| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | fuciso.q | . . . . . 6
⊢ 𝑄 = (𝐶 FuncCat 𝐷) | 
| 2 | 1 | fucbas 18009 | . . . . 5
⊢ (𝐶 Func 𝐷) = (Base‘𝑄) | 
| 3 |  | fuciso.n | . . . . . 6
⊢ 𝑁 = (𝐶 Nat 𝐷) | 
| 4 | 1, 3 | fuchom 18010 | . . . . 5
⊢ 𝑁 = (Hom ‘𝑄) | 
| 5 |  | fuciso.i | . . . . 5
⊢ 𝐼 = (Iso‘𝑄) | 
| 6 |  | fuciso.f | . . . . . . . 8
⊢ (𝜑 → 𝐹 ∈ (𝐶 Func 𝐷)) | 
| 7 |  | funcrcl 17909 | . . . . . . . 8
⊢ (𝐹 ∈ (𝐶 Func 𝐷) → (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat)) | 
| 8 | 6, 7 | syl 17 | . . . . . . 7
⊢ (𝜑 → (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat)) | 
| 9 | 8 | simpld 494 | . . . . . 6
⊢ (𝜑 → 𝐶 ∈ Cat) | 
| 10 | 8 | simprd 495 | . . . . . 6
⊢ (𝜑 → 𝐷 ∈ Cat) | 
| 11 | 1, 9, 10 | fuccat 18019 | . . . . 5
⊢ (𝜑 → 𝑄 ∈ Cat) | 
| 12 |  | fuciso.g | . . . . 5
⊢ (𝜑 → 𝐺 ∈ (𝐶 Func 𝐷)) | 
| 13 | 2, 4, 5, 11, 6, 12 | isohom 17821 | . . . 4
⊢ (𝜑 → (𝐹𝐼𝐺) ⊆ (𝐹𝑁𝐺)) | 
| 14 | 13 | sselda 3982 | . . 3
⊢ ((𝜑 ∧ 𝐴 ∈ (𝐹𝐼𝐺)) → 𝐴 ∈ (𝐹𝑁𝐺)) | 
| 15 |  | eqid 2736 | . . . . 5
⊢
(Base‘𝐷) =
(Base‘𝐷) | 
| 16 |  | eqid 2736 | . . . . 5
⊢
(Inv‘𝐷) =
(Inv‘𝐷) | 
| 17 | 10 | ad2antrr 726 | . . . . 5
⊢ (((𝜑 ∧ 𝐴 ∈ (𝐹𝐼𝐺)) ∧ 𝑥 ∈ 𝐵) → 𝐷 ∈ Cat) | 
| 18 |  | fuciso.b | . . . . . . . 8
⊢ 𝐵 = (Base‘𝐶) | 
| 19 |  | relfunc 17908 | . . . . . . . . 9
⊢ Rel
(𝐶 Func 𝐷) | 
| 20 |  | 1st2ndbr 8068 | . . . . . . . . 9
⊢ ((Rel
(𝐶 Func 𝐷) ∧ 𝐹 ∈ (𝐶 Func 𝐷)) → (1st ‘𝐹)(𝐶 Func 𝐷)(2nd ‘𝐹)) | 
