Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > invcoisoid | Structured version Visualization version GIF version |
Description: The inverse of an isomorphism composed with the isomorphism is the identity. (Contributed by AV, 5-Apr-2020.) |
Ref | Expression |
---|---|
invisoinv.b | ⊢ 𝐵 = (Base‘𝐶) |
invisoinv.i | ⊢ 𝐼 = (Iso‘𝐶) |
invisoinv.n | ⊢ 𝑁 = (Inv‘𝐶) |
invisoinv.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
invisoinv.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
invisoinv.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
invisoinv.f | ⊢ (𝜑 → 𝐹 ∈ (𝑋𝐼𝑌)) |
invcoisoid.1 | ⊢ 1 = (Id‘𝐶) |
invcoisoid.o | ⊢ ⚬ = (〈𝑋, 𝑌〉(comp‘𝐶)𝑋) |
Ref | Expression |
---|---|
invcoisoid | ⊢ (𝜑 → (((𝑋𝑁𝑌)‘𝐹) ⚬ 𝐹) = ( 1 ‘𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | invisoinv.b | . . . 4 ⊢ 𝐵 = (Base‘𝐶) | |
2 | invisoinv.i | . . . 4 ⊢ 𝐼 = (Iso‘𝐶) | |
3 | invisoinv.n | . . . 4 ⊢ 𝑁 = (Inv‘𝐶) | |
4 | invisoinv.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
5 | invisoinv.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
6 | invisoinv.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
7 | invisoinv.f | . . . 4 ⊢ (𝜑 → 𝐹 ∈ (𝑋𝐼𝑌)) | |
8 | 1, 2, 3, 4, 5, 6, 7 | invisoinvr 17420 | . . 3 ⊢ (𝜑 → 𝐹(𝑋𝑁𝑌)((𝑋𝑁𝑌)‘𝐹)) |
9 | eqid 2738 | . . . . 5 ⊢ (Sect‘𝐶) = (Sect‘𝐶) | |
10 | 1, 3, 4, 5, 6, 9 | isinv 17389 | . . . 4 ⊢ (𝜑 → (𝐹(𝑋𝑁𝑌)((𝑋𝑁𝑌)‘𝐹) ↔ (𝐹(𝑋(Sect‘𝐶)𝑌)((𝑋𝑁𝑌)‘𝐹) ∧ ((𝑋𝑁𝑌)‘𝐹)(𝑌(Sect‘𝐶)𝑋)𝐹))) |
11 | simpl 482 | . . . 4 ⊢ ((𝐹(𝑋(Sect‘𝐶)𝑌)((𝑋𝑁𝑌)‘𝐹) ∧ ((𝑋𝑁𝑌)‘𝐹)(𝑌(Sect‘𝐶)𝑋)𝐹) → 𝐹(𝑋(Sect‘𝐶)𝑌)((𝑋𝑁𝑌)‘𝐹)) | |
12 | 10, 11 | syl6bi 252 | . . 3 ⊢ (𝜑 → (𝐹(𝑋𝑁𝑌)((𝑋𝑁𝑌)‘𝐹) → 𝐹(𝑋(Sect‘𝐶)𝑌)((𝑋𝑁𝑌)‘𝐹))) |
13 | 8, 12 | mpd 15 | . 2 ⊢ (𝜑 → 𝐹(𝑋(Sect‘𝐶)𝑌)((𝑋𝑁𝑌)‘𝐹)) |
14 | eqid 2738 | . . . 4 ⊢ (Hom ‘𝐶) = (Hom ‘𝐶) | |
