Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iinfssclem3 Structured version   Visualization version   GIF version

Theorem iinfssclem3 49041
Description: Lemma for iinfssc 49042. (Contributed by Zhi Wang, 31-Oct-2025.)
Hypotheses
Ref Expression
iinfssc.1 (𝜑𝐴 ≠ ∅)
iinfssc.2 ((𝜑𝑥𝐴) → 𝐻cat 𝐽)
iinfssc.3 (𝜑𝐾 = (𝑦 𝑥𝐴 dom 𝐻 𝑥𝐴 (𝐻𝑦)))
iinfssclem1.4 ((𝜑𝑥𝐴) → 𝑆 = dom dom 𝐻)
iinfssclem1.5 𝑥𝜑
iinfssclem3.x (𝜑𝑋 𝑥𝐴 𝑆)
iinfssclem3.y (𝜑𝑌 𝑥𝐴 𝑆)
Assertion
Ref Expression
iinfssclem3 (𝜑 → (𝑋𝐾𝑌) = 𝑥𝐴 (𝑋𝐻𝑌))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑦,𝐻   𝑦,𝑆   𝑥,𝑋   𝑥,𝑌
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝑆(𝑥)   𝐻(𝑥)   𝐽(𝑥,𝑦)   𝐾(𝑥,𝑦)   𝑋(𝑦)   𝑌(𝑦)

Proof of Theorem iinfssclem3
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 iinfssc.1 . . 3 (𝜑𝐴 ≠ ∅)
2 iinfssc.2 . . 3 ((𝜑𝑥𝐴) → 𝐻cat 𝐽)
3 iinfssc.3 . . 3 (𝜑𝐾 = (𝑦 𝑥𝐴 dom 𝐻 𝑥𝐴 (𝐻𝑦)))
4 iinfssclem1.4 . . 3 ((𝜑𝑥𝐴) → 𝑆 = dom dom 𝐻)
5 iinfssclem1.5 . . 3 𝑥𝜑
61, 2, 3, 4, 5iinfssclem1 49039 . 2 (𝜑𝐾 = (𝑧 𝑥𝐴 𝑆, 𝑤 𝑥𝐴 𝑆 𝑥𝐴 (𝑧𝐻𝑤)))
7 nfv 1914 . . . 4 𝑥(𝑧 = 𝑋𝑤 = 𝑌)
85, 7nfan 1899 . . 3 𝑥(𝜑 ∧ (𝑧 = 𝑋𝑤 = 𝑌))
9 simplrl 776 . . . 4 (((𝜑 ∧ (𝑧 = 𝑋𝑤 = 𝑌)) ∧ 𝑥𝐴) → 𝑧 = 𝑋)
10 simplrr 777 . . . 4 (((𝜑 ∧ (𝑧 = 𝑋𝑤 = 𝑌)) ∧ 𝑥𝐴) → 𝑤 = 𝑌)
119, 10oveq12d 7367 . . 3 (((𝜑 ∧ (𝑧 = 𝑋𝑤 = 𝑌)) ∧ 𝑥𝐴) → (𝑧𝐻𝑤) = (𝑋𝐻𝑌))
128, 11iineq2d 4965 . 2 ((𝜑 ∧ (𝑧 = 𝑋𝑤 = 𝑌)) → 𝑥𝐴 (𝑧𝐻𝑤) = 𝑥𝐴 (𝑋𝐻𝑌))
13 iinfssclem3.x . 2 (𝜑𝑋 𝑥𝐴 𝑆)
14 iinfssclem3.y . 2 (𝜑𝑌 𝑥𝐴 𝑆)
15 ovex 7382 . . . 4 (𝑋𝐻𝑌) ∈ V
1615rgenw 3048 . . 3 𝑥𝐴 (𝑋𝐻𝑌) ∈ V
17 iinexg 5287 . . 3 ((𝐴 ≠ ∅ ∧ ∀𝑥𝐴 (𝑋𝐻𝑌) ∈ V) → 𝑥𝐴 (𝑋𝐻𝑌) ∈ V)
181, 16, 17sylancl 586 . 2 (𝜑 𝑥𝐴 (𝑋𝐻𝑌) ∈ V)
196, 12, 13, 14, 18ovmpod 7501 1 (𝜑 → (𝑋𝐾𝑌) = 𝑥𝐴 (𝑋𝐻𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wnf 1783  wcel 2109  wne 2925  wral 3044  Vcvv 3436  c0 4284   ciin 4942   class class class wbr 5092  cmpt 5173  dom cdm 5619  cfv 6482  (class class class)co 7349  cat cssc 17714
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-iin 4944  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-ov 7352  df-oprab 7353  df-mpo 7354  df-ixp 8825  df-ssc 17717
This theorem is referenced by:  iinfsubc  49043
  Copyright terms: Public domain W3C validator