| 21 | 19, 6, 20 | sylancr 587 | . . . . . . . 8
⊢ (𝜑 → (1st
‘𝐹)(𝐶 Func 𝐷)(2nd ‘𝐹)) | 
| 22 | 18, 15, 21 | funcf1 17912 | . . . . . . 7
⊢ (𝜑 → (1st
‘𝐹):𝐵⟶(Base‘𝐷)) | 
| 23 | 22 | adantr 480 | . . . . . 6
⊢ ((𝜑 ∧ 𝐴 ∈ (𝐹𝐼𝐺)) → (1st ‘𝐹):𝐵⟶(Base‘𝐷)) | 
| 24 | 23 | ffvelcdmda 7103 | . . . . 5
⊢ (((𝜑 ∧ 𝐴 ∈ (𝐹𝐼𝐺)) ∧ 𝑥 ∈ 𝐵) → ((1st ‘𝐹)‘𝑥) ∈ (Base‘𝐷)) | 
| 25 |  | 1st2ndbr 8068 | . . . . . . . . 9
⊢ ((Rel
(𝐶 Func 𝐷) ∧ 𝐺 ∈ (𝐶 Func 𝐷)) → (1st ‘𝐺)(𝐶 Func 𝐷)(2nd ‘𝐺)) | 
| 26 | 19, 12, 25 | sylancr 587 | . . . . . . . 8
⊢ (𝜑 → (1st
‘𝐺)(𝐶 Func 𝐷)(2nd ‘𝐺)) | 
| 27 | 18, 15, 26 | funcf1 17912 | . . . . . . 7
⊢ (𝜑 → (1st
‘𝐺):𝐵⟶(Base‘𝐷)) | 
| 28 | 27 | adantr 480 | . . . . . 6
⊢ ((𝜑 ∧ 𝐴 ∈ (𝐹𝐼𝐺)) → (1st ‘𝐺):𝐵⟶(Base‘𝐷)) | 
| 29 | 28 | ffvelcdmda 7103 | . . . . 5
⊢ (((𝜑 ∧ 𝐴 ∈ (𝐹𝐼𝐺)) ∧ 𝑥 ∈ 𝐵) → ((1st ‘𝐺)‘𝑥) ∈ (Base‘𝐷)) | 
| 30 |  | fuciso.j | . . . . 5
⊢ 𝐽 = (Iso‘𝐷) | 
| 31 |  | eqid 2736 | . . . . . . . . . . . 12
⊢
(Inv‘𝑄) =
(Inv‘𝑄) | 
| 32 | 2, 31, 11, 6, 12, 5 | isoval 17810 | . . . . . . . . . . 11
⊢ (𝜑 → (𝐹𝐼𝐺) = dom (𝐹(Inv‘𝑄)𝐺)) | 
| 33 | 32 | eleq2d 2826 | . . . . . . . . . 10
⊢ (𝜑 → (𝐴 ∈ (𝐹𝐼𝐺) ↔ 𝐴 ∈ dom (𝐹(Inv‘𝑄)𝐺))) | 
| 34 | 2, 31, 11, 6, 12 | invfun 17809 | . . . . . . . . . . 11
⊢ (𝜑 → Fun (𝐹(Inv‘𝑄)𝐺)) | 
| 35 |  | funfvbrb 7070 | . . . . . . . . . . 11
⊢ (Fun
(𝐹(Inv‘𝑄)𝐺) → (𝐴 ∈ dom (𝐹(Inv‘𝑄)𝐺) ↔ 𝐴(𝐹(Inv‘𝑄)𝐺)((𝐹(Inv‘𝑄)𝐺)‘𝐴))) | 
| 36 | 34, 35 | syl 17 | . . . . . . . . . 10
