MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fuciso Structured version   Visualization version   GIF version

Theorem fuciso 17693
Description: A natural transformation is an isomorphism of functors iff all its components are isomorphisms. (Contributed by Mario Carneiro, 28-Jan-2017.)
Hypotheses
Ref Expression
fuciso.q 𝑄 = (𝐶 FuncCat 𝐷)
fuciso.b 𝐵 = (Base‘𝐶)
fuciso.n 𝑁 = (𝐶 Nat 𝐷)
fuciso.f (𝜑𝐹 ∈ (𝐶 Func 𝐷))
fuciso.g (𝜑𝐺 ∈ (𝐶 Func 𝐷))
fuciso.i 𝐼 = (Iso‘𝑄)
fuciso.j 𝐽 = (Iso‘𝐷)
Assertion
Ref Expression
fuciso (𝜑 → (𝐴 ∈ (𝐹𝐼𝐺) ↔ (𝐴 ∈ (𝐹𝑁𝐺) ∧ ∀𝑥𝐵 (𝐴𝑥) ∈ (((1st𝐹)‘𝑥)𝐽((1st𝐺)‘𝑥)))))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶   𝑥,𝐷   𝑥,𝐼   𝑥,𝐹   𝑥,𝐺   𝑥,𝐽   𝑥,𝑁   𝜑,𝑥   𝑥,𝑄

Proof of Theorem fuciso
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 fuciso.q . . . . . 6 𝑄 = (𝐶 FuncCat 𝐷)
21fucbas 17677 . . . . 5 (𝐶 Func 𝐷) = (Base‘𝑄)
3 fuciso.n . . . . . 6 𝑁 = (𝐶 Nat 𝐷)
41, 3fuchom 17678 . . . . 5 𝑁 = (Hom ‘𝑄)
5 fuciso.i . . . . 5 𝐼 = (Iso‘𝑄)
6 fuciso.f . . . . . . . 8 (𝜑𝐹 ∈ (𝐶 Func 𝐷))
7 funcrcl 17578 . . . . . . . 8 (𝐹 ∈ (𝐶 Func 𝐷) → (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat))
86, 7syl 17 . . . . . . 7 (𝜑 → (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat))
98simpld 495 . . . . . 6 (𝜑𝐶 ∈ Cat)
108simprd 496 . . . . . 6 (𝜑𝐷 ∈ Cat)
111, 9, 10fuccat 17688 . . . . 5 (𝜑𝑄 ∈ Cat)
12 fuciso.g . . . . 5 (𝜑𝐺 ∈ (𝐶 Func 𝐷))
132, 4, 5, 11, 6, 12isohom 17488 . . . 4 (𝜑 → (𝐹𝐼𝐺) ⊆ (𝐹𝑁𝐺))
