Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iinfssclem3 Structured version   Visualization version   GIF version

Theorem iinfssclem3 49033
Description: Lemma for iinfssc 49034. (Contributed by Zhi Wang, 31-Oct-2025.)
Hypotheses
Ref Expression
iinfssc.1 (𝜑𝐴 ≠ ∅)
iinfssc.2 ((𝜑𝑥𝐴) → 𝐻cat 𝐽)
iinfssc.3 (𝜑𝐾 = (𝑦 𝑥𝐴 dom 𝐻 𝑥𝐴 (𝐻𝑦)))
iinfssclem1.4 ((𝜑𝑥𝐴) → 𝑆 = dom dom 𝐻)
iinfssclem1.5 𝑥𝜑
iinfssclem3.x (𝜑𝑋 𝑥𝐴 𝑆)
iinfssclem3.y (𝜑𝑌 𝑥𝐴 𝑆)
Assertion
Ref Expression
iinfssclem3 (𝜑 → (𝑋𝐾𝑌) = 𝑥𝐴 (𝑋𝐻𝑌))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑦,𝐻   𝑦,𝑆   𝑥,𝑋   𝑥,𝑌
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝑆(𝑥)   𝐻(𝑥)   𝐽(𝑥,𝑦)   𝐾(𝑥,𝑦)   𝑋(𝑦)   𝑌(𝑦)

Proof of Theorem iinfssclem3
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 iinfssc.1 . . 3 (𝜑𝐴 ≠ ∅)
2 iinfssc.2 . . 3 ((𝜑𝑥𝐴) → 𝐻cat 𝐽)
3 iinfssc.3 . . 3 (𝜑𝐾 = (𝑦 𝑥𝐴 dom 𝐻 𝑥𝐴 (𝐻𝑦)))
4 iinfssclem1.4 . . 3 ((𝜑𝑥𝐴) → 𝑆 = dom dom 𝐻)
5 iinfssclem1.5 . . 3 𝑥𝜑
61, 2, 3, 4, 5iinfssclem1 49031 . 2 (𝜑𝐾 = (𝑧 𝑥𝐴 𝑆, 𝑤 𝑥𝐴 𝑆 𝑥𝐴 (𝑧𝐻𝑤)))
7 nfv 1914 . . . 4 𝑥(𝑧 = 𝑋𝑤 = 𝑌)
85, 7nfan 1899 . . 3 𝑥(𝜑 ∧ (𝑧 = 𝑋𝑤 = 𝑌))
9 simplrl 776 . . . 4 (((𝜑 ∧ (𝑧 = 𝑋𝑤 = 𝑌)) ∧ 𝑥𝐴) → 𝑧 = 𝑋)
10 simplrr 777 . . . 4 (((𝜑 ∧ (𝑧 = 𝑋𝑤 = 𝑌)) ∧ 𝑥𝐴) → 𝑤 = 𝑌)
119, 10oveq12d 7407 . . 3 (((𝜑 ∧ (𝑧 = 𝑋𝑤 = 𝑌)) ∧ 𝑥𝐴) → (𝑧𝐻𝑤) = (𝑋𝐻𝑌))
128, 11iineq2d 4981 . 2 ((𝜑 ∧ (𝑧 = 𝑋𝑤 = 𝑌)) → 𝑥𝐴 (𝑧𝐻𝑤) = 𝑥𝐴 (𝑋𝐻𝑌))
13 iinfssclem3.x . 2 (𝜑𝑋 𝑥𝐴 𝑆)
14 iinfssclem3.y . 2 (𝜑𝑌 𝑥𝐴 𝑆)
15 ovex 7422 . . . 4 (𝑋𝐻𝑌) ∈ V
1615rgenw 3049 . . 3 𝑥𝐴 (𝑋𝐻𝑌) ∈ V
17 iinexg 5305 . . 3 ((𝐴 ≠ ∅ ∧ ∀𝑥𝐴 (𝑋𝐻𝑌) ∈ V) → 𝑥𝐴 (𝑋𝐻𝑌) ∈ V)
181, 16, 17sylancl 586 . 2 (𝜑 𝑥𝐴 (𝑋𝐻𝑌) ∈ V)
196, 12, 13, 14, 18ovmpod 7543 1 (𝜑 → (𝑋𝐾𝑌) = 𝑥𝐴 (𝑋𝐻𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wnf 1783  wcel 2109  wne 2926  wral 3045  Vcvv 3450  c0 4298   ciin 4958   class class class wbr 5109  cmpt 5190  dom cdm 5640  cfv 6513  (class class class)co 7389  cat cssc 17775
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5236  ax-sep 5253  ax-nul 5263  ax-pow 5322  ax-pr 5389  ax-un 7713
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3756  df-csb 3865  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-nul 4299  df-if 4491  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4874  df-int 4913  df-iun 4959  df-iin 4960  df-br 5110  df-opab 5172  df-mpt 5191  df-id 5535  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-rn 5651  df-res 5652  df-ima 5653  df-iota 6466  df-fun 6515  df-fn 6516  df-f 6517  df-f1 6518  df-fo 6519  df-f1o 6520  df-fv 6521  df-ov 7392  df-oprab 7393  df-mpo 7394  df-ixp 8873  df-ssc 17778
This theorem is referenced by:  iinfsubc  49035
  Copyright terms: Public domain W3C validator