Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > invcoisoid | Structured version Visualization version GIF version |
Description: The inverse of an isomorphism composed with the isomorphism is the identity. (Contributed by AV, 5-Apr-2020.) |
Ref | Expression |
---|---|
invisoinv.b | ⊢ 𝐵 = (Base‘𝐶) |
invisoinv.i | ⊢ 𝐼 = (Iso‘𝐶) |
invisoinv.n | ⊢ 𝑁 = (Inv‘𝐶) |
invisoinv.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
invisoinv.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
invisoinv.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
invisoinv.f | ⊢ (𝜑 → 𝐹 ∈ (𝑋𝐼𝑌)) |
invcoisoid.1 | ⊢ 1 = (Id‘𝐶) |
invcoisoid.o | ⊢ ⚬ = (〈𝑋, 𝑌〉(comp‘𝐶)𝑋) |
Ref | Expression |
---|---|
invcoisoid | ⊢ (𝜑 → (((𝑋𝑁𝑌)‘𝐹) ⚬ 𝐹) = ( 1 ‘𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | invisoinv.b | . . . 4 ⊢ 𝐵 = (Base‘𝐶) | |
2 | invisoinv.i | . . . 4 ⊢ 𝐼 = (Iso‘𝐶) | |
3 | invisoinv.n | . . . 4 ⊢ 𝑁 = (Inv‘𝐶) | |
4 | invisoinv.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
5 | invisoinv.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
6 | invisoinv.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
7 | invisoinv.f | . . . 4 ⊢ (𝜑 → 𝐹 ∈ (𝑋𝐼𝑌)) | |
8 | 1, 2, 3, 4, 5, 6, 7 | invisoinvr 17503 | . . 3 ⊢ (𝜑 → 𝐹(𝑋𝑁𝑌)((𝑋𝑁𝑌)‘𝐹)) |
9 | eqid 2738 | . . . . 5 ⊢ (Sect‘𝐶) = (Sect‘𝐶) | |
10 | 1, 3, 4, 5, 6, 9 | isinv 17472 | . . . 4 ⊢ (𝜑 → (𝐹(𝑋𝑁𝑌)((𝑋𝑁𝑌)‘𝐹) ↔ (𝐹(𝑋(Sect‘𝐶)𝑌)((𝑋𝑁𝑌)‘𝐹) ∧ ((𝑋𝑁𝑌)‘𝐹)(𝑌(Sect‘𝐶)𝑋)𝐹))) |
11 | simpl 483 | . . . 4 ⊢ ((𝐹(𝑋(Sect‘𝐶)𝑌)((𝑋𝑁𝑌)‘𝐹) ∧ ((𝑋𝑁𝑌)‘𝐹)(𝑌(Sect‘𝐶)𝑋)𝐹) → 𝐹(𝑋(Sect‘𝐶)𝑌)((𝑋𝑁𝑌)‘𝐹)) | |
12 | 10, 11 | syl6bi 252 | . . 3 ⊢ (𝜑 → (𝐹(𝑋𝑁𝑌)((𝑋𝑁𝑌)‘𝐹) → 𝐹(𝑋(Sect‘𝐶)𝑌)((𝑋𝑁𝑌)‘𝐹))) |
13 | 8, 12 | mpd 15 | . 2 ⊢ (𝜑 → 𝐹(𝑋(Sect‘𝐶)𝑌)((𝑋𝑁𝑌)‘𝐹)) |
14 | eqid 2738 | . . . 4 ⊢ (Hom ‘𝐶) = (Hom ‘𝐶) | |
