MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fuciso Structured version   Visualization version   GIF version

Theorem fuciso 17240
Description: A natural transformation is an isomorphism of functors iff all its components are isomorphisms. (Contributed by Mario Carneiro, 28-Jan-2017.)
Hypotheses
Ref Expression
fuciso.q 𝑄 = (𝐶 FuncCat 𝐷)
fuciso.b 𝐵 = (Base‘𝐶)
fuciso.n 𝑁 = (𝐶 Nat 𝐷)
fuciso.f (𝜑𝐹 ∈ (𝐶 Func 𝐷))
fuciso.g (𝜑𝐺 ∈ (𝐶 Func 𝐷))
fuciso.i 𝐼 = (Iso‘𝑄)
fuciso.j 𝐽 = (Iso‘𝐷)
Assertion
Ref Expression
fuciso (𝜑 → (𝐴 ∈ (𝐹𝐼𝐺) ↔ (𝐴 ∈ (𝐹𝑁𝐺) ∧ ∀𝑥𝐵 (𝐴𝑥) ∈ (((1st𝐹)‘𝑥)𝐽((1st𝐺)‘𝑥)))))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶   𝑥,𝐷   𝑥,𝐼   𝑥,𝐹   𝑥,𝐺   𝑥,𝐽   𝑥,𝑁   𝜑,𝑥   𝑥,𝑄

Proof of Theorem fuciso
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 fuciso.q . . . . . 6 𝑄 = (𝐶 FuncCat 𝐷)
21fucbas 17225 . . . . 5 (𝐶 Func 𝐷) = (Base‘𝑄)
3 fuciso.n . . . . . 6 𝑁 = (𝐶 Nat 𝐷)
41, 3fuchom 17226 . . . . 5 𝑁 = (Hom ‘𝑄)
5 fuciso.i . . . . 5 𝐼 = (Iso‘𝑄)
6 fuciso.f . . . . . . . 8 (𝜑𝐹 ∈ (𝐶 Func 𝐷))
7 funcrcl 17128 . . . . . . . 8 (𝐹 ∈ (𝐶 Func 𝐷) → (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat))
86, 7syl 17 . . . . . . 7 (𝜑 → (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat))
98simpld 498 . . . . . 6 (𝜑𝐶 ∈ Cat)
108simprd 499 . . . . . 6 (𝜑𝐷 ∈ Cat)
111, 9, 10fuccat 17235 . . . . 5 (𝜑𝑄 ∈ Cat)
12 fuciso.g . . . . 5 (𝜑𝐺 ∈ (𝐶 Func 𝐷))
132, 4, 5, 11, 6, 12isohom 17041 . . . 4 (𝜑 → (𝐹𝐼𝐺) ⊆ (𝐹𝑁𝐺))
1413sselda 3918 . . 3 ((𝜑𝐴 ∈ (𝐹𝐼𝐺)) → 𝐴 ∈ (𝐹𝑁𝐺))
15 eqid 2801 . . . . 5 (Base‘𝐷) = (Base‘𝐷)
16 eqid 2801 . . . . 5 (Inv‘𝐷) = (Inv‘𝐷)
1710ad2antrr 725 . . . . 5 (((𝜑𝐴 ∈ (𝐹𝐼𝐺)) ∧ 𝑥𝐵) → 𝐷 ∈ Cat)
18 fuciso.b . . . . . . . 8 𝐵 = (Base‘𝐶)
19 relfunc 17127 . . . . . . . . 9 Rel (𝐶 Func 𝐷)
