MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isfth2 Structured version   Visualization version   GIF version

Theorem isfth2 17824
Description: Equivalent condition for a faithful functor. (Contributed by Mario Carneiro, 27-Jan-2017.)
Hypotheses
Ref Expression
isfth.b 𝐵 = (Base‘𝐶)
isfth.h 𝐻 = (Hom ‘𝐶)
isfth.j 𝐽 = (Hom ‘𝐷)
Assertion
Ref Expression
isfth2 (𝐹(𝐶 Faith 𝐷)𝐺 ↔ (𝐹(𝐶 Func 𝐷)𝐺 ∧ ∀𝑥𝐵𝑦𝐵 (𝑥𝐺𝑦):(𝑥𝐻𝑦)–1-1→((𝐹𝑥)𝐽(𝐹𝑦))))
Distinct variable groups:   𝑥,𝑦,𝐵   𝑥,𝐶,𝑦   𝑥,𝐷,𝑦   𝑥,𝐹,𝑦   𝑥,𝐺,𝑦   𝑥,𝐻,𝑦   𝑥,𝐽,𝑦

Proof of Theorem isfth2
StepHypRef Expression
1 isfth.b . . 3 𝐵 = (Base‘𝐶)
21isfth 17823 . 2 (𝐹(𝐶 Faith 𝐷)𝐺 ↔ (𝐹(𝐶 Func 𝐷)𝐺 ∧ ∀𝑥𝐵𝑦𝐵 Fun (𝑥𝐺𝑦)))
3 isfth.h . . . . . . 7 𝐻 = (Hom ‘𝐶)
4 isfth.j . . . . . . 7 𝐽 = (Hom ‘𝐷)
5 simpll 766 . . . . . . 7 (((𝐹(𝐶 Func 𝐷)𝐺𝑥𝐵) ∧ 𝑦𝐵) → 𝐹(𝐶 Func 𝐷)𝐺)
6 simplr 768 . . . . . . 7 (((𝐹(𝐶 Func 𝐷)𝐺𝑥𝐵) ∧ 𝑦𝐵) → 𝑥𝐵)
7 simpr 484 . . . . . . 7 (((𝐹(𝐶 Func 𝐷)𝐺𝑥𝐵) ∧ 𝑦𝐵) → 𝑦𝐵)
81, 3, 4, 5, 6, 7funcf2 17775 . . . . . 6 (((𝐹(𝐶 Func 𝐷)𝐺𝑥𝐵) ∧ 𝑦𝐵) → (𝑥𝐺𝑦):(𝑥𝐻𝑦)⟶((𝐹𝑥)𝐽(𝐹𝑦)))
9 df-f1 6486 . . . . . . 7 ((𝑥𝐺𝑦):(𝑥𝐻𝑦)–1-1→((𝐹𝑥)𝐽(𝐹𝑦)) ↔ ((𝑥𝐺𝑦):(𝑥𝐻𝑦)⟶((𝐹𝑥)𝐽(𝐹𝑦)) ∧ Fun (𝑥𝐺𝑦)))
109baib 535 . . . . . 6 ((𝑥𝐺𝑦):(𝑥𝐻𝑦)⟶((𝐹𝑥)𝐽(𝐹𝑦)) → ((𝑥𝐺𝑦):(𝑥𝐻𝑦)–1-1→((𝐹𝑥)𝐽(𝐹𝑦)) ↔ Fun (𝑥𝐺𝑦)))
118, 10syl 17 . . . . 5 (((𝐹(𝐶 Func 𝐷)𝐺𝑥𝐵) ∧ 𝑦𝐵) → ((𝑥𝐺𝑦):(𝑥𝐻𝑦)–1-1→((𝐹𝑥)𝐽(𝐹𝑦)) ↔ Fun (𝑥𝐺𝑦)))
1211ralbidva 3153 . . . 4 ((𝐹(𝐶 Func 𝐷)𝐺𝑥𝐵) → (∀𝑦𝐵 (𝑥𝐺𝑦):(𝑥𝐻𝑦)–1-1→((𝐹𝑥)𝐽(𝐹𝑦)) ↔ ∀𝑦𝐵 Fun (𝑥𝐺𝑦)))
1312ralbidva 3153 . . 3 (𝐹(𝐶 Func 𝐷)𝐺 → (∀𝑥𝐵𝑦𝐵 (𝑥𝐺𝑦):(𝑥𝐻𝑦)–1-1→((𝐹𝑥)𝐽(𝐹𝑦)) ↔ ∀𝑥𝐵𝑦𝐵 Fun (𝑥𝐺𝑦)))
1413pm5.32i 574 . 2 ((𝐹(𝐶 Func 𝐷)𝐺 ∧ ∀𝑥𝐵𝑦𝐵 (𝑥𝐺𝑦):(𝑥𝐻𝑦)–1-1→((𝐹𝑥)𝐽(𝐹𝑦))) ↔ (𝐹(𝐶 Func 𝐷)𝐺 ∧ ∀𝑥𝐵𝑦𝐵 Fun (𝑥𝐺𝑦)))
152, 14bitr4i 278 1 (𝐹(𝐶 Faith 𝐷)𝐺 ↔ (𝐹(𝐶 Func 𝐷)𝐺 ∧ ∀𝑥𝐵𝑦𝐵 (𝑥𝐺𝑦):(𝑥𝐻𝑦)–1-1→((𝐹𝑥)𝐽(𝐹𝑦))))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1541  wcel 2111  wral 3047   class class class wbr 5089  ccnv 5613  Fun wfun 6475  wf 6477  1-1wf1 6478  cfv 6481  (class class class)co 7346  Basecbs 17120  Hom chom 17172   Func cfunc 17761   Faith cfth 17812
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-1st 7921  df-2nd 7922  df-map 8752  df-ixp 8822  df-func 17765  df-fth 17814
This theorem is referenced by:  isffth2  17825  fthf1  17826  cofth  17844  fthestrcsetc  18056  fthsetcestrc  18071  cofidfth  49273  thincfth  49563
  Copyright terms: Public domain W3C validator