MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fuciso Structured version   Visualization version   GIF version

Theorem fuciso 17924
Description: A natural transformation is an isomorphism of functors iff all its components are isomorphisms. (Contributed by Mario Carneiro, 28-Jan-2017.)
Hypotheses
Ref Expression
fuciso.q 𝑄 = (𝐢 FuncCat 𝐷)
fuciso.b 𝐡 = (Baseβ€˜πΆ)
fuciso.n 𝑁 = (𝐢 Nat 𝐷)
fuciso.f (πœ‘ β†’ 𝐹 ∈ (𝐢 Func 𝐷))
fuciso.g (πœ‘ β†’ 𝐺 ∈ (𝐢 Func 𝐷))
fuciso.i 𝐼 = (Isoβ€˜π‘„)
fuciso.j 𝐽 = (Isoβ€˜π·)
Assertion
Ref Expression
fuciso (πœ‘ β†’ (𝐴 ∈ (𝐹𝐼𝐺) ↔ (𝐴 ∈ (𝐹𝑁𝐺) ∧ βˆ€π‘₯ ∈ 𝐡 (π΄β€˜π‘₯) ∈ (((1st β€˜πΉ)β€˜π‘₯)𝐽((1st β€˜πΊ)β€˜π‘₯)))))
Distinct variable groups:   π‘₯,𝐴   π‘₯,𝐡   π‘₯,𝐢   π‘₯,𝐷   π‘₯,𝐼   π‘₯,𝐹   π‘₯,𝐺   π‘₯,𝐽   π‘₯,𝑁   πœ‘,π‘₯   π‘₯,𝑄

Proof of Theorem fuciso
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 fuciso.q . . . . . 6 𝑄 = (𝐢 FuncCat 𝐷)
21fucbas 17908 . . . . 5 (𝐢 Func 𝐷) = (Baseβ€˜π‘„)
3 fuciso.n . . . . . 6 𝑁 = (𝐢 Nat 𝐷)
41, 3fuchom 17909 . . . . 5 𝑁 = (Hom β€˜π‘„)
5 fuciso.i . . . . 5 𝐼 = (Isoβ€˜π‘„)
6 fuciso.f . . . . . . . 8 (πœ‘ β†’ 𝐹 ∈ (𝐢 Func 𝐷))
7 funcrcl 17809 . . . . . . . 8 (𝐹 ∈ (𝐢 Func 𝐷) β†’ (𝐢 ∈ Cat ∧ 𝐷 ∈ Cat))
86, 7syl 17 . . . . . . 7 (πœ‘ β†’ (𝐢 ∈ Cat ∧ 𝐷 ∈ Cat))
98simpld 495 . . . . . 6 (πœ‘ β†’ 𝐢 ∈ Cat)
108simprd 496 . . . . . 6 (πœ‘ β†’ 𝐷 ∈ Cat)
111, 9, 10fuccat 17919 . . . . 5 (πœ‘ β†’ 𝑄 ∈ Cat)
12 fuciso.g . . . . 5 (πœ‘ β†’ 𝐺 ∈ (𝐢 Func 𝐷))
132, 4, 5, 11, 6, 12isohom 17719 . . . 4 (πœ‘ β†’ (𝐹𝐼𝐺) βŠ† (𝐹𝑁𝐺))
1413sselda 3981 . . 3 ((πœ‘ ∧ 𝐴 ∈ (𝐹𝐼𝐺)) β†’ 𝐴 ∈ (𝐹𝑁𝐺))
