| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > iinfssclem3 | Structured version Visualization version GIF version | ||
| Description: Lemma for iinfssc 48902. (Contributed by Zhi Wang, 31-Oct-2025.) |
| Ref | Expression |
|---|---|
| iinfssc.1 | ⊢ (𝜑 → 𝐴 ≠ ∅) |
| iinfssc.2 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐻 ⊆cat 𝐽) |
| iinfssc.3 | ⊢ (𝜑 → 𝐾 = (𝑦 ∈ ∩ 𝑥 ∈ 𝐴 dom 𝐻 ↦ ∩ 𝑥 ∈ 𝐴 (𝐻‘𝑦))) |
| iinfssclem1.4 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑆 = dom dom 𝐻) |
| iinfssclem1.5 | ⊢ Ⅎ𝑥𝜑 |
| iinfssclem3.x | ⊢ (𝜑 → 𝑋 ∈ ∩ 𝑥 ∈ 𝐴 𝑆) |
| iinfssclem3.y | ⊢ (𝜑 → 𝑌 ∈ ∩ 𝑥 ∈ 𝐴 𝑆) |
| Ref | Expression |
|---|---|
| iinfssclem3 | ⊢ (𝜑 → (𝑋𝐾𝑌) = ∩ 𝑥 ∈ 𝐴 (𝑋𝐻𝑌)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iinfssc.1 | . . 3 ⊢ (𝜑 → 𝐴 ≠ ∅) | |
| 2 | iinfssc.2 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐻 ⊆cat 𝐽) | |
| 3 | iinfssc.3 | . . 3 ⊢ (𝜑 → 𝐾 = (𝑦 ∈ ∩ 𝑥 ∈ 𝐴 dom 𝐻 ↦ ∩ 𝑥 ∈ 𝐴 (𝐻‘𝑦))) | |
| 4 | iinfssclem1.4 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑆 = dom dom 𝐻) | |
| 5 | iinfssclem1.5 | . . 3 ⊢ Ⅎ𝑥𝜑 | |
| 6 | 1, 2, 3, 4, 5 | iinfssclem1 48899 | . 2 ⊢ (𝜑 → 𝐾 = (𝑧 ∈ ∩ 𝑥 ∈ 𝐴 𝑆, 𝑤 ∈ ∩ 𝑥 ∈ 𝐴 𝑆 ↦ ∩ 𝑥 ∈ 𝐴 (𝑧𝐻𝑤))) |
| 7 | nfv 1913 | . . . 4 ⊢ Ⅎ𝑥(𝑧 = 𝑋 ∧ 𝑤 = 𝑌) | |
| 8 | 5, 7 | nfan 1898 | . . 3 ⊢ Ⅎ𝑥(𝜑 ∧ (𝑧 = 𝑋 ∧ 𝑤 = 𝑌)) |
| 9 | simplrl 776 | . . . 4 ⊢ (((𝜑 ∧ (𝑧 = 𝑋 ∧ 𝑤 = 𝑌)) ∧ 𝑥 ∈ 𝐴) → 𝑧 = 𝑋) | |
| 10 | simplrr 777 | . . . 4 ⊢ (((𝜑 ∧ (𝑧 = 𝑋 ∧ 𝑤 = 𝑌)) ∧ 𝑥 ∈ 𝐴) → 𝑤 = 𝑌) | |
| 11 | 9, 10 | oveq12d 7417 | . . 3 ⊢ (((𝜑 ∧ (𝑧 = 𝑋 ∧ 𝑤 = 𝑌)) ∧ 𝑥 ∈ 𝐴) → (𝑧𝐻𝑤) = (𝑋𝐻𝑌)) |
| 12 | 8, 11 | iineq2d 4988 | . 2 ⊢ ((𝜑 ∧ (𝑧 = 𝑋 ∧ 𝑤 = 𝑌)) → ∩ 𝑥 ∈ 𝐴 (𝑧𝐻𝑤) = ∩ 𝑥 ∈ 𝐴 (𝑋𝐻𝑌)) |
| 13 | iinfssclem3.x | . 2 ⊢ (𝜑 → 𝑋 ∈ ∩ 𝑥 ∈ 𝐴 𝑆) | |
| 14 | iinfssclem3.y | . 2 ⊢ (𝜑 → 𝑌 ∈ ∩ 𝑥 ∈ 𝐴 𝑆) | |
| 15 | ovex 7432 | . . . 4 ⊢ (𝑋𝐻𝑌) ∈ V | |
| 16 | 15 | rgenw 3054 | . . 3 ⊢ ∀𝑥 ∈ 𝐴 (𝑋𝐻𝑌) ∈ V |
| 17 | iinexg 5315 | . . 3 ⊢ ((𝐴 ≠ ∅ ∧ ∀𝑥 ∈ 𝐴 (𝑋𝐻𝑌) ∈ V) → ∩ 𝑥 ∈ 𝐴 (𝑋𝐻𝑌) ∈ V) | |
| 18 | 1, 16, 17 | sylancl 586 | . 2 ⊢ (𝜑 → ∩ 𝑥 ∈ 𝐴 (𝑋𝐻𝑌) ∈ V) |
| 19 | 6, 12, 13, 14, 18 | ovmpod 7553 | 1 ⊢ (𝜑 → (𝑋𝐾𝑌) = ∩ 𝑥 ∈ 𝐴 (𝑋𝐻𝑌)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 Ⅎwnf 1782 ∈ wcel 2107 ≠ wne 2931 ∀wral 3050 Vcvv 3457 ∅c0 4306 ∩ ciin 4965 class class class wbr 5116 ↦ cmpt 5198 dom cdm 5651 ‘cfv 6527 (class class class)co 7399 ⊆cat cssc 17805 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5246 ax-sep 5263 ax-nul 5273 ax-pow 5332 ax-pr 5399 ax-un 7723 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-reu 3358 df-rab 3414 df-v 3459 df-sbc 3764 df-csb 3873 df-dif 3927 df-un 3929 df-in 3931 df-ss 3941 df-nul 4307 df-if 4499 df-pw 4575 df-sn 4600 df-pr 4602 df-op 4606 df-uni 4881 df-int 4920 df-iun 4966 df-iin 4967 df-br 5117 df-opab 5179 df-mpt 5199 df-id 5545 df-xp 5657 df-rel 5658 df-cnv 5659 df-co 5660 df-dm 5661 df-rn 5662 df-res 5663 df-ima 5664 df-iota 6480 df-fun 6529 df-fn 6530 df-f 6531 df-f1 6532 df-fo 6533 df-f1o 6534 df-fv 6535 df-ov 7402 df-oprab 7403 df-mpo 7404 df-ixp 8906 df-ssc 17808 |
| This theorem is referenced by: iinfsubc 48903 |
| Copyright terms: Public domain | W3C validator |