1413sselda 3921 . . 3 ((𝜑𝐴 ∈ (𝐹𝐼𝐺)) → 𝐴 ∈ (𝐹𝑁𝐺))
15 eqid 2738 . . . . 5 (Base‘𝐷) = (Base‘𝐷)
16 eqid 2738 . . . . 5 (Inv‘𝐷) = (Inv‘𝐷)
1710ad2antrr 723 . . . . 5 (((𝜑𝐴 ∈ (𝐹𝐼𝐺)) ∧ 𝑥𝐵) → 𝐷 ∈ Cat)
18 fuciso.b . . . . . . . 8 𝐵 = (Base‘𝐶)
19 relfunc 17577 . . . . . . . . 9 Rel (𝐶 Func 𝐷)
20 1st2ndbr 7883 . . . . . . . . 9 ((Rel (𝐶 Func 𝐷) ∧ 𝐹 ∈ (𝐶 Func 𝐷)) → (1st𝐹)(𝐶 Func 𝐷)(2nd𝐹))
2119, 6, 20sylancr 587 . . . . . . . 8 (𝜑 → (1st𝐹)(𝐶 Func 𝐷)(2nd𝐹))
2218, 15, 21funcf1 17581 . . . . . . 7 (𝜑 → (1st𝐹):𝐵⟶(Base‘𝐷))
2322adantr 481 . . . . . 6 ((𝜑𝐴 ∈ (𝐹𝐼𝐺)) → (1st𝐹):𝐵⟶(Base‘𝐷))
2423ffvelrnda 6961 . . . . 5 (((𝜑𝐴 ∈ (𝐹𝐼𝐺)) ∧ 𝑥𝐵) → ((1st𝐹)‘𝑥) ∈ (Base‘𝐷))
25 1st2ndbr 7883 . . . . . . . . 9 ((Rel (𝐶 Func 𝐷) ∧ 𝐺 ∈ (𝐶 Func 𝐷)) → (1st𝐺)(𝐶 Func 𝐷)(2nd𝐺))
2619, 12, 25sylancr 587 . . . . . . . 8 (𝜑 → (1st𝐺)(𝐶 Func 𝐷)(2nd𝐺))
2718, 15, 26funcf1 17581 . . . . . . 7 (𝜑 → (1st𝐺):𝐵⟶(Base‘𝐷))
2827adantr 481 . . . . . 6 ((𝜑𝐴 ∈ (𝐹𝐼𝐺)) → (1st𝐺):𝐵⟶(Base‘𝐷))
2928ffvelrnda 6961 . . . . 5 (((𝜑𝐴 ∈ (𝐹𝐼𝐺)) ∧ 𝑥𝐵) → ((1st𝐺)‘𝑥) ∈ (Base‘𝐷))
30 fuciso.j . . . . 5 𝐽 = (Iso‘𝐷)
31 eqid 2738 . . . . . . . . . . . 12 (Inv‘𝑄) = (Inv‘𝑄)
322, 31, 11, 6, 12, 5isoval 17477 . . . . . . . . . . 11 (𝜑 → (𝐹𝐼𝐺) = dom (𝐹(Inv‘𝑄)𝐺))
3332eleq2d 2824 . . . . . . . . . 10 (𝜑 → (𝐴 ∈ (𝐹𝐼𝐺) ↔ 𝐴 ∈ dom (𝐹(Inv‘𝑄)𝐺)))
342, 31, 11, 6, 12invfun 17476 . . . . . . . . . . 11 (𝜑 → Fun (𝐹(Inv‘𝑄)𝐺))
35 funfvbrb 6928 . . . . . . . . . . 11 (Fun (𝐹(Inv‘𝑄)𝐺) → (𝐴 ∈ dom (𝐹(Inv‘𝑄)𝐺) ↔ 𝐴(𝐹(Inv‘𝑄)𝐺)((𝐹(Inv‘𝑄)𝐺)‘𝐴)))
