MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  invcoisoid Structured version   Visualization version   GIF version

Theorem invcoisoid 17707
Description: The inverse of an isomorphism composed with the isomorphism is the identity. (Contributed by AV, 5-Apr-2020.)
Hypotheses
Ref Expression
invisoinv.b 𝐵 = (Base‘𝐶)
invisoinv.i 𝐼 = (Iso‘𝐶)
invisoinv.n 𝑁 = (Inv‘𝐶)
invisoinv.c (𝜑𝐶 ∈ Cat)
invisoinv.x (𝜑𝑋𝐵)
invisoinv.y (𝜑𝑌𝐵)
invisoinv.f (𝜑𝐹 ∈ (𝑋𝐼𝑌))
invcoisoid.1 1 = (Id‘𝐶)
invcoisoid.o = (⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)
Assertion
Ref Expression
invcoisoid (𝜑 → (((𝑋𝑁𝑌)‘𝐹) 𝐹) = ( 1𝑋))

Proof of Theorem invcoisoid
StepHypRef Expression
1 invisoinv.b . . . 4 𝐵 = (Base‘𝐶)
2 invisoinv.i . . . 4 𝐼 = (Iso‘𝐶)
3 invisoinv.n . . . 4 𝑁 = (Inv‘𝐶)
4 invisoinv.c . . . 4 (𝜑𝐶 ∈ Cat)
5 invisoinv.x . . . 4 (𝜑𝑋𝐵)
6 invisoinv.y . . . 4 (𝜑𝑌𝐵)
7 invisoinv.f . . . 4 (𝜑𝐹 ∈ (𝑋𝐼𝑌))
81, 2, 3, 4, 5, 6, 7invisoinvr 17706 . . 3 (𝜑𝐹(𝑋𝑁𝑌)((𝑋𝑁𝑌)‘𝐹))
9 eqid 2733 . . . . 5 (Sect‘𝐶) = (Sect‘𝐶)
101, 3, 4, 5, 6, 9isinv 17675 . . . 4 (𝜑 → (𝐹(𝑋𝑁𝑌)((𝑋𝑁𝑌)‘𝐹) ↔ (𝐹(𝑋(Sect‘𝐶)𝑌)((𝑋𝑁𝑌)‘𝐹) ∧ ((𝑋𝑁𝑌)‘𝐹)(𝑌(Sect‘𝐶)𝑋)𝐹)))
11 simpl 482 . . . 4 ((𝐹(𝑋(Sect‘𝐶)𝑌)((𝑋𝑁𝑌)‘𝐹) ∧ ((𝑋𝑁𝑌)‘𝐹)(𝑌(Sect‘𝐶)𝑋)𝐹) → 𝐹(𝑋(Sect‘𝐶)𝑌)((𝑋𝑁𝑌)‘𝐹))
1210, 11biimtrdi 253 . . 3 (𝜑 → (𝐹(𝑋𝑁𝑌)((𝑋𝑁𝑌)‘𝐹) → 𝐹(𝑋(Sect‘𝐶)𝑌)((𝑋𝑁𝑌)‘𝐹)))
138, 12mpd 15 . 2 (𝜑𝐹(𝑋(Sect‘𝐶)𝑌)((𝑋𝑁𝑌)‘𝐹))
14 eqid 2733 . . . 4 (Hom ‘𝐶) = (Hom ‘𝐶)
15 eqid 2733 . . . 4 (comp‘𝐶) = (comp‘𝐶)
16 invcoisoid.1 . . . 4 1 = (Id‘𝐶)
171, 14, 2, 4, 5, 6isohom 17691 . . . . 5 (𝜑 → (𝑋𝐼𝑌) ⊆ (𝑋(Hom ‘𝐶)𝑌))
1817, 7sseldd 3931 . . . 4 (𝜑𝐹 ∈ (𝑋(Hom ‘𝐶)𝑌))
191, 14, 2, 4, 6, 5isohom 17691 . . . . 5 (𝜑 → (𝑌𝐼𝑋) ⊆ (𝑌(Hom ‘𝐶)𝑋))
201, 3, 4, 5, 6, 2invf 17683 . . . . . 6 (𝜑 → (𝑋𝑁𝑌):(𝑋𝐼𝑌)⟶(𝑌𝐼𝑋))
2120, 7ffvelcdmd 7027 . . . . 5 (𝜑 → ((𝑋𝑁𝑌)‘𝐹) ∈ (𝑌𝐼𝑋))
2219, 21sseldd 3931 . . . 4 (𝜑 → ((𝑋𝑁𝑌)‘𝐹) ∈ (𝑌(Hom ‘𝐶)𝑋))
231, 14, 15, 16, 9, 4, 5, 6, 18, 22issect2 17669 . . 3 (𝜑 → (𝐹(𝑋(Sect‘𝐶)𝑌)((𝑋𝑁𝑌)‘𝐹) ↔ (((𝑋𝑁𝑌)‘𝐹)(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)𝐹) = ( 1𝑋)))
24 invcoisoid.o . . . . . . 7 = (⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)
2524a1i 11 . . . . . 6 (𝜑 = (⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋))
2625eqcomd 2739 . . . . 5 (𝜑 → (⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋) = )
2726oveqd 7372 . . . 4 (𝜑 → (((𝑋𝑁𝑌)‘𝐹)(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)𝐹) = (((𝑋𝑁𝑌)‘𝐹) 𝐹))
2827eqeq1d 2735 . . 3 (𝜑 → ((((𝑋𝑁𝑌)‘𝐹)(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)𝐹) = ( 1𝑋) ↔ (((𝑋𝑁𝑌)‘𝐹) 𝐹) = ( 1𝑋)))
2923, 28bitrd 279 . 2 (𝜑 → (𝐹(𝑋(Sect‘𝐶)𝑌)((𝑋𝑁𝑌)‘𝐹) ↔ (((𝑋𝑁𝑌)‘𝐹) 𝐹) = ( 1𝑋)))
3013, 29mpbid 232 1 (𝜑 → (((𝑋𝑁𝑌)‘𝐹) 𝐹) = ( 1𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2113  cop 4583   class class class wbr 5095  cfv 6489  (class class class)co 7355  Basecbs 17127  Hom chom 17179  compcco 17180  Catccat 17578  Idccid 17579  Sectcsect 17659  Invcinv 17660  Isociso 17661
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5516  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-1st 7930  df-2nd 7931  df-cat 17582  df-cid 17583  df-sect 17662  df-inv 17663  df-iso 17664
This theorem is referenced by:  rcaninv  17709  upeu2lem  49189
  Copyright terms: Public domain W3C validator