| Mathbox for Zhi Wang | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > isnatd | Structured version Visualization version GIF version | ||
| Description: Property of being a natural transformation; deduction form. (Contributed by Zhi Wang, 29-Sep-2025.) | 
| Ref | Expression | 
|---|---|
| isnatd.1 | ⊢ 𝑁 = (𝐶 Nat 𝐷) | 
| isnatd.b | ⊢ 𝐵 = (Base‘𝐶) | 
| isnatd.h | ⊢ 𝐻 = (Hom ‘𝐶) | 
| isnatd.j | ⊢ 𝐽 = (Hom ‘𝐷) | 
| isnatd.o | ⊢ · = (comp‘𝐷) | 
| isnatd.f | ⊢ (