| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > isnatd | Structured version Visualization version GIF version | ||
| Description: Property of being a natural transformation; deduction form. (Contributed by Zhi Wang, 29-Sep-2025.) |
| Ref | Expression |
|---|---|
| isnatd.1 | ⊢ 𝑁 = (𝐶 Nat 𝐷) |
| isnatd.b | ⊢ 𝐵 = (Base‘𝐶) |
| isnatd.h | ⊢ 𝐻 = (Hom ‘𝐶) |
| isnatd.j | ⊢ 𝐽 = (Hom ‘𝐷) |
| isnatd.o | ⊢ · = (comp‘𝐷) |
| isnatd.f | ⊢ (𝜑 → 𝐹(𝐶 Func 𝐷)𝐺) |
| isnatd.g | ⊢ (𝜑 → 𝐾(𝐶 Func 𝐷)𝐿) |
| isnatd.a | ⊢ (𝜑 → 𝐴 Fn 𝐵) |
| isnatd.2 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝐴‘𝑥) ∈ ((𝐹‘𝑥)𝐽(𝐾‘𝑥))) |
| isnatd.3 | ⊢ (((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) ∧ ℎ ∈ (𝑥𝐻𝑦)) → ((𝐴‘𝑦)(〈(𝐹‘𝑥), (𝐹‘𝑦)〉 · (𝐾‘𝑦))((𝑥𝐺𝑦)‘ℎ)) = (((𝑥𝐿𝑦)‘ℎ)(〈(𝐹‘𝑥), (𝐾‘𝑥)〉 · (𝐾‘𝑦))(𝐴‘𝑥))) |
| Ref | Expression |
|---|---|
| isnatd | ⊢ (𝜑 → 𝐴 ∈ (〈𝐹, 𝐺〉𝑁〈𝐾, 𝐿〉)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isnatd.a | . . . . 5 ⊢ (𝜑 → 𝐴 Fn 𝐵) | |
| 2 | dffn5 6885 | . . . . 5 ⊢ (𝐴 Fn 𝐵 ↔ 𝐴 = (𝑥 ∈ 𝐵 ↦ (𝐴‘𝑥))) | |
| 3 | 1, 2 | sylib 218 | . . . 4 ⊢ (𝜑 → 𝐴 = (𝑥 ∈ 𝐵 ↦ (𝐴‘𝑥))) |
| 4 | isnatd.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐶) | |
| 5 | 4 | fvexi 6840 | . . . . 5 ⊢ 𝐵 ∈ V |
| 6 | 5 | mptex 7163 | . . . 4 ⊢ (𝑥 ∈ 𝐵 ↦ (𝐴‘𝑥)) ∈ V |
| 7 | 3, 6 | eqeltrdi 2836 | . . 3 ⊢ (𝜑 → 𝐴 ∈ V) |
| 8 | isnatd.2 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝐴‘𝑥) ∈ ((𝐹‘𝑥)𝐽(𝐾‘𝑥))) | |
| 9 | 8 | ralrimiva 3121 | . . 3 ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 (𝐴‘𝑥) ∈ ((𝐹‘𝑥)𝐽(𝐾‘𝑥))) |
| 10 | elixp2 8835 | . . 3 ⊢ (𝐴 ∈ X𝑥 ∈ 𝐵 ((𝐹‘𝑥)𝐽(𝐾‘𝑥)) ↔ (𝐴 ∈ V ∧ 𝐴 Fn 𝐵 ∧ ∀𝑥 ∈ 𝐵 (𝐴‘𝑥) ∈ ((𝐹‘𝑥)𝐽(𝐾‘𝑥)))) | |
| 11 | 7, 1, 9, 10 | syl3anbrc 1344 | . 2 ⊢ (𝜑 → 𝐴 ∈ X𝑥 ∈ 𝐵 ((𝐹‘𝑥)𝐽(𝐾‘𝑥))) |
