Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isnatd Structured version   Visualization version   GIF version

Theorem isnatd 49234
Description: Property of being a natural transformation; deduction form. (Contributed by Zhi Wang, 29-Sep-2025.)
Hypotheses
Ref Expression
isnatd.1 𝑁 = (𝐶 Nat 𝐷)
isnatd.b 𝐵 = (Base‘𝐶)
isnatd.h 𝐻 = (Hom ‘𝐶)
isnatd.j 𝐽 = (Hom ‘𝐷)
isnatd.o · = (comp‘𝐷)
isnatd.f (𝜑𝐹(𝐶 Func 𝐷)𝐺)
isnatd.g (𝜑𝐾(𝐶 Func 𝐷)𝐿)
isnatd.a (𝜑𝐴 Fn 𝐵)
isnatd.2 ((𝜑𝑥𝐵) → (𝐴𝑥) ∈ ((𝐹𝑥)𝐽(𝐾𝑥)))
isnatd.3 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ ∈ (𝑥𝐻𝑦)) → ((𝐴𝑦)(⟨(𝐹𝑥), (𝐹𝑦)⟩ · (𝐾𝑦))((𝑥𝐺𝑦)‘)) = (((𝑥𝐿𝑦)‘)(⟨(𝐹𝑥), (𝐾𝑥)⟩ · (𝐾𝑦))(𝐴𝑥)))
Assertion
Ref Expression
isnatd (𝜑𝐴 ∈ (⟨𝐹, 𝐺𝑁𝐾, 𝐿⟩))
Distinct variable groups:   𝐴,,𝑥,𝑦   𝐵,,𝑥,𝑦   𝐶,,𝑥,𝑦   𝐷,,𝑥,𝑦   ,𝐹,𝑥,𝑦   ,𝐺,𝑥,𝑦   ,𝐻   ,𝐾,𝑥,𝑦   ,𝐿,𝑥,𝑦   𝜑,,𝑥,𝑦
Allowed substitution hints:   · (𝑥,𝑦,)   𝐻(𝑥,𝑦)   𝐽(𝑥,𝑦,)   𝑁(𝑥,𝑦,)

Proof of Theorem isnatd
StepHypRef Expression
1 isnatd.a . . . . 5 (𝜑𝐴 Fn 𝐵)
2 dffn5 6875 . . . . 5 (𝐴 Fn 𝐵𝐴 = (𝑥𝐵 ↦ (𝐴𝑥)))
31, 2sylib 218 . . . 4 (𝜑𝐴 = (𝑥𝐵 ↦ (𝐴𝑥)))
4 isnatd.b . . . . . 6 𝐵 = (Base‘𝐶)
54fvexi 6831 . . . . 5 𝐵 ∈ V
65mptex 7152 . . . 4 (𝑥𝐵 ↦ (𝐴𝑥)) ∈ V
73, 6eqeltrdi 2837 . . 3 (𝜑𝐴 ∈ V)
8 isnatd.2 . . . 4 ((𝜑𝑥𝐵) → (𝐴𝑥) ∈ ((𝐹𝑥)𝐽(𝐾𝑥)))
98ralrimiva 3122 . . 3 (𝜑 → ∀𝑥𝐵 (𝐴𝑥) ∈ ((𝐹𝑥)𝐽(𝐾𝑥)))
10 elixp2 8820 . . 3 (𝐴X𝑥𝐵 ((𝐹𝑥)𝐽(𝐾𝑥)) ↔ (𝐴 ∈ V ∧ 𝐴 Fn 𝐵 ∧ ∀𝑥𝐵 (𝐴𝑥) ∈ ((𝐹𝑥)𝐽(𝐾𝑥))))
117, 1, 9, 10syl3anbrc 1344 . 2 (𝜑𝐴X𝑥𝐵 ((𝐹𝑥)𝐽(𝐾𝑥)))
12 isnatd.3 . . . 4 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ ∈ (𝑥𝐻𝑦)) → ((𝐴𝑦)(⟨(𝐹𝑥), (𝐹𝑦)⟩ · (𝐾𝑦))((𝑥𝐺𝑦)‘)) = (((𝑥𝐿𝑦)‘)(⟨(𝐹𝑥), (𝐾𝑥)⟩ · (𝐾𝑦))(𝐴𝑥)))
1312ralrimiva 3122 . . 3 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → ∀ ∈ (𝑥𝐻𝑦)((𝐴𝑦)(⟨(𝐹𝑥), (𝐹𝑦)⟩ · (𝐾𝑦))((𝑥𝐺𝑦)‘)) = (((𝑥𝐿𝑦)‘)(⟨(𝐹𝑥), (𝐾𝑥)⟩ · (𝐾𝑦))(𝐴𝑥)))
1413ralrimivva 3173 . 2 (𝜑 → ∀𝑥𝐵𝑦𝐵 ∈ (𝑥𝐻𝑦)((𝐴𝑦)(⟨(𝐹𝑥), (𝐹𝑦)⟩ · (𝐾𝑦))((𝑥𝐺𝑦)‘)) = (((𝑥𝐿𝑦)‘)(⟨(𝐹𝑥), (𝐾𝑥)⟩ · (𝐾𝑦))(𝐴𝑥)))
15 isnatd.1 . . 3 𝑁 = (𝐶 Nat 𝐷)
16 isnatd.h . . 3 𝐻 = (Hom ‘𝐶)
17 isnatd.j . . 3 𝐽 = (Hom ‘𝐷)
18 isnatd.o . . 3 · = (comp‘𝐷)
19 isnatd.f . . 3 (𝜑𝐹(𝐶 Func 𝐷)𝐺)
20 isnatd.g . . 3 (𝜑𝐾(𝐶 Func 𝐷)𝐿)
2115, 4, 16, 17, 18, 19, 20isnat 17849 . 2 (𝜑 → (𝐴 ∈ (⟨𝐹, 𝐺𝑁𝐾, 𝐿⟩) ↔ (𝐴X𝑥𝐵 ((𝐹𝑥)𝐽(𝐾𝑥)) ∧ ∀𝑥𝐵𝑦𝐵 ∈ (𝑥𝐻𝑦)((𝐴𝑦)(⟨(𝐹𝑥), (𝐹𝑦)⟩ · (𝐾𝑦))((𝑥𝐺𝑦)‘)) = (((𝑥𝐿𝑦)‘)(⟨(𝐹𝑥), (𝐾𝑥)⟩ · (𝐾𝑦))(𝐴𝑥)))))
2211, 14, 21mpbir2and 713 1 (𝜑𝐴 ∈ (⟨𝐹, 𝐺𝑁𝐾, 𝐿⟩))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2110  wral 3045  Vcvv 3434  cop 4580   class class class wbr 5089  cmpt 5170   Fn wfn 6472  cfv 6477  (class class class)co 7341  Xcixp 8816  Basecbs 17112  Hom chom 17164  compcco 17165   Func cfunc 17753   Nat cnat 17843
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7663
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3345  df-rab 3394  df-v 3436  df-sbc 3740  df-csb 3849  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-nul 4282  df-if 4474  df-pw 4550  df-sn 4575  df-pr 4577  df-op 4581  df-uni 4858  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6433  df-fun 6479  df-fn 6480  df-f 6481  df-f1 6482  df-fo 6483  df-f1o 6484  df-fv 6485  df-ov 7344  df-oprab 7345  df-mpo 7346  df-1st 7916  df-2nd 7917  df-ixp 8817  df-func 17757  df-nat 17845
This theorem is referenced by:  natoppf  49240  fuco22natlem  49356
  Copyright terms: Public domain W3C validator