3634, 35syl 17 . . . . . . . . . 10 (𝜑 → (𝐴 ∈ dom (𝐹(Inv‘𝑄)𝐺) ↔ 𝐴(𝐹(Inv‘𝑄)𝐺)((𝐹(Inv‘𝑄)𝐺)‘𝐴)))
3733, 36bitrd 278 . . . . . . . . 9 (𝜑 → (𝐴 ∈ (𝐹𝐼𝐺) ↔ 𝐴(𝐹(Inv‘𝑄)𝐺)((𝐹(Inv‘𝑄)𝐺)‘𝐴)))
3837biimpa 477 . . . . . . . 8 ((𝜑𝐴 ∈ (𝐹𝐼𝐺)) → 𝐴(𝐹(Inv‘𝑄)𝐺)((𝐹(Inv‘𝑄)𝐺)‘𝐴))
391, 18, 3, 6, 12, 31, 16fucinv 17691 . . . . . . . . 9 (𝜑 → (𝐴(𝐹(Inv‘𝑄)𝐺)((𝐹(Inv‘𝑄)𝐺)‘𝐴) ↔ (𝐴 ∈ (𝐹𝑁𝐺) ∧ ((𝐹(Inv‘𝑄)𝐺)‘𝐴) ∈ (𝐺𝑁𝐹) ∧ ∀𝑥𝐵 (𝐴𝑥)(((1st𝐹)‘𝑥)(Inv‘𝐷)((1st𝐺)‘𝑥))(((𝐹(Inv‘𝑄)𝐺)‘𝐴)‘𝑥))))
4039adantr 481 . . . . . . . 8 ((𝜑𝐴 ∈ (𝐹𝐼𝐺)) → (𝐴(𝐹(Inv‘𝑄)𝐺)((𝐹(Inv‘𝑄)𝐺)‘𝐴) ↔ (𝐴 ∈ (𝐹𝑁𝐺) ∧ ((𝐹(Inv‘𝑄)𝐺)‘𝐴) ∈ (𝐺𝑁𝐹) ∧ ∀𝑥𝐵 (𝐴𝑥)(((1st𝐹)‘𝑥)(Inv‘𝐷)((1st𝐺)‘𝑥))(((𝐹(Inv‘𝑄)𝐺)‘𝐴)‘𝑥))))
4138, 40mpbid 231 . . . . . . 7 ((𝜑𝐴 ∈ (𝐹𝐼𝐺)) → (𝐴 ∈ (𝐹𝑁𝐺) ∧ ((𝐹(Inv‘𝑄)𝐺)‘𝐴) ∈ (𝐺𝑁𝐹) ∧ ∀𝑥𝐵 (𝐴𝑥)(((1st𝐹)‘𝑥)(Inv‘𝐷)((1st𝐺)‘𝑥))(((𝐹(Inv‘𝑄)𝐺)‘𝐴)‘𝑥)))
4241simp3d 1143 . . . . . 6 ((𝜑𝐴 ∈ (𝐹𝐼𝐺)) → ∀𝑥𝐵 (𝐴𝑥)(((1st𝐹)‘𝑥)(Inv‘𝐷)((1st𝐺)‘𝑥))(((𝐹(Inv‘𝑄)𝐺)‘𝐴)‘𝑥))
4342r19.21bi 3134 . . . . 5 (((𝜑𝐴 ∈ (𝐹𝐼𝐺)) ∧ 𝑥𝐵) → (𝐴𝑥)(((1st𝐹)‘𝑥)(Inv‘𝐷)((1st𝐺)‘𝑥))(((𝐹(Inv‘𝑄)𝐺)‘𝐴)‘𝑥))
4415, 16, 17, 24, 29, 30, 43inviso1 17478 . . . 4 (((𝜑𝐴 ∈ (𝐹𝐼𝐺)) ∧ 𝑥𝐵) → (𝐴𝑥) ∈ (((1st𝐹)‘𝑥)𝐽((1st𝐺)‘𝑥)))
4544ralrimiva 3103 . . 3 ((𝜑𝐴 ∈ (𝐹𝐼𝐺)) → ∀𝑥𝐵 (𝐴𝑥) ∈ (((1st𝐹)‘𝑥)𝐽((1st𝐺)‘𝑥)))
4614, 45jca 512 . 2 ((𝜑𝐴 ∈ (𝐹𝐼𝐺)) → (𝐴 ∈ (𝐹𝑁𝐺) ∧ ∀𝑥𝐵 (𝐴𝑥) ∈ (((1st𝐹)‘𝑥)𝐽((1st𝐺)‘𝑥))))
4711adantr 481 . . 3 ((𝜑 ∧ (𝐴 ∈ (𝐹𝑁𝐺) ∧ ∀𝑥𝐵 (𝐴𝑥) ∈ (((1st𝐹)‘𝑥)𝐽((1st𝐺)‘𝑥)))) → 𝑄 ∈ Cat)
486adantr 481 . . 3 ((𝜑 ∧ (𝐴 ∈ (𝐹𝑁𝐺) ∧ ∀𝑥𝐵 (𝐴𝑥) ∈ (((1st𝐹)‘𝑥)𝐽((1st𝐺)‘𝑥)))) → 𝐹 ∈ (𝐶 Func 𝐷))