15 eqid 2732 . . . . 5 (Baseβ€˜π·) = (Baseβ€˜π·)
16 eqid 2732 . . . . 5 (Invβ€˜π·) = (Invβ€˜π·)
1710ad2antrr 724 . . . . 5 (((πœ‘ ∧ 𝐴 ∈ (𝐹𝐼𝐺)) ∧ π‘₯ ∈ 𝐡) β†’ 𝐷 ∈ Cat)
18 fuciso.b . . . . . . . 8 𝐡 = (Baseβ€˜πΆ)
19 relfunc 17808 . . . . . . . . 9 Rel (𝐢 Func 𝐷)
20 1st2ndbr 8024 . . . . . . . . 9 ((Rel (𝐢 Func 𝐷) ∧ 𝐹 ∈ (𝐢 Func 𝐷)) β†’ (1st β€˜πΉ)(𝐢 Func 𝐷)(2nd β€˜πΉ))
2119, 6, 20sylancr 587 . . . . . . . 8 (πœ‘ β†’ (1st β€˜πΉ)(𝐢 Func 𝐷)(2nd β€˜πΉ))
2218, 15, 21funcf1 17812 . . . . . . 7 (πœ‘ β†’ (1st β€˜πΉ):𝐡⟢(Baseβ€˜π·))
2322adantr 481 . . . . . 6 ((πœ‘ ∧ 𝐴 ∈ (𝐹𝐼𝐺)) β†’ (1st β€˜πΉ):𝐡⟢(Baseβ€˜π·))
2423ffvelcdmda 7083 . . . . 5 (((πœ‘ ∧ 𝐴 ∈ (𝐹𝐼𝐺)) ∧ π‘₯ ∈ 𝐡) β†’ ((1st β€˜πΉ)β€˜π‘₯) ∈ (Baseβ€˜π·))
25 1st2ndbr 8024 . . . . . . . . 9 ((Rel (𝐢 Func 𝐷) ∧ 𝐺 ∈ (𝐢 Func 𝐷)) β†’ (1st β€˜πΊ)(𝐢 Func 𝐷)(2nd β€˜πΊ))
2619, 12, 25sylancr 587 . . . . . . . 8 (πœ‘ β†’ (1st β€˜πΊ)(𝐢 Func 𝐷)(2nd β€˜πΊ))
2718, 15, 26funcf1 17812 . . . . . . 7 (πœ‘ β†’ (1st β€˜πΊ):𝐡⟢(Baseβ€˜π·))
2827adantr 481 . . . . . 6 ((πœ‘ ∧ 𝐴 ∈ (𝐹𝐼𝐺)) β†’ (1st β€˜πΊ):𝐡⟢(Baseβ€˜π·))
2928ffvelcdmda 7083 . . . . 5 (((πœ‘ ∧ 𝐴 ∈ (𝐹𝐼𝐺)) ∧ π‘₯ ∈ 𝐡) β†’ ((1st β€˜πΊ)β€˜π‘₯) ∈ (Baseβ€˜π·))
30 fuciso.j . . . . 5 𝐽 = (Isoβ€˜π·)
31 eqid 2732 . . . . . . . . . . . 12 (Invβ€˜π‘„) = (Invβ€˜π‘„)
322, 31, 11, 6, 12, 5isoval 17708 . . . . . . . . . . 11 (πœ‘ β†’ (𝐹𝐼𝐺) = dom (𝐹(Invβ€˜π‘„)𝐺))
3332eleq2d 2819 . . . . . . . . . 10 (πœ‘ β†’ (𝐴 ∈ (𝐹𝐼𝐺) ↔ 𝐴 ∈ dom (𝐹(Invβ€˜π‘„)𝐺)))
342, 31, 11, 6, 12invfun 17707 . . . . . . . . . . 11 (πœ‘ β†’ Fun (𝐹(Invβ€˜π‘„)𝐺))
