Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iinfssclem3 Structured version   Visualization version   GIF version

Theorem iinfssclem3 49018
Description: Lemma for iinfssc 49019. (Contributed by Zhi Wang, 31-Oct-2025.)
Hypotheses
Ref Expression
iinfssc.1 (𝜑𝐴 ≠ ∅)
iinfssc.2 ((𝜑𝑥𝐴) → 𝐻cat 𝐽)
iinfssc.3 (𝜑𝐾 = (𝑦 𝑥𝐴 dom 𝐻 𝑥𝐴 (𝐻𝑦)))
iinfssclem1.4 ((𝜑𝑥𝐴) → 𝑆 = dom dom 𝐻)
iinfssclem1.5 𝑥𝜑
iinfssclem3.x (𝜑𝑋 𝑥𝐴 𝑆)
iinfssclem3.y (𝜑𝑌 𝑥𝐴 𝑆)
Assertion
Ref Expression
iinfssclem3 (𝜑 → (𝑋𝐾𝑌) = 𝑥𝐴 (𝑋𝐻𝑌))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑦,𝐻   𝑦,𝑆   𝑥,𝑋   𝑥,𝑌
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝑆(𝑥)   𝐻(𝑥)   𝐽(𝑥,𝑦)   𝐾(𝑥,𝑦)   𝑋(𝑦)   𝑌(𝑦)

Proof of Theorem iinfssclem3
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 iinfssc.1 . . 3 (𝜑𝐴 ≠ ∅)
2 iinfssc.2 . . 3 ((𝜑𝑥𝐴) → 𝐻cat 𝐽)
3 iinfssc.3 . . 3 (𝜑𝐾 = (𝑦 𝑥𝐴 dom 𝐻 𝑥𝐴 (𝐻𝑦)))
4 iinfssclem1.4 . . 3 ((𝜑𝑥𝐴) → 𝑆 = dom dom 𝐻)
5 iinfssclem1.5 . . 3 𝑥𝜑
61, 2, 3, 4, 5iinfssclem1 49016 . 2 (𝜑𝐾 = (𝑧 𝑥𝐴 𝑆, 𝑤 𝑥𝐴 𝑆 𝑥𝐴 (𝑧𝐻𝑤)))
7 nfv 1914 . . . 4 𝑥(𝑧 = 𝑋𝑤 = 𝑌)
85, 7nfan 1899 . . 3 𝑥(𝜑 ∧ (𝑧 = 𝑋𝑤 = 𝑌))
9 simplrl 776 . . . 4 (((𝜑 ∧ (𝑧 = 𝑋𝑤 = 𝑌)) ∧ 𝑥𝐴) → 𝑧 = 𝑋)
10 simplrr 777 . . . 4 (((𝜑 ∧ (𝑧 = 𝑋𝑤 = 𝑌)) ∧ 𝑥𝐴) → 𝑤 = 𝑌)
119, 10oveq12d 7387 . . 3 (((𝜑 ∧ (𝑧 = 𝑋𝑤 = 𝑌)) ∧ 𝑥𝐴) → (𝑧𝐻𝑤) = (𝑋𝐻𝑌))
128, 11iineq2d 4975 . 2 ((𝜑 ∧ (𝑧 = 𝑋𝑤 = 𝑌)) → 𝑥𝐴 (𝑧𝐻𝑤) = 𝑥𝐴 (𝑋𝐻𝑌))
13 iinfssclem3.x . 2 (𝜑𝑋 𝑥𝐴 𝑆)
14 iinfssclem3.y . 2 (𝜑𝑌 𝑥𝐴 𝑆)
15 ovex 7402 . . . 4 (𝑋𝐻𝑌) ∈ V
1615rgenw 3048 . . 3 𝑥𝐴 (𝑋𝐻𝑌) ∈ V
17 iinexg 5298 . . 3 ((𝐴 ≠ ∅ ∧ ∀𝑥𝐴 (𝑋𝐻𝑌) ∈ V) → 𝑥𝐴 (𝑋𝐻𝑌) ∈ V)
181, 16, 17sylancl 586 . 2 (𝜑 𝑥𝐴 (𝑋𝐻𝑌) ∈ V)
196, 12, 13, 14, 18ovmpod 7521 1 (𝜑 → (𝑋𝐾𝑌) = 𝑥𝐴 (𝑋𝐻𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wnf 1783  wcel 2109  wne 2925  wral 3044  Vcvv 3444  c0 4292   ciin 4952   class class class wbr 5102  cmpt 5183  dom cdm 5631  cfv 6499  (class class class)co 7369  cat cssc 17745
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-iin 4954  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-ov 7372  df-oprab 7373  df-mpo 7374  df-ixp 8848  df-ssc 17748
This theorem is referenced by:  iinfsubc  49020
  Copyright terms: Public domain W3C validator