⊢ (𝜑 → (𝐴 ∈ dom (𝐹(Inv‘𝑄)𝐺) ↔ 𝐴(𝐹(Inv‘𝑄)𝐺)((𝐹(Inv‘𝑄)𝐺)‘𝐴))) | 
| 37 | 33, 36 | bitrd 279 | . . . . . . . . 9
⊢ (𝜑 → (𝐴 ∈ (𝐹𝐼𝐺) ↔ 𝐴(𝐹(Inv‘𝑄)𝐺)((𝐹(Inv‘𝑄)𝐺)‘𝐴))) | 
| 38 | 37 | biimpa 476 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝐴 ∈ (𝐹𝐼𝐺)) → 𝐴(𝐹(Inv‘𝑄)𝐺)((𝐹(Inv‘𝑄)𝐺)‘𝐴)) | 
| 39 | 1, 18, 3, 6, 12, 31, 16 | fucinv 18022 | . . . . . . . . 9
⊢ (𝜑 → (𝐴(𝐹(Inv‘𝑄)𝐺)((𝐹(Inv‘𝑄)𝐺)‘𝐴) ↔ (𝐴 ∈ (𝐹𝑁𝐺) ∧ ((𝐹(Inv‘𝑄)𝐺)‘𝐴) ∈ (𝐺𝑁𝐹) ∧ ∀𝑥 ∈ 𝐵 (𝐴‘𝑥)(((1st ‘𝐹)‘𝑥)(Inv‘𝐷)((1st ‘𝐺)‘𝑥))(((𝐹(Inv‘𝑄)𝐺)‘𝐴)‘𝑥)))) | 
| 40 | 39 | adantr 480 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝐴 ∈ (𝐹𝐼𝐺)) → (𝐴(𝐹(Inv‘𝑄)𝐺)((𝐹(Inv‘𝑄)𝐺)‘𝐴) ↔ (𝐴 ∈ (𝐹𝑁𝐺) ∧ ((𝐹(Inv‘𝑄)𝐺)‘𝐴) ∈ (𝐺𝑁𝐹) ∧ ∀𝑥 ∈ 𝐵 (𝐴‘𝑥)(((1st ‘𝐹)‘𝑥)(Inv‘𝐷)((1st ‘𝐺)‘𝑥))(((𝐹(Inv‘𝑄)𝐺)‘𝐴)‘𝑥)))) | 
| 41 | 38, 40 | mpbid 232 | . . . . . . 7
⊢ ((𝜑 ∧ 𝐴 ∈ (𝐹𝐼𝐺)) → (𝐴 ∈ (𝐹𝑁𝐺) ∧ ((𝐹(Inv‘𝑄)𝐺)‘𝐴) ∈ (𝐺𝑁𝐹) ∧ ∀𝑥 ∈ 𝐵 (𝐴‘𝑥)(((1st ‘𝐹)‘𝑥)(Inv‘𝐷)((1st ‘𝐺)‘𝑥))(((𝐹(Inv‘𝑄)𝐺)‘𝐴)‘𝑥))) | 
| 42 | 41 | simp3d 1144 | . . . . . 6
⊢ ((𝜑 ∧ 𝐴 ∈ (𝐹𝐼𝐺)) → ∀𝑥 ∈ 𝐵 (𝐴‘𝑥)(((1st ‘𝐹)‘𝑥)(Inv‘𝐷)((1st ‘𝐺)‘𝑥))(((𝐹(Inv‘𝑄)𝐺)‘𝐴)‘𝑥)) | 
| 43 | 42 | r19.21bi 3250 | . . . . 5
⊢ (((𝜑 ∧ 𝐴 ∈ (𝐹𝐼𝐺)) ∧ 𝑥 ∈ 𝐵) → (𝐴‘𝑥)(((1st ‘𝐹)‘𝑥)(Inv‘𝐷)((1st ‘𝐺)‘𝑥))(((𝐹(Inv‘𝑄)𝐺)‘𝐴)‘𝑥)) | 
| 44 | 15, 16, 17, 24, 29, 30, 43 | inviso1 17811 | . . . 4
⊢ (((𝜑 ∧ 𝐴 ∈ (𝐹𝐼𝐺)) ∧ 𝑥 ∈ 𝐵) → (𝐴‘𝑥) ∈ (((1st ‘𝐹)‘𝑥)𝐽((1st ‘𝐺)‘𝑥))) | 
| 45 | 44 | ralrimiva 3145 | . . 3
⊢ ((𝜑 ∧ 𝐴 ∈ (𝐹𝐼𝐺)) → ∀𝑥 ∈ 𝐵 (𝐴‘𝑥) ∈ (((1st ‘𝐹)‘𝑥)𝐽((1st ‘𝐺)‘𝑥))) | 
| 46 | 14, 45 | jca 511 | . 2