20 1st2ndbr 7727 . . . . . . . . 9 ((Rel (𝐶 Func 𝐷) ∧ 𝐹 ∈ (𝐶 Func 𝐷)) → (1st𝐹)(𝐶 Func 𝐷)(2nd𝐹))
2119, 6, 20sylancr 590 . . . . . . . 8 (𝜑 → (1st𝐹)(𝐶 Func 𝐷)(2nd𝐹))
2218, 15, 21funcf1 17131 . . . . . . 7 (𝜑 → (1st𝐹):𝐵⟶(Base‘𝐷))
2322adantr 484 . . . . . 6 ((𝜑𝐴 ∈ (𝐹𝐼𝐺)) → (1st𝐹):𝐵⟶(Base‘𝐷))
2423ffvelrnda 6832 . . . . 5 (((𝜑𝐴 ∈ (𝐹𝐼𝐺)) ∧ 𝑥𝐵) → ((1st𝐹)‘𝑥) ∈ (Base‘𝐷))
25 1st2ndbr 7727 . . . . . . . . 9 ((Rel (𝐶 Func 𝐷) ∧ 𝐺 ∈ (𝐶 Func 𝐷)) → (1st𝐺)(𝐶 Func 𝐷)(2nd𝐺))
2619, 12, 25sylancr 590 . . . . . . . 8 (𝜑 → (1st𝐺)(𝐶 Func 𝐷)(2nd𝐺))
2718, 15, 26funcf1 17131 . . . . . . 7 (𝜑 → (1st𝐺):𝐵⟶(Base‘𝐷))
2827adantr 484 . . . . . 6 ((𝜑𝐴 ∈ (𝐹𝐼𝐺)) → (1st𝐺):𝐵⟶(Base‘𝐷))
2928ffvelrnda 6832 . . . . 5 (((𝜑𝐴 ∈ (𝐹𝐼𝐺)) ∧ 𝑥𝐵) → ((1st𝐺)‘𝑥) ∈ (Base‘𝐷))
30 fuciso.j . . . . 5 𝐽 = (Iso‘𝐷)
31 eqid 2801 . . . . . . . . . . . 12 (Inv‘𝑄) = (Inv‘𝑄)
322, 31, 11, 6, 12, 5isoval 17030 . . . . . . . . . . 11 (𝜑 → (𝐹𝐼𝐺) = dom (𝐹(Inv‘𝑄)𝐺))
3332eleq2d 2878 . . . . . . . . . 10 (𝜑 → (𝐴 ∈ (𝐹𝐼𝐺) ↔ 𝐴 ∈ dom (𝐹(Inv‘𝑄)𝐺)))
342, 31, 11, 6, 12invfun 17029 . . . . . . . . . . 11 (𝜑 → Fun (𝐹(Inv‘𝑄)𝐺))
35 funfvbrb 6802 . . . . . . . . . . 11 (Fun (𝐹(Inv‘𝑄)𝐺) → (𝐴 ∈ dom (𝐹(Inv‘𝑄)𝐺) ↔ 𝐴(𝐹(Inv‘𝑄)𝐺)((𝐹(Inv‘𝑄)𝐺)‘𝐴)))
3634, 35syl 17 . . . . . . . . . 10 (𝜑 → (𝐴 ∈ dom (𝐹(Inv‘𝑄)𝐺) ↔ 𝐴(𝐹(Inv‘𝑄)𝐺)((𝐹(Inv‘𝑄)𝐺)‘𝐴)))
3733, 36bitrd 282 . . . . . . . . 9 (𝜑 → (𝐴 ∈ (𝐹𝐼𝐺) ↔ 𝐴(𝐹(Inv‘𝑄)𝐺)((𝐹(Inv‘𝑄)𝐺)‘𝐴)))
3837biimpa 480 . . . . . . . 8 ((𝜑𝐴 ∈ (𝐹𝐼𝐺)) → 𝐴(𝐹(Inv‘𝑄)𝐺)((𝐹(Inv‘𝑄)𝐺)‘𝐴))
391, 18, 3, 6, 12, 31, 16fucinv 17238 . . . . . . . . 9 (𝜑 → (𝐴(𝐹(Inv‘𝑄)𝐺)((𝐹(Inv‘𝑄)𝐺)‘𝐴) ↔ (𝐴 ∈ (𝐹𝑁𝐺) ∧ ((𝐹(Inv‘𝑄)𝐺)‘𝐴) ∈ (𝐺𝑁𝐹) ∧ ∀𝑥𝐵 (𝐴𝑥)(((1st𝐹)‘𝑥)(Inv‘𝐷)((1st𝐺)‘𝑥))(((𝐹(Inv‘𝑄)𝐺)‘𝐴)‘𝑥))))
4039adantr 484 . . . . . . . 8 ((𝜑𝐴 ∈ (𝐹𝐼𝐺)) → (𝐴(𝐹(Inv‘𝑄)𝐺)((𝐹(Inv‘𝑄)𝐺)‘𝐴) ↔ (𝐴 ∈ (𝐹𝑁𝐺) ∧ ((𝐹(Inv‘𝑄)𝐺)‘𝐴) ∈ (𝐺𝑁𝐹) ∧ ∀𝑥𝐵 (𝐴𝑥)(((1st𝐹)‘𝑥)(Inv‘𝐷)((1st𝐺)‘𝑥))(((𝐹(Inv‘𝑄)𝐺)‘𝐴)‘𝑥))))