35 funfvbrb 7049 . . . . . . . . . . 11 (Fun (𝐹(Invβ€˜π‘„)𝐺) β†’ (𝐴 ∈ dom (𝐹(Invβ€˜π‘„)𝐺) ↔ 𝐴(𝐹(Invβ€˜π‘„)𝐺)((𝐹(Invβ€˜π‘„)𝐺)β€˜π΄)))
3634, 35syl 17 . . . . . . . . . 10 (πœ‘ β†’ (𝐴 ∈ dom (𝐹(Invβ€˜π‘„)𝐺) ↔ 𝐴(𝐹(Invβ€˜π‘„)𝐺)((𝐹(Invβ€˜π‘„)𝐺)β€˜π΄)))
3733, 36bitrd 278 . . . . . . . . 9 (πœ‘ β†’ (𝐴 ∈ (𝐹𝐼𝐺) ↔ 𝐴(𝐹(Invβ€˜π‘„)𝐺)((𝐹(Invβ€˜π‘„)𝐺)β€˜π΄)))
3837biimpa 477 . . . . . . . 8 ((πœ‘ ∧ 𝐴 ∈ (𝐹𝐼𝐺)) β†’ 𝐴(𝐹(Invβ€˜π‘„)𝐺)((𝐹(Invβ€˜π‘„)𝐺)β€˜π΄))
391, 18, 3, 6, 12, 31, 16fucinv 17922 . . . . . . . . 9 (πœ‘ β†’ (𝐴(𝐹(Invβ€˜π‘„)𝐺)((𝐹(Invβ€˜π‘„)𝐺)β€˜π΄) ↔ (𝐴 ∈ (𝐹𝑁𝐺) ∧ ((𝐹(Invβ€˜π‘„)𝐺)β€˜π΄) ∈ (𝐺𝑁𝐹) ∧ βˆ€π‘₯ ∈ 𝐡 (π΄β€˜π‘₯)(((1st β€˜πΉ)β€˜π‘₯)(Invβ€˜π·)((1st β€˜πΊ)β€˜π‘₯))(((𝐹(Invβ€˜π‘„)𝐺)β€˜π΄)β€˜π‘₯))))
4039adantr 481 . . . . . . . 8 ((πœ‘ ∧ 𝐴 ∈ (𝐹𝐼𝐺)) β†’ (𝐴(𝐹(Invβ€˜π‘„)𝐺)((𝐹(Invβ€˜π‘„)𝐺)β€˜π΄) ↔ (𝐴 ∈ (𝐹𝑁𝐺) ∧ ((𝐹(Invβ€˜π‘„)𝐺)β€˜π΄) ∈ (𝐺𝑁𝐹) ∧ βˆ€π‘₯ ∈ 𝐡 (π΄β€˜π‘₯)(((1st β€˜πΉ)β€˜π‘₯)(Invβ€˜π·)((1st β€˜πΊ)β€˜π‘₯))(((𝐹(Invβ€˜π‘„)𝐺)β€˜π΄)β€˜π‘₯))))
4138, 40mpbid 231 . . . . . . 7 ((πœ‘ ∧ 𝐴 ∈ (𝐹𝐼𝐺)) β†’ (𝐴 ∈ (𝐹𝑁𝐺) ∧ ((𝐹(Invβ€˜π‘„)𝐺)β€˜π΄) ∈ (𝐺𝑁𝐹) ∧ βˆ€π‘₯ ∈ 𝐡 (π΄β€˜π‘₯)(((1st β€˜πΉ)β€˜π‘₯)(Invβ€˜π·)((1st β€˜πΊ)β€˜π‘₯))(((𝐹(Invβ€˜π‘„)𝐺)β€˜π΄)β€˜π‘₯)))
4241simp3d 1144 . . . . . 6 ((πœ‘ ∧ 𝐴 ∈ (𝐹𝐼𝐺)) β†’ βˆ€π‘₯ ∈ 𝐡 (π΄β€˜π‘₯)(((1st β€˜πΉ)β€˜π‘₯)(Invβ€˜π·)((1st β€˜πΊ)β€˜π‘₯))(((𝐹(Invβ€˜π‘„)𝐺)β€˜π΄)β€˜π‘₯))
4342r19.21bi 3248 . . . . 5 (((πœ‘ ∧ 𝐴 ∈ (𝐹𝐼𝐺)) ∧ π‘₯ ∈ 𝐡) β†’ (π΄β€˜π‘₯)(((1st β€˜πΉ)β€˜π‘₯)(Invβ€˜π·)((1st β€˜πΊ)β€˜π‘₯))(((𝐹(Invβ€˜π‘„)𝐺)β€˜π΄)β€˜π‘₯))
4415, 16, 17, 24, 29, 30, 43inviso1 17709 . . . 4 (((πœ‘ ∧ 𝐴 ∈ (𝐹𝐼𝐺)) ∧ π‘₯ ∈ 𝐡) β†’ (π΄β€˜π‘₯) ∈ (((1st β€˜πΉ)β€˜π‘₯)𝐽((1st β€˜πΊ)β€˜π‘₯)))