4912adantr 481 . . 3 ((𝜑 ∧ (𝐴 ∈ (𝐹𝑁𝐺) ∧ ∀𝑥𝐵 (𝐴𝑥) ∈ (((1st𝐹)‘𝑥)𝐽((1st𝐺)‘𝑥)))) → 𝐺 ∈ (𝐶 Func 𝐷))
50 simprl 768 . . . 4 ((𝜑 ∧ (𝐴 ∈ (𝐹𝑁𝐺) ∧ ∀𝑥𝐵 (𝐴𝑥) ∈ (((1st𝐹)‘𝑥)𝐽((1st𝐺)‘𝑥)))) → 𝐴 ∈ (𝐹𝑁𝐺))
5110ad2antrr 723 . . . . 5 (((𝜑 ∧ (𝐴 ∈ (𝐹𝑁𝐺) ∧ ∀𝑥𝐵 (𝐴𝑥) ∈ (((1st𝐹)‘𝑥)𝐽((1st𝐺)‘𝑥)))) ∧ 𝑦𝐵) → 𝐷 ∈ Cat)
5222adantr 481 . . . . . 6 ((𝜑 ∧ (𝐴 ∈ (𝐹𝑁𝐺) ∧ ∀𝑥𝐵 (𝐴𝑥) ∈ (((1st𝐹)‘𝑥)𝐽((1st𝐺)‘𝑥)))) → (1st𝐹):𝐵⟶(Base‘𝐷))
5352ffvelrnda 6961 . . . . 5 (((𝜑 ∧ (𝐴 ∈ (𝐹𝑁𝐺) ∧ ∀𝑥𝐵 (𝐴𝑥) ∈ (((1st𝐹)‘𝑥)𝐽((1st𝐺)‘𝑥)))) ∧ 𝑦𝐵) → ((1st𝐹)‘𝑦) ∈ (Base‘𝐷))
5427adantr 481 . . . . . 6 ((𝜑 ∧ (𝐴 ∈ (𝐹𝑁𝐺) ∧ ∀𝑥𝐵 (𝐴𝑥) ∈ (((1st𝐹)‘𝑥)𝐽((1st𝐺)‘𝑥)))) → (1st𝐺):𝐵⟶(Base‘𝐷))
5554ffvelrnda 6961 . . . . 5 (((𝜑 ∧ (𝐴 ∈ (𝐹𝑁𝐺) ∧ ∀𝑥𝐵 (𝐴𝑥) ∈ (((1st𝐹)‘𝑥)𝐽((1st𝐺)‘𝑥)))) ∧ 𝑦𝐵) → ((1st𝐺)‘𝑦) ∈ (Base‘𝐷))
56 simprr 770 . . . . . 6 ((𝜑 ∧ (𝐴 ∈ (𝐹𝑁𝐺) ∧ ∀𝑥𝐵 (𝐴𝑥) ∈ (((1st𝐹)‘𝑥)𝐽((1st𝐺)‘𝑥)))) → ∀𝑥𝐵 (𝐴𝑥) ∈ (((1st𝐹)‘𝑥)𝐽((1st𝐺)‘𝑥)))
57 fveq2 6774 . . . . . . . 8 (𝑥 = 𝑦 → (𝐴𝑥) = (𝐴𝑦))
58 fveq2 6774 . . . . . . . . 9 (𝑥 = 𝑦 → ((1st𝐹)‘𝑥) = ((1st𝐹)‘𝑦))
59 fveq2 6774 . . . . . . . . 9 (𝑥 = 𝑦 → ((1st𝐺)‘𝑥) = ((1st𝐺)‘𝑦))
6058, 59oveq12d 7293 . . . . . . . 8 (𝑥 = 𝑦 → (((1st𝐹)‘𝑥)𝐽((1st𝐺)‘𝑥)) = (((1st𝐹)‘𝑦)𝐽((1st𝐺)‘𝑦)))
6157, 60eleq12d 2833 . . . . . . 7 (𝑥 = 𝑦 → ((𝐴𝑥) ∈ (((1st𝐹)‘𝑥)𝐽((1st𝐺)‘𝑥)) ↔ (𝐴𝑦) ∈ (((1st𝐹)‘𝑦)𝐽((1st𝐺)‘𝑦))))
6261rspccva 3560 . . . . . 6 ((∀𝑥𝐵 (𝐴𝑥) ∈ (((1st𝐹)‘𝑥)𝐽((1st𝐺)‘𝑥)) ∧ 𝑦𝐵) → (𝐴𝑦) ∈ (((1st𝐹)‘𝑦)𝐽((1st𝐺)‘𝑦)))
6356, 62sylan 580 . . . . 5 (((𝜑 ∧ (𝐴 ∈ (𝐹𝑁𝐺) ∧ ∀𝑥𝐵 (𝐴𝑥) ∈ (((1st𝐹)‘𝑥)𝐽((1st𝐺)‘𝑥)))) ∧ 𝑦𝐵) → (𝐴𝑦) ∈ (((1st𝐹)‘𝑦)𝐽((1st𝐺)‘𝑦)))