4138, 40mpbid 235 . . . . . . 7 ((𝜑𝐴 ∈ (𝐹𝐼𝐺)) → (𝐴 ∈ (𝐹𝑁𝐺) ∧ ((𝐹(Inv‘𝑄)𝐺)‘𝐴) ∈ (𝐺𝑁𝐹) ∧ ∀𝑥𝐵 (𝐴𝑥)(((1st𝐹)‘𝑥)(Inv‘𝐷)((1st𝐺)‘𝑥))(((𝐹(Inv‘𝑄)𝐺)‘𝐴)‘𝑥)))
4241simp3d 1141 . . . . . 6 ((𝜑𝐴 ∈ (𝐹𝐼𝐺)) → ∀𝑥𝐵 (𝐴𝑥)(((1st𝐹)‘𝑥)(Inv‘𝐷)((1st𝐺)‘𝑥))(((𝐹(Inv‘𝑄)𝐺)‘𝐴)‘𝑥))
4342r19.21bi 3176 . . . . 5 (((𝜑𝐴 ∈ (𝐹𝐼𝐺)) ∧ 𝑥𝐵) → (𝐴𝑥)(((1st𝐹)‘𝑥)(Inv‘𝐷)((1st𝐺)‘𝑥))(((𝐹(Inv‘𝑄)𝐺)‘𝐴)‘𝑥))
4415, 16, 17, 24, 29, 30, 43inviso1 17031 . . . 4 (((𝜑𝐴 ∈ (𝐹𝐼𝐺)) ∧ 𝑥𝐵) → (𝐴𝑥) ∈ (((1st𝐹)‘𝑥)𝐽((1st𝐺)‘𝑥)))
4544ralrimiva 3152 . . 3 ((𝜑𝐴 ∈ (𝐹𝐼𝐺)) → ∀𝑥𝐵 (𝐴𝑥) ∈ (((1st𝐹)‘𝑥)𝐽((1st𝐺)‘𝑥)))
4614, 45jca 515 . 2 ((𝜑𝐴 ∈ (𝐹𝐼𝐺)) → (𝐴 ∈ (𝐹𝑁𝐺) ∧ ∀𝑥𝐵 (𝐴𝑥) ∈ (((1st𝐹)‘𝑥)𝐽((1st𝐺)‘𝑥))))
4711adantr 484 . . 3 ((𝜑 ∧ (𝐴 ∈ (𝐹𝑁𝐺) ∧ ∀𝑥𝐵 (𝐴𝑥) ∈ (((1st𝐹)‘𝑥)𝐽((1st𝐺)‘𝑥)))) → 𝑄 ∈ Cat)
486adantr 484 . . 3 ((𝜑 ∧ (𝐴 ∈ (𝐹𝑁𝐺) ∧ ∀𝑥𝐵 (𝐴𝑥) ∈ (((1st𝐹)‘𝑥)𝐽((1st𝐺)‘𝑥)))) → 𝐹 ∈ (𝐶 Func 𝐷))
4912adantr 484 . . 3 ((𝜑 ∧ (𝐴 ∈ (𝐹𝑁𝐺) ∧ ∀𝑥𝐵 (𝐴𝑥) ∈ (((1st𝐹)‘𝑥)𝐽((1st𝐺)‘𝑥)))) → 𝐺 ∈ (𝐶 Func 𝐷))
50 simprl 770 . . . 4 ((𝜑 ∧ (𝐴 ∈ (𝐹𝑁𝐺) ∧ ∀𝑥𝐵 (𝐴𝑥) ∈ (((1st𝐹)‘𝑥)𝐽((1st𝐺)‘𝑥)))) → 𝐴 ∈ (𝐹𝑁𝐺))
5110ad2antrr 725 . . . . 5 (((𝜑 ∧ (𝐴 ∈ (𝐹𝑁𝐺) ∧ ∀𝑥𝐵 (𝐴𝑥) ∈ (((1st𝐹)‘𝑥)𝐽((1st𝐺)‘𝑥)))) ∧ 𝑦𝐵) → 𝐷 ∈ Cat)
5222adantr 484 . . . . . 6 ((𝜑 ∧ (𝐴 ∈ (𝐹𝑁𝐺) ∧ ∀𝑥𝐵 (𝐴𝑥) ∈ (((1st𝐹)‘𝑥)𝐽((1st𝐺)‘𝑥)))) → (1st𝐹):𝐵⟶(Base‘𝐷))
5352ffvelrnda 6832 . . . . 5 (((𝜑 ∧ (𝐴 ∈ (𝐹𝑁𝐺) ∧ ∀𝑥𝐵 (𝐴𝑥) ∈ (((1st𝐹)‘𝑥)𝐽((1st𝐺)‘𝑥)))) ∧ 𝑦𝐵) → ((1st𝐹)‘𝑦) ∈ (Base‘𝐷))
5427adantr 484 . . . . . 6 ((𝜑 ∧ (𝐴 ∈ (𝐹𝑁𝐺) ∧ ∀𝑥𝐵 (𝐴𝑥) ∈ (((1st𝐹)‘𝑥)𝐽((1st𝐺)‘𝑥)))) → (1st𝐺):𝐵⟶(Base‘𝐷))
5554ffvelrnda 6832 . . . . 5 (((𝜑 ∧ (𝐴 ∈ (𝐹𝑁𝐺) ∧ ∀𝑥𝐵 (𝐴𝑥) ∈ (((1st𝐹)‘𝑥)𝐽((1st𝐺)‘𝑥)))) ∧ 𝑦𝐵) → ((1st𝐺)‘𝑦) ∈ (Base‘𝐷))
56 simprr 772 . . . . . 6 ((𝜑 ∧ (𝐴 ∈ (𝐹𝑁𝐺) ∧ ∀𝑥𝐵 (𝐴𝑥) ∈ (((1st𝐹)‘𝑥)𝐽((1st𝐺)‘𝑥)))) → ∀𝑥𝐵 (𝐴𝑥) ∈ (((1st𝐹)‘𝑥)𝐽((1st𝐺)‘𝑥)))