⊢ ((𝜑 ∧ 𝐴 ∈ (𝐹𝐼𝐺)) → (𝐴 ∈ (𝐹𝑁𝐺) ∧ ∀𝑥 ∈ 𝐵 (𝐴‘𝑥) ∈ (((1st ‘𝐹)‘𝑥)𝐽((1st ‘𝐺)‘𝑥)))) | 
| 47 | 11 | adantr 480 | . . 3
⊢ ((𝜑 ∧ (𝐴 ∈ (𝐹𝑁𝐺) ∧ ∀𝑥 ∈ 𝐵 (𝐴‘𝑥) ∈ (((1st ‘𝐹)‘𝑥)𝐽((1st ‘𝐺)‘𝑥)))) → 𝑄 ∈ Cat) | 
| 48 | 6 | adantr 480 | . . 3
⊢ ((𝜑 ∧ (𝐴 ∈ (𝐹𝑁𝐺) ∧ ∀𝑥 ∈ 𝐵 (𝐴‘𝑥) ∈ (((1st ‘𝐹)‘𝑥)𝐽((1st ‘𝐺)‘𝑥)))) → 𝐹 ∈ (𝐶 Func 𝐷)) | 
| 49 | 12 | adantr 480 | . . 3
⊢ ((𝜑 ∧ (𝐴 ∈ (𝐹𝑁𝐺) ∧ ∀𝑥 ∈ 𝐵 (𝐴‘𝑥) ∈ (((1st ‘𝐹)‘𝑥)𝐽((1st ‘𝐺)‘𝑥)))) → 𝐺 ∈ (𝐶 Func 𝐷)) | 
| 50 |  | simprl 770 | . . . 4
⊢ ((𝜑 ∧ (𝐴 ∈ (𝐹𝑁𝐺) ∧ ∀𝑥 ∈ 𝐵 (𝐴‘𝑥) ∈ (((1st ‘𝐹)‘𝑥)𝐽((1st ‘𝐺)‘𝑥)))) → 𝐴 ∈ (𝐹𝑁𝐺)) | 
| 51 | 10 | ad2antrr 726 | . . . . 5
⊢ (((𝜑 ∧ (𝐴 ∈ (𝐹𝑁𝐺) ∧ ∀𝑥 ∈ 𝐵 (𝐴‘𝑥) ∈ (((1st ‘𝐹)‘𝑥)𝐽((1st ‘𝐺)‘𝑥)))) ∧ 𝑦 ∈ 𝐵) → 𝐷 ∈ Cat) | 
| 52 | 22 | adantr 480 | . . . . . 6
⊢ ((𝜑 ∧ (𝐴 ∈ (𝐹𝑁𝐺) ∧ ∀𝑥 ∈ 𝐵 (𝐴‘𝑥) ∈ (((1st ‘𝐹)‘𝑥)𝐽((1st ‘𝐺)‘𝑥)))) → (1st ‘𝐹):𝐵⟶(Base‘𝐷)) | 
| 53 | 52 | ffvelcdmda 7103 | . . . . 5
⊢ (((𝜑 ∧ (𝐴 ∈ (𝐹𝑁𝐺) ∧ ∀𝑥 ∈ 𝐵 (𝐴‘𝑥) ∈ (((1st ‘𝐹)‘𝑥)𝐽((1st ‘𝐺)‘𝑥)))) ∧ 𝑦 ∈ 𝐵) → ((1st ‘𝐹)‘𝑦) ∈ (Base‘𝐷)) | 
| 54 | 27 | adantr 480 | . . . . . 6
⊢ ((𝜑 ∧ (𝐴 ∈ (𝐹𝑁𝐺) ∧ ∀𝑥 ∈ 𝐵 (𝐴‘𝑥) ∈ (((1st ‘𝐹)‘𝑥)𝐽((1st ‘𝐺)‘𝑥)))) → (1st ‘𝐺):𝐵⟶(Base‘𝐷)) | 
| 55 | 54 | ffvelcdmda 7103 | . . . . 5
⊢ (((𝜑 ∧ (𝐴 ∈ (𝐹𝑁𝐺) ∧ ∀𝑥 ∈ 𝐵 (𝐴‘𝑥) ∈ (((1st ‘𝐹)‘𝑥)𝐽((1st ‘𝐺)‘𝑥)))) ∧ 𝑦 ∈ 𝐵) → ((1st ‘𝐺)‘𝑦) ∈ (Base‘𝐷)) | 
| 56 |  | simprr 772 | . . . . . 6
⊢ ((𝜑 ∧ (𝐴 ∈ (𝐹𝑁𝐺) ∧ ∀𝑥 ∈ 𝐵 (𝐴‘𝑥) ∈ (((1st ‘𝐹)‘𝑥)𝐽((1st ‘𝐺)‘𝑥)))) → ∀𝑥 ∈ 𝐵 (𝐴‘𝑥) ∈ (((1st ‘𝐹)‘𝑥)𝐽((1st ‘𝐺)‘𝑥))) | 
| 57 |  | fveq2 6905 | . . . . . . . 8
