Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iinfssclem3 Structured version   Visualization version   GIF version

Theorem iinfssclem3 49088
Description: Lemma for iinfssc 49089. (Contributed by Zhi Wang, 31-Oct-2025.)
Hypotheses
Ref Expression
iinfssc.1 (𝜑𝐴 ≠ ∅)
iinfssc.2 ((𝜑𝑥𝐴) → 𝐻cat 𝐽)
iinfssc.3 (𝜑𝐾 = (𝑦 𝑥𝐴 dom 𝐻 𝑥𝐴 (𝐻𝑦)))
iinfssclem1.4 ((𝜑𝑥𝐴) → 𝑆 = dom dom 𝐻)
iinfssclem1.5 𝑥𝜑
iinfssclem3.x (𝜑𝑋 𝑥𝐴 𝑆)
iinfssclem3.y (𝜑𝑌 𝑥𝐴 𝑆)
Assertion
Ref Expression
iinfssclem3 (𝜑 → (𝑋𝐾𝑌) = 𝑥𝐴 (𝑋𝐻𝑌))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑦,𝐻   𝑦,𝑆   𝑥,𝑋   𝑥,𝑌
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝑆(𝑥)   𝐻(𝑥)   𝐽(𝑥,𝑦)   𝐾(𝑥,𝑦)   𝑋(𝑦)   𝑌(𝑦)

Proof of Theorem iinfssclem3
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 iinfssc.1 . . 3 (𝜑𝐴 ≠ ∅)
2 iinfssc.2 . . 3 ((𝜑𝑥𝐴) → 𝐻cat 𝐽)
3 iinfssc.3 . . 3 (𝜑𝐾 = (𝑦 𝑥𝐴 dom 𝐻 𝑥𝐴 (𝐻𝑦)))
4 iinfssclem1.4 . . 3 ((𝜑𝑥𝐴) → 𝑆 = dom dom 𝐻)
5 iinfssclem1.5 . . 3 𝑥𝜑
61, 2, 3, 4, 5iinfssclem1 49086 . 2 (𝜑𝐾 = (𝑧 𝑥𝐴 𝑆, 𝑤 𝑥𝐴 𝑆 𝑥𝐴 (𝑧𝐻𝑤)))
7 nfv 1915 . . . 4 𝑥(𝑧 = 𝑋𝑤 = 𝑌)
85, 7nfan 1900 . . 3 𝑥(𝜑 ∧ (𝑧 = 𝑋𝑤 = 𝑌))
9 simplrl 776 . . . 4 (((𝜑 ∧ (𝑧 = 𝑋𝑤 = 𝑌)) ∧ 𝑥𝐴) → 𝑧 = 𝑋)
10 simplrr 777 . . . 4 (((𝜑 ∧ (𝑧 = 𝑋𝑤 = 𝑌)) ∧ 𝑥𝐴) → 𝑤 = 𝑌)
119, 10oveq12d 7359 . . 3 (((𝜑 ∧ (𝑧 = 𝑋𝑤 = 𝑌)) ∧ 𝑥𝐴) → (𝑧𝐻𝑤) = (𝑋𝐻𝑌))
128, 11iineq2d 4960 . 2 ((𝜑 ∧ (𝑧 = 𝑋𝑤 = 𝑌)) → 𝑥𝐴 (𝑧𝐻𝑤) = 𝑥𝐴 (𝑋𝐻𝑌))
13 iinfssclem3.x . 2 (𝜑𝑋 𝑥𝐴 𝑆)
14 iinfssclem3.y . 2 (𝜑𝑌 𝑥𝐴 𝑆)
15 ovex 7374 . . . 4 (𝑋𝐻𝑌) ∈ V
1615rgenw 3051 . . 3 𝑥𝐴 (𝑋𝐻𝑌) ∈ V
17 iinexg 5281 . . 3 ((𝐴 ≠ ∅ ∧ ∀𝑥𝐴 (𝑋𝐻𝑌) ∈ V) → 𝑥𝐴 (𝑋𝐻𝑌) ∈ V)
181, 16, 17sylancl 586 . 2 (𝜑 𝑥𝐴 (𝑋𝐻𝑌) ∈ V)
196, 12, 13, 14, 18ovmpod 7493 1 (𝜑 → (𝑋𝐾𝑌) = 𝑥𝐴 (𝑋𝐻𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wnf 1784  wcel 2111  wne 2928  wral 3047  Vcvv 3436  c0 4278   ciin 4937   class class class wbr 5086  cmpt 5167  dom cdm 5611  cfv 6476  (class class class)co 7341  cat cssc 17709
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5212  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-int 4893  df-iun 4938  df-iin 4939  df-br 5087  df-opab 5149  df-mpt 5168  df-id 5506  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-ov 7344  df-oprab 7345  df-mpo 7346  df-ixp 8817  df-ssc 17712
This theorem is referenced by:  iinfsubc  49090
  Copyright terms: Public domain W3C validator