4544ralrimiva 3146 . . 3 ((πœ‘ ∧ 𝐴 ∈ (𝐹𝐼𝐺)) β†’ βˆ€π‘₯ ∈ 𝐡 (π΄β€˜π‘₯) ∈ (((1st β€˜πΉ)β€˜π‘₯)𝐽((1st β€˜πΊ)β€˜π‘₯)))
4614, 45jca 512 . 2 ((πœ‘ ∧ 𝐴 ∈ (𝐹𝐼𝐺)) β†’ (𝐴 ∈ (𝐹𝑁𝐺) ∧ βˆ€π‘₯ ∈ 𝐡 (π΄β€˜π‘₯) ∈ (((1st β€˜πΉ)β€˜π‘₯)𝐽((1st β€˜πΊ)β€˜π‘₯))))
4711adantr 481 . . 3 ((πœ‘ ∧ (𝐴 ∈ (𝐹𝑁𝐺) ∧ βˆ€π‘₯ ∈ 𝐡 (π΄β€˜π‘₯) ∈ (((1st β€˜πΉ)β€˜π‘₯)𝐽((1st β€˜πΊ)β€˜π‘₯)))) β†’ 𝑄 ∈ Cat)
486adantr 481 . . 3 ((πœ‘ ∧ (𝐴 ∈ (𝐹𝑁𝐺) ∧ βˆ€π‘₯ ∈ 𝐡 (π΄β€˜π‘₯) ∈ (((1st β€˜πΉ)β€˜π‘₯)𝐽((1st β€˜πΊ)β€˜π‘₯)))) β†’ 𝐹 ∈ (𝐢 Func 𝐷))
4912adantr 481 . . 3 ((πœ‘ ∧ (𝐴 ∈ (𝐹𝑁𝐺) ∧ βˆ€π‘₯ ∈ 𝐡 (π΄β€˜π‘₯) ∈ (((1st β€˜πΉ)β€˜π‘₯)𝐽((1st β€˜πΊ)β€˜π‘₯)))) β†’ 𝐺 ∈ (𝐢 Func 𝐷))
50 simprl 769 . . . 4 ((πœ‘ ∧ (𝐴 ∈ (𝐹𝑁𝐺) ∧ βˆ€π‘₯ ∈ 𝐡 (π΄β€˜π‘₯) ∈ (((1st β€˜πΉ)β€˜π‘₯)𝐽((1st β€˜πΊ)β€˜π‘₯)))) β†’ 𝐴 ∈ (𝐹𝑁𝐺))
5110ad2antrr 724 . . . . 5 (((πœ‘ ∧ (𝐴 ∈ (𝐹𝑁𝐺) ∧ βˆ€π‘₯ ∈ 𝐡 (π΄β€˜π‘₯) ∈ (((1st β€˜πΉ)β€˜π‘₯)𝐽((1st β€˜πΊ)β€˜π‘₯)))) ∧ 𝑦 ∈ 𝐡) β†’ 𝐷 ∈ Cat)
5222adantr 481 . . . . . 6 ((πœ‘ ∧ (𝐴 ∈ (𝐹𝑁𝐺) ∧ βˆ€π‘₯ ∈ 𝐡 (π΄β€˜π‘₯) ∈ (((1st β€˜πΉ)β€˜π‘₯)𝐽((1st β€˜πΊ)β€˜π‘₯)))) β†’ (1st β€˜πΉ):𝐡⟢(Baseβ€˜π·))
5352ffvelcdmda 7083 . . . . 5 (((πœ‘ ∧ (𝐴 ∈ (𝐹𝑁𝐺) ∧ βˆ€π‘₯ ∈ 𝐡 (π΄β€˜π‘₯) ∈ (((1st β€˜πΉ)β€˜π‘₯)𝐽((1st β€˜πΊ)β€˜π‘₯)))) ∧ 𝑦 ∈ 𝐡) β†’ ((1st β€˜πΉ)β€˜π‘¦) ∈ (Baseβ€˜π·))
5427adantr 481 . . . . . 6 ((πœ‘ ∧ (𝐴 ∈ (𝐹𝑁𝐺) ∧ βˆ€π‘₯ ∈ 𝐡 (π΄β€˜π‘₯) ∈ (((1st β€˜πΉ)β€˜π‘₯)𝐽((1st β€˜πΊ)β€˜π‘₯)))) β†’ (1st β€˜πΊ):𝐡⟢(Baseβ€˜π·))
5554ffvelcdmda 7083 . . . . 5 (((πœ‘ ∧ (𝐴 ∈ (𝐹𝑁𝐺) ∧ βˆ€π‘₯ ∈ 𝐡 (π΄β€˜π‘₯) ∈ (((1st β€˜πΉ)β€˜π‘₯)𝐽((1st β€˜πΊ)β€˜π‘₯)))) ∧ 𝑦 ∈ 𝐡) β†’ ((1st β€˜πΊ)β€˜π‘¦) ∈ (Baseβ€˜π·))
56 simprr 771 . . . . . 6 ((πœ‘ ∧ (𝐴 ∈ (𝐹𝑁𝐺) ∧ βˆ€π‘₯ ∈ 𝐡 (π΄β€˜π‘₯) ∈ (((1st β€˜πΉ)β€˜π‘₯)𝐽((1st β€˜πΊ)β€˜π‘₯)))) β†’ βˆ€π‘₯ ∈ 𝐡 (π΄β€˜π‘₯) ∈ (((1st β€˜πΉ)β€˜π‘₯)𝐽((1st β€˜πΊ)β€˜π‘₯)))
57 fveq2 6888 . . . . . . . 8 (π‘₯ = 𝑦 β†’ (π΄β€˜π‘₯) = (π΄β€˜π‘¦))
58 fveq2 6888 . . . . . . . . 9 (π‘₯ = 𝑦 β†’ ((1st β€˜πΉ)β€˜π‘₯) = ((1st β€˜πΉ)β€˜π‘¦))
59 fveq2 6888 . . . . . . . . 9 (π‘₯ = 𝑦 β†’ ((1st β€˜πΊ)β€˜π‘₯) = ((1st β€˜πΊ)β€˜π‘¦))
6058, 59oveq12d 7423 . . . . . . . 8 (π‘₯ = 𝑦 β†’ (((1st β€˜πΉ)β€˜π‘₯)𝐽((1st β€˜πΊ)β€˜π‘₯)) = (((1st β€˜πΉ)β€˜π‘¦)𝐽((1st β€˜πΊ)β€˜π‘¦)))
6157, 60eleq12d 2827 . . . . . . 7 (π‘₯ = 𝑦 β†’ ((π΄β€˜π‘₯) ∈ (((1st β€˜πΉ)β€˜π‘₯)𝐽((1st β€˜πΊ)β€˜π‘₯)) ↔ (π΄β€˜π‘¦) ∈ (((1st β€˜πΉ)β€˜π‘¦)𝐽((1st β€˜πΊ)β€˜π‘¦))))
6261rspccva 3611 . . . . . 6 ((βˆ€π‘₯ ∈ 𝐡 (π΄β€˜π‘₯) ∈ (((1st β€˜πΉ)β€˜π‘₯)𝐽((1st β€˜πΊ)β€˜π‘₯)) ∧ 𝑦 ∈ 𝐡) β†’ (π΄β€˜π‘¦) ∈ (((1st β€˜πΉ)β€˜π‘¦)𝐽((1st β€˜πΊ)β€˜π‘¦)))
6356, 62sylan 580 . . . . 5 (((πœ‘ ∧ (𝐴 ∈ (𝐹𝑁𝐺) ∧ βˆ€π‘₯ ∈ 𝐡 (π΄β€˜π‘₯) ∈ (((1st β€˜πΉ)β€˜π‘₯)𝐽((1st β€˜πΊ)β€˜π‘₯)))) ∧ 𝑦 ∈ 𝐡) β†’ (π΄β€˜π‘¦) ∈ (((1st β€˜πΉ)β€˜π‘¦)𝐽((1st β€˜πΊ)β€˜π‘¦)))
6415, 30, 16, 51, 53, 55, 63invisoinvr 17734 . . . 4 (((πœ‘ ∧ (𝐴 ∈ (𝐹𝑁𝐺) ∧ βˆ€π‘₯ ∈ 𝐡 (π΄β€˜π‘₯) ∈ (((1st β€˜πΉ)β€˜π‘₯)𝐽((1st β€˜πΊ)β€˜π‘₯)))) ∧ 𝑦 ∈ 𝐡) β†’ (π΄β€˜π‘¦)(((1st β€˜πΉ)β€˜π‘¦)(Invβ€˜π·)((1st β€˜πΊ)β€˜π‘¦))((((1st β€˜πΉ)β€˜π‘¦)(Invβ€˜π·)((1st β€˜πΊ)β€˜π‘¦))β€˜(π΄β€˜π‘¦)))
651, 18, 3, 48, 49, 31, 16, 50, 64invfuc 17923 . . 3 ((πœ‘ ∧ (𝐴 ∈ (𝐹𝑁𝐺) ∧ βˆ€π‘₯ ∈ 𝐡 (π΄β€˜π‘₯) ∈ (((1st β€˜πΉ)β€˜π‘₯)𝐽((1st β€˜πΊ)β€˜π‘₯)))) β†’ 𝐴(𝐹(Invβ€˜π‘„)𝐺)(𝑦 ∈ 𝐡 ↦ ((((1st β€˜πΉ)β€˜π‘¦)(Invβ€˜π·)((1st β€˜πΊ)β€˜π‘¦))β€˜(π΄β€˜π‘¦))))
