclem2 49032
Description: Lemma for iinfssc 49034. (Contributed by Zhi Wang, 31-Oct-2025.)
Hypotheses
Ref Expression
iinfssc.1 (𝜑𝐴 ≠ ∅)
iinfssc.2 ((𝜑𝑥𝐴) → 𝐻cat 𝐽)
iinfssc.3 (𝜑𝐾 = (𝑦 𝑥𝐴 dom 𝐻 𝑥𝐴 (𝐻𝑦)))
iinfssclem1.4 ((𝜑𝑥𝐴) → 𝑆 = dom dom 𝐻)
iinfssclem1.5 𝑥𝜑
Assertion
Ref Expression
iinfssclem2 (𝜑𝐾 Fn ( 𝑥𝐴 𝑆 × 𝑥𝐴 𝑆))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑦,𝐻   𝑦,𝑆
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝑆(𝑥)   𝐻(𝑥)   𝐽(𝑥,𝑦)   𝐾(𝑥,𝑦)

Proof of Theorem iinfssclem2
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 iinfssc.1 . . . . . 6 (𝜑𝐴 ≠ ∅)
2 ovex 7422 . . . . . . 7 (𝑧𝐻𝑤) ∈ V
32rgenw 3049 . . . . . 6 𝑥𝐴 (𝑧𝐻𝑤) ∈ V
4 iinexg 5305 . . . . . 6 ((𝐴 ≠ ∅ ∧ ∀𝑥𝐴 (𝑧𝐻𝑤) ∈ V) → 𝑥𝐴 (𝑧𝐻𝑤) ∈ V)
51, 3, 4sylancl 586 . . . . 5 (𝜑 𝑥𝐴 (𝑧𝐻𝑤) ∈ V)
65adantr 480 . . . 4 ((𝜑 ∧ (𝑧 𝑥𝐴 𝑆𝑤 𝑥𝐴 𝑆)) → 𝑥𝐴 (𝑧𝐻𝑤) ∈ V)
76ralrimivva 3181 . . 3 (𝜑 → ∀𝑧 𝑥𝐴 𝑆𝑤 𝑥𝐴 𝑆 𝑥𝐴 (𝑧𝐻𝑤) ∈ V)
8 eqid 2730 . . . 4 (𝑧 𝑥𝐴 𝑆, 𝑤 𝑥𝐴 𝑆 𝑥𝐴 (𝑧𝐻𝑤)) = (𝑧 𝑥𝐴 𝑆, 𝑤 𝑥𝐴 𝑆 𝑥𝐴 (𝑧𝐻𝑤))
98fnmpo 8050 . . 3 (∀𝑧 𝑥𝐴 𝑆𝑤 𝑥𝐴 𝑆 𝑥𝐴 (𝑧𝐻𝑤) ∈ V → (𝑧 𝑥𝐴 𝑆, 𝑤 𝑥𝐴 𝑆 𝑥𝐴 (𝑧𝐻𝑤)) Fn ( 𝑥𝐴 𝑆 × 𝑥𝐴 𝑆))
107, 9syl 17 . 2 (𝜑 → (𝑧 𝑥𝐴 𝑆, 𝑤 𝑥𝐴 𝑆 𝑥𝐴 (𝑧𝐻𝑤)) Fn ( 𝑥𝐴 𝑆 × 𝑥𝐴 𝑆))
11 iinfssc.2 . . . 4 ((𝜑𝑥𝐴) → 𝐻cat 𝐽)
12 iinfssc.3 . . . 4 (𝜑𝐾 = (𝑦 𝑥𝐴 dom 𝐻 𝑥𝐴 (𝐻𝑦)))
13 iinfssclem1.4 . . . 4 ((𝜑𝑥𝐴) → 𝑆 = dom dom 𝐻)
14 iinfssclem1.5 . . . 4 𝑥𝜑
151, 11, 12, 13, 14iinfssclem1 49031 . . 3 (𝜑𝐾 = (𝑧 𝑥𝐴 𝑆, 𝑤 𝑥𝐴 𝑆 𝑥𝐴 (𝑧𝐻𝑤)))
1615fneq1d 6613 . 2 (𝜑 → (𝐾 Fn ( 𝑥𝐴 𝑆 × 𝑥𝐴 𝑆) ↔ (𝑧 𝑥𝐴 𝑆, 𝑤 𝑥𝐴 𝑆 𝑥𝐴 (𝑧𝐻𝑤)) Fn ( 𝑥𝐴 𝑆 × 𝑥𝐴 𝑆)))
1710, 16mpbird 257 1 (𝜑𝐾 Fn ( 𝑥𝐴 𝑆 × 𝑥𝐴 𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wnf 1783  wcel 2109  wne 2926  wral 3045  Vcvv 3450  c0 4298   ciin 4958   class class class wbr 5109  cmpt 5190   × cxp 5638  dom cdm 5640   Fn wfn 6508  cfv 6513  (class class class)co 7389  cmpo 7391  cat cssc 17775
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5236  ax-sep 5253  ax-nul 5263  ax-pow 5322  ax-pr 5389  ax-un 7713
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3756  df-csb 3865  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-nul 4299  df-if 4491  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4874  df-int 4913  df-iun 4959  df-iin 4960  df-br 5110  df-opab 5172  df-mpt 5191  df-id 5535  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-rn 5651  df-res 5652  df-ima 5653  df-iota 6466  df-fun 6515  df-fn 6516  df-f 6517  df-f1 6518  df-fo 6519  df-f1o 6520  df-fv 6521  df-ov 7392  df-oprab 7393  df-mpo 7394  df-1st 7970  df-2nd 7971  df-ixp 8873  df-ssc 17778
This theorem is referenced by:  iinfssc  49034  iinfsubc  49035
  Copyright terms: Public domain W3C validator