| 12 | isnatd.3 | . . . 4 ⊢ (((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) ∧ ℎ ∈ (𝑥𝐻𝑦)) → ((𝐴‘𝑦)(〈(𝐹‘𝑥), (𝐹‘𝑦)〉 · (𝐾‘𝑦))((𝑥𝐺𝑦)‘ℎ)) = (((𝑥𝐿𝑦)‘ℎ)(〈(𝐹‘𝑥), (𝐾‘𝑥)〉 · (𝐾‘𝑦))(𝐴‘𝑥))) | |
| 13 | 12 | ralrimiva 3121 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → ∀ℎ ∈ (𝑥𝐻𝑦)((𝐴‘𝑦)(〈(𝐹‘𝑥), (𝐹‘𝑦)〉 · (𝐾‘𝑦))((𝑥𝐺𝑦)‘ℎ)) = (((𝑥𝐿𝑦)‘ℎ)(〈(𝐹‘𝑥), (𝐾‘𝑥)〉 · (𝐾‘𝑦))(𝐴‘𝑥))) |
| 14 | 13 | ralrimivva 3172 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∀ℎ ∈ (𝑥𝐻𝑦)((𝐴‘𝑦)(〈(𝐹‘𝑥), (𝐹‘𝑦)〉 · (𝐾‘𝑦))((𝑥𝐺𝑦)‘ℎ)) = (((𝑥𝐿𝑦)‘ℎ)(〈(𝐹‘𝑥), (𝐾‘𝑥)〉 · (𝐾‘𝑦))(𝐴‘𝑥))) |
| 15 | isnatd.1 | . . 3 ⊢ 𝑁 = (𝐶 Nat 𝐷) | |
| 16 | isnatd.h | . . 3 ⊢ 𝐻 = (Hom ‘𝐶) | |
| 17 | isnatd.j | . . 3 ⊢ 𝐽 = (Hom ‘𝐷) | |
| 18 | isnatd.o | . . 3 ⊢ · = (comp‘𝐷) | |
| 19 | isnatd.f | . . 3 ⊢ (𝜑 → 𝐹(𝐶 Func 𝐷)𝐺) | |
| 20 | isnatd.g | . . 3 ⊢ (𝜑 → 𝐾(𝐶 Func 𝐷)𝐿) | |
| 21 | 15, 4, 16, 17, 18, 19, 20 | isnat 17875 | . 2 ⊢ (𝜑 → (𝐴 ∈ (〈𝐹, 𝐺〉𝑁〈𝐾, 𝐿〉) ↔ (𝐴 ∈ X𝑥 ∈ 𝐵 ((𝐹‘𝑥)𝐽(𝐾‘𝑥)) ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∀ℎ ∈ (𝑥𝐻𝑦)((𝐴‘𝑦)(〈(𝐹‘𝑥), (𝐹‘𝑦)〉 · (𝐾‘𝑦))((𝑥𝐺𝑦)‘ℎ)) = (((𝑥𝐿𝑦)‘ℎ)(〈(𝐹‘𝑥), (𝐾‘𝑥)〉 · (𝐾‘𝑦))(𝐴‘𝑥))))) |
| 22 | 11, 14, 21 | mpbir2and 713 | 1 ⊢ (𝜑 → 𝐴 ∈ (〈𝐹, 𝐺〉𝑁〈𝐾, 𝐿〉)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 Vcvv 3438 〈cop 4585 class class class wbr 5095 ↦ cmpt 5176 Fn wfn 6481 ‘cfv 6486 (class class class)co 7353 Xcixp 8831 Basecbs 17138 Hom chom 17190 compcco 17191 Func cfunc 17779 Nat cnat 17869 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ov 7356 df-oprab 7357 df-mpo 7358 df-1st 7931 df-2nd 7932 df-ixp 8832 df-func 17783 df-nat 17871 |
| This theorem is referenced by: natoppf 49202 fuco22natlem 49318 |
| Copyright terms: Public domain | W3C validator |