57 fveq2 6649 . . . . . . . 8 (𝑥 = 𝑦 → (𝐴𝑥) = (𝐴𝑦))
58 fveq2 6649 . . . . . . . . 9 (𝑥 = 𝑦 → ((1st𝐹)‘𝑥) = ((1st𝐹)‘𝑦))
59 fveq2 6649 . . . . . . . . 9 (𝑥 = 𝑦 → ((1st𝐺)‘𝑥) = ((1st𝐺)‘𝑦))
6058, 59oveq12d 7157 . . . . . . . 8 (𝑥 = 𝑦 → (((1st𝐹)‘𝑥)𝐽((1st𝐺)‘𝑥)) = (((1st𝐹)‘𝑦)𝐽((1st𝐺)‘𝑦)))
6157, 60eleq12d 2887 . . . . . . 7 (𝑥 = 𝑦 → ((𝐴𝑥) ∈ (((1st𝐹)‘𝑥)𝐽((1st𝐺)‘𝑥)) ↔ (𝐴𝑦) ∈ (((1st𝐹)‘𝑦)𝐽((1st𝐺)‘𝑦))))
6261rspccva 3573 . . . . . 6 ((∀𝑥𝐵 (𝐴𝑥) ∈ (((1st𝐹)‘𝑥)𝐽((1st𝐺)‘𝑥)) ∧ 𝑦𝐵) → (𝐴𝑦) ∈ (((1st𝐹)‘𝑦)𝐽((1st𝐺)‘𝑦)))
6356, 62sylan 583 . . . . 5 (((𝜑 ∧ (𝐴 ∈ (𝐹𝑁𝐺) ∧ ∀𝑥𝐵 (𝐴𝑥) ∈ (((1st𝐹)‘𝑥)𝐽((1st𝐺)‘𝑥)))) ∧ 𝑦𝐵) → (𝐴𝑦) ∈ (((1st𝐹)‘𝑦)𝐽((1st𝐺)‘𝑦)))
6415, 30, 16, 51, 53, 55, 63invisoinvr 17056 . . . 4 (((𝜑 ∧ (𝐴 ∈ (𝐹𝑁𝐺) ∧ ∀𝑥𝐵 (𝐴𝑥) ∈ (((1st𝐹)‘𝑥)𝐽((1st𝐺)‘𝑥)))) ∧ 𝑦𝐵) → (𝐴𝑦)(((1st𝐹)‘𝑦)(Inv‘𝐷)((1st𝐺)‘𝑦))((((1st𝐹)‘𝑦)(Inv‘𝐷)((1st𝐺)‘𝑦))‘(𝐴𝑦)))
651, 18, 3, 48, 49, 31, 16, 50, 64invfuc 17239 . . 3 ((𝜑 ∧ (𝐴 ∈ (𝐹𝑁𝐺) ∧ ∀𝑥𝐵 (𝐴𝑥) ∈ (((1st𝐹)‘𝑥)𝐽((1st𝐺)‘𝑥)))) → 𝐴(𝐹(Inv‘𝑄)𝐺)(𝑦𝐵 ↦ ((((1st𝐹)‘𝑦)(Inv‘𝐷)((1st𝐺)‘𝑦))‘(𝐴𝑦))))
662, 31, 47, 48, 49, 5, 65inviso1 17031 . 2 ((𝜑 ∧ (𝐴 ∈ (𝐹𝑁𝐺) ∧ ∀𝑥𝐵 (𝐴𝑥) ∈ (((1st𝐹)‘𝑥)𝐽((1st𝐺)‘𝑥)))) → 𝐴 ∈ (𝐹𝐼𝐺))
6746, 66impbida 800 1 (𝜑 → (𝐴 ∈ (𝐹𝐼𝐺) ↔ (𝐴 ∈ (𝐹𝑁𝐺) ∧ ∀𝑥𝐵 (𝐴𝑥) ∈ (((1st𝐹)‘𝑥)𝐽((1st𝐺)‘𝑥)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2112  wral 3109   class class class wbr 5033  cmpt 5113  dom cdm 5523  Rel wrel 5528  Fun wfun 6322  wf 6324  cfv 6328  (class class class)co 7139  1st c1st 7673  2nd c2nd 7674  Basecbs 16478  Catccat 16930  Invcinv 17010  Isociso 17011   Func cfunc 17119   Nat cnat 17206   FuncCat cfuc 17207