15 | eqid 2738 | . . . 4 ⊢ (comp‘𝐶) = (comp‘𝐶) | |
16 | invcoisoid.1 | . . . 4 ⊢ 1 = (Id‘𝐶) | |
17 | 1, 14, 2, 4, 5, 6 | isohom 17405 | . . . . 5 ⊢ (𝜑 → (𝑋𝐼𝑌) ⊆ (𝑋(Hom ‘𝐶)𝑌)) |
18 | 17, 7 | sseldd 3918 | . . . 4 ⊢ (𝜑 → 𝐹 ∈ (𝑋(Hom ‘𝐶)𝑌)) |
19 | 1, 14, 2, 4, 6, 5 | isohom 17405 | . . . . 5 ⊢ (𝜑 → (𝑌𝐼𝑋) ⊆ (𝑌(Hom ‘𝐶)𝑋)) |
20 | 1, 3, 4, 5, 6, 2 | invf 17397 | . . . . . 6 ⊢ (𝜑 → (𝑋𝑁𝑌):(𝑋𝐼𝑌)⟶(𝑌𝐼𝑋)) |
21 | 20, 7 | ffvelrnd 6944 | . . . . 5 ⊢ (𝜑 → ((𝑋𝑁𝑌)‘𝐹) ∈ (𝑌𝐼𝑋)) |
22 | 19, 21 | sseldd 3918 | . . . 4 ⊢ (𝜑 → ((𝑋𝑁𝑌)‘𝐹) ∈ (𝑌(Hom ‘𝐶)𝑋)) |
23 | 1, 14, 15, 16, 9, 4, 5, 6, 18, 22 | issect2 17383 | . . 3 ⊢ (𝜑 → (𝐹(𝑋(Sect‘𝐶)𝑌)((𝑋𝑁𝑌)‘𝐹) ↔ (((𝑋𝑁𝑌)‘𝐹)(〈𝑋, 𝑌〉(comp‘𝐶)𝑋)𝐹) = ( 1 ‘𝑋))) |
24 | invcoisoid.o | . . . . . . 7 ⊢ ⚬ = (〈𝑋, 𝑌〉(comp‘𝐶)𝑋) | |
25 | 24 | a1i 11 | . . . . . 6 ⊢ (𝜑 → ⚬ = (〈𝑋, 𝑌〉(comp‘𝐶)𝑋)) |
26 | 25 | eqcomd 2744 | . . . . 5 ⊢ (𝜑 → (〈𝑋, 𝑌〉(comp‘𝐶)𝑋) = ⚬ ) |
27 | 26 | oveqd 7272 | . . . 4 ⊢ (𝜑 → (((𝑋𝑁𝑌)‘𝐹)(〈𝑋, 𝑌〉(comp‘𝐶)𝑋)𝐹) = (((𝑋𝑁𝑌)‘𝐹) ⚬ 𝐹)) |
28 | 27 | eqeq1d 2740 | . . 3 ⊢ (𝜑 → ((((𝑋𝑁𝑌)‘𝐹)(〈𝑋, 𝑌〉(comp‘𝐶)𝑋)𝐹) = ( 1 ‘𝑋) ↔ (((𝑋𝑁𝑌)‘𝐹) ⚬ 𝐹) = ( 1 ‘𝑋))) |
29 | 23, 28 | bitrd 278 | . 2 ⊢ (𝜑 → (𝐹(𝑋(Sect‘𝐶)𝑌)((𝑋𝑁𝑌)‘𝐹) ↔ (((𝑋𝑁𝑌)‘𝐹) ⚬ 𝐹) = ( 1 ‘𝑋))) |
30 | 13, 29 | mpbid 231 | 1 ⊢ (𝜑 → (((𝑋𝑁𝑌)‘𝐹) ⚬ 𝐹) = ( 1 ‘𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 〈cop 4564 class class class wbr 5070 ‘cfv 6418 (class class class)co 7255 Basecbs 16840 Hom chom 16899 compcco 16900 Catccat 17290 Idccid 17291 Sectcsect 17373 Invcinv 17374 Isociso 17375 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-1st 7804 df-2nd 7805 df-cat 17294 df-cid 17295 df-sect 17376 df-inv 17377 df-iso 17378 |
This theorem is referenced by: rcaninv 17423 |
Copyright terms: Public domain | W3C validator |