6415, 30, 16, 51, 53, 55, 63invisoinvr 17503 . . . 4 (((𝜑 ∧ (𝐴 ∈ (𝐹𝑁𝐺) ∧ ∀𝑥𝐵 (𝐴𝑥) ∈ (((1st𝐹)‘𝑥)𝐽((1st𝐺)‘𝑥)))) ∧ 𝑦𝐵) → (𝐴𝑦)(((1st𝐹)‘𝑦)(Inv‘𝐷)((1st𝐺)‘𝑦))((((1st𝐹)‘𝑦)(Inv‘𝐷)((1st𝐺)‘𝑦))‘(𝐴𝑦)))
651, 18, 3, 48, 49, 31, 16, 50, 64invfuc 17692 . . 3 ((𝜑 ∧ (𝐴 ∈ (𝐹𝑁𝐺) ∧ ∀𝑥𝐵 (𝐴𝑥) ∈ (((1st𝐹)‘𝑥)𝐽((1st𝐺)‘𝑥)))) → 𝐴(𝐹(Inv‘𝑄)𝐺)(𝑦𝐵 ↦ ((((1st𝐹)‘𝑦)(Inv‘𝐷)((1st𝐺)‘𝑦))‘(𝐴𝑦))))
662, 31, 47, 48, 49, 5, 65inviso1 17478 . 2 ((𝜑 ∧ (𝐴 ∈ (𝐹𝑁𝐺) ∧ ∀𝑥𝐵 (𝐴𝑥) ∈ (((1st𝐹)‘𝑥)𝐽((1st𝐺)‘𝑥)))) → 𝐴 ∈ (𝐹𝐼𝐺))
6746, 66impbida 798 1 (𝜑 → (𝐴 ∈ (𝐹𝐼𝐺) ↔ (𝐴 ∈ (𝐹𝑁𝐺) ∧ ∀𝑥𝐵 (𝐴𝑥) ∈ (((1st𝐹)‘𝑥)𝐽((1st𝐺)‘𝑥)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106  wral 3064   class class class wbr 5074  cmpt 5157  dom cdm 5589  Rel wrel 5594  Fun wfun 6427  wf 6429  cfv 6433  (class class class)co 7275  1st c1st 7829  2nd c2nd 7830  Basecbs 16912  Catccat 17373  Invcinv 17457  Isociso 17458   Func cfunc 17569   Nat cnat 17657   FuncCat cfuc 17658
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-map 8617  df-ixp 8686  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-z 12320  df-dec 12438  df-uz 12583  df-fz 13240  df-struct 16848  df-slot 16883  df-ndx 16895  df-base 16913  df-hom 16986  df-cco 16987  df-cat 17377  df-cid 17378  df-sect 17459  df-inv 17460  df-iso 17461  df-func 17573  df-nat 17659  df-fuc 17660
This theorem is referenced by:  yonffthlem  18000
  Copyright terms: Public domain W3C validator