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-rep 5157  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445  ax-cnex 10586  ax-resscn 10587  ax-1cn 10588  ax-icn 10589  ax-addcl 10590  ax-addrcl 10591  ax-mulcl 10592  ax-mulrcl 10593  ax-mulcom 10594  ax-addass 10595  ax-mulass 10596  ax-distr 10597  ax-i2m1 10598  ax-1ne0 10599  ax-1rid 10600  ax-rnegex 10601  ax-rrecex 10602  ax-cnre 10603  ax-pre-lttri 10604  ax-pre-lttrn 10605  ax-pre-ltadd 10606  ax-pre-mulgt0 10607
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-nel 3095  df-ral 3114  df-rex 3115  df-reu 3116  df-rmo 3117  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-pss 3903  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-tp 4533  df-op 4535  df-uni 4804  df-int 4842  df-iun 4886  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5428  df-eprel 5433  df-po 5442  df-so 5443  df-fr 5482  df-we 5484  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-pred 6120  df-ord 6166  df-on 6167  df-lim 6168  df-suc 6169  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-riota 7097  df-ov 7142  df-oprab 7143  df-mpo 7144  df-om 7565  df-1st 7675  df-2nd 7676  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-1o 8089  df-oadd 8093  df-er 8276  df-map 8395  df-ixp 8449  df-en 8497  df-dom 8498  df-sdom 8499  df-fin 8500  df-pnf 10670  df-mnf 10671  df-xr 10672  df-ltxr 10673  df-le 10674  df-sub 10865  df-neg 10866  df-nn 11630  df-2 11692  df-3 11693  df-4 11694  df-5 11695  df-6 11696  df-7 11697  df-8 11698  df-9 11699  df-n0 11890  df-z 11974  df-dec 12091  df-uz 12236  df-fz 12890  df-struct 16480  df-ndx 16481  df-slot 16482  df-base 16484  df-hom 16584  df-cco 16585  df-cat 16934  df-cid 16935  df-sect 17012  df-inv 17013  df-iso 17014  df-func 17123  df-nat 17208  df-fuc 17209
This theorem is referenced by:  yonffthlem  17527
  Copyright terms: Public domain W3C validator