15 | eqid 2738 | . . . 4 ⊢ (comp‘𝐶) = (comp‘𝐶) | |
16 | invcoisoid.1 | . . . 4 ⊢ 1 = (Id‘𝐶) | |
17 | 1, 14, 2, 4, 5, 6 | isohom 17488 | . . . . 5 ⊢ (𝜑 → (𝑋𝐼𝑌) ⊆ (𝑋(Hom ‘𝐶)𝑌)) |
18 | 17, 7 | sseldd 3922 | . . . 4 ⊢ (𝜑 → 𝐹 ∈ (𝑋(Hom ‘𝐶)𝑌)) |
19 | 1, 14, 2, 4, 6, 5 | isohom 17488 | . . . . 5 ⊢ (𝜑 → (𝑌𝐼𝑋) ⊆ (𝑌(Hom ‘𝐶)𝑋)) |
20 | 1, 3, 4, 5, 6, 2 | invf 17480 | . . . . . 6 ⊢ (𝜑 → (𝑋𝑁𝑌):(𝑋𝐼𝑌)⟶(𝑌𝐼𝑋)) |
21 | 20, 7 | ffvelrnd 6962 | . . . . 5 ⊢ (𝜑 → ((𝑋𝑁𝑌)‘𝐹) ∈ (𝑌𝐼𝑋)) |
22 | 19, 21 | sseldd 3922 | . . . 4 ⊢ (𝜑 → ((𝑋𝑁𝑌)‘𝐹) ∈ (𝑌(Hom ‘𝐶)𝑋)) |
23 | 1, 14, 15, 16, 9, 4, 5, 6, 18, 22 | issect2 17466 | . . 3 ⊢ (𝜑 → (𝐹(𝑋(Sect‘𝐶)𝑌)((𝑋𝑁𝑌)‘𝐹) ↔ (((𝑋𝑁𝑌)‘𝐹)(〈𝑋, 𝑌〉(comp‘𝐶)𝑋)𝐹) = ( 1 ‘𝑋))) |
24 | invcoisoid.o | . . . . . . 7 ⊢ ⚬ = (〈𝑋, 𝑌〉(comp‘𝐶)𝑋) | |
25 | 24 | a1i 11 | . . . . . 6 ⊢ (𝜑 → ⚬ = (〈𝑋, 𝑌〉(comp‘𝐶)𝑋)) |
26 | 25 | eqcomd 2744 | . . . . 5 ⊢ (𝜑 → (〈𝑋, 𝑌〉(comp‘𝐶)𝑋) = ⚬ ) |
27 | 26 | oveqd 7292 | . . . 4 ⊢ (𝜑 → (((𝑋𝑁𝑌)‘𝐹)(〈𝑋, 𝑌〉(comp‘𝐶)𝑋)𝐹) = (((𝑋𝑁𝑌)‘𝐹) ⚬ 𝐹)) |
28 | 27 | eqeq1d 2740 | . . 3 ⊢ (𝜑 → ((((𝑋𝑁𝑌)‘𝐹)(〈𝑋, 𝑌〉(comp‘𝐶)𝑋)𝐹) = ( 1 ‘𝑋) ↔ (((𝑋𝑁𝑌)‘𝐹) ⚬ 𝐹) = ( 1 ‘𝑋))) |
29 | 23, 28 | bitrd 278 | . 2 ⊢ (𝜑 → (𝐹(𝑋(Sect‘𝐶)𝑌)((𝑋𝑁𝑌)‘𝐹) ↔ (((𝑋𝑁𝑌)‘𝐹) ⚬ 𝐹) = ( 1 ‘𝑋))) |
30 | 13, 29 | mpbid 231 | 1 ⊢ (𝜑 → (((𝑋𝑁𝑌)‘𝐹) ⚬ 𝐹) = ( 1 ‘𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 〈cop 4567 class class class wbr 5074 ‘cfv 6433 (class class class)co 7275 Basecbs 16912 Hom chom 16973 compcco 16974 Catccat 17373 Idccid 17374 Sectcsect 17456 Invcinv 17457 Isociso 17458 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-1st 7831 df-2nd 7832 df-cat 17377 df-cid 17378 df-sect 17459 df-inv 17460 df-iso 17461 |
This theorem is referenced by: rcaninv 17506 |
Copyright terms: Public domain | W3C validator |