⊢ (𝑥 = 𝑦 → (𝐴‘𝑥) = (𝐴‘𝑦)) | 
| 58 |  | fveq2 6905 | . . . . . . . . 9
⊢ (𝑥 = 𝑦 → ((1st ‘𝐹)‘𝑥) = ((1st ‘𝐹)‘𝑦)) | 
| 59 |  | fveq2 6905 | . . . . . . . . 9
⊢ (𝑥 = 𝑦 → ((1st ‘𝐺)‘𝑥) = ((1st ‘𝐺)‘𝑦)) | 
| 60 | 58, 59 | oveq12d 7450 | . . . . . . . 8
⊢ (𝑥 = 𝑦 → (((1st ‘𝐹)‘𝑥)𝐽((1st ‘𝐺)‘𝑥)) = (((1st ‘𝐹)‘𝑦)𝐽((1st ‘𝐺)‘𝑦))) | 
| 61 | 57, 60 | eleq12d 2834 | . . . . . . 7
⊢ (𝑥 = 𝑦 → ((𝐴‘𝑥) ∈ (((1st ‘𝐹)‘𝑥)𝐽((1st ‘𝐺)‘𝑥)) ↔ (𝐴‘𝑦) ∈ (((1st ‘𝐹)‘𝑦)𝐽((1st ‘𝐺)‘𝑦)))) | 
| 62 | 61 | rspccva 3620 | . . . . . 6
⊢
((∀𝑥 ∈
𝐵 (𝐴‘𝑥) ∈ (((1st ‘𝐹)‘𝑥)𝐽((1st ‘𝐺)‘𝑥)) ∧ 𝑦 ∈ 𝐵) → (𝐴‘𝑦) ∈ (((1st ‘𝐹)‘𝑦)𝐽((1st ‘𝐺)‘𝑦))) | 
| 63 | 56, 62 | sylan 580 | . . . . 5
⊢ (((𝜑 ∧ (𝐴 ∈ (𝐹𝑁𝐺) ∧ ∀𝑥 ∈ 𝐵 (𝐴‘𝑥) ∈ (((1st ‘𝐹)‘𝑥)𝐽((1st ‘𝐺)‘𝑥)))) ∧ 𝑦 ∈ 𝐵) → (𝐴‘𝑦) ∈ (((1st ‘𝐹)‘𝑦)𝐽((1st ‘𝐺)‘𝑦))) | 
| 64 | 15, 30, 16, 51, 53, 55, 63 | invisoinvr 17836 | . . . 4
⊢ (((𝜑 ∧ (𝐴 ∈ (𝐹𝑁𝐺) ∧ ∀𝑥 ∈ 𝐵 (𝐴‘𝑥) ∈ (((1st ‘𝐹)‘𝑥)𝐽((1st ‘𝐺)‘𝑥)))) ∧ 𝑦 ∈ 𝐵) → (𝐴‘𝑦)(((1st ‘𝐹)‘𝑦)(Inv‘𝐷)((1st ‘𝐺)‘𝑦))((((1st ‘𝐹)‘𝑦)(Inv‘𝐷)((1st ‘𝐺)‘𝑦))‘(𝐴‘𝑦))) | 
| 65 | 1, 18, 3, 48, 49, 31, 16, 50, 64 | invfuc 18023 | . . 3
⊢ ((𝜑 ∧ (𝐴 ∈ (𝐹𝑁𝐺) ∧ ∀𝑥 ∈ 𝐵 (𝐴‘𝑥) ∈ (((1st ‘𝐹)‘𝑥)𝐽((1st ‘𝐺)‘𝑥)))) → 𝐴(𝐹(Inv‘𝑄)𝐺)(𝑦 ∈ 𝐵 ↦ ((((1st ‘𝐹)‘𝑦)(Inv‘𝐷)((1st ‘𝐺)‘𝑦))‘(𝐴‘𝑦)))) | 
| 66 | 2, 31, 47, 48, 49, 5, 65 | inviso1 17811 | . 2
⊢ ((𝜑 ∧ (𝐴 ∈ (𝐹𝑁𝐺) ∧ ∀𝑥 ∈ 𝐵 (𝐴‘𝑥) ∈ (((1st ‘𝐹)‘𝑥)𝐽((1st ‘𝐺)‘𝑥)))) → 𝐴 ∈ (𝐹𝐼𝐺)) | 
| 67 | 46, 66 | impbida 800 | 1
⊢ (𝜑 → (𝐴 ∈ (𝐹𝐼𝐺) ↔ (𝐴 ∈ (𝐹𝑁𝐺) ∧ ∀𝑥 ∈ 𝐵 (𝐴‘𝑥) ∈ (((1st ‘𝐹)‘𝑥)𝐽((1st ‘𝐺)‘𝑥))))) |