662, 31, 47, 48, 49, 5, 65inviso1 17709 . 2 ((πœ‘ ∧ (𝐴 ∈ (𝐹𝑁𝐺) ∧ βˆ€π‘₯ ∈ 𝐡 (π΄β€˜π‘₯) ∈ (((1st β€˜πΉ)β€˜π‘₯)𝐽((1st β€˜πΊ)β€˜π‘₯)))) β†’ 𝐴 ∈ (𝐹𝐼𝐺))
6746, 66impbida 799 1 (πœ‘ β†’ (𝐴 ∈ (𝐹𝐼𝐺) ↔ (𝐴 ∈ (𝐹𝑁𝐺) ∧ βˆ€π‘₯ ∈ 𝐡 (π΄β€˜π‘₯) ∈ (((1st β€˜πΉ)β€˜π‘₯)𝐽((1st β€˜πΊ)β€˜π‘₯)))))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 396   ∧ w3a 1087   = wceq 1541   ∈ wcel 2106  βˆ€wral 3061   class class class wbr 5147   ↦ cmpt 5230  dom cdm 5675  Rel wrel 5680  Fun wfun 6534  βŸΆwf 6536  β€˜cfv 6540  (class class class)co 7405  1st c1st 7969  2nd c2nd 7970  Basecbs 17140  Catccat 17604  Invcinv 17688  Isociso 17689   Func cfunc 17800   Nat cnat 17888   FuncCat cfuc 17889
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-tp 4632  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7852  df-1st 7971  df-2nd 7972  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-1o 8462  df-er 8699  df-map 8818  df-ixp 8888  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-nn 12209  df-2 12271  df-3 12272  df-4 12273  df-5 12274  df-6 12275  df-7 12276  df-8 12277  df-9 12278  df-n0 12469  df-z 12555  df-dec 12674  df-uz 12819  df-fz 13481  df-struct 17076  df-slot 17111  df-ndx 17123  df-base 17141  df-hom 17217  df-cco 17218  df-cat 17608  df-cid 17609  df-sect 17690  df-inv 17691  df-iso 17692  df-func 17804  df-nat 17890  df-fuc 17891
This theorem is referenced by:  yonffthlem  18231
  Copyright terms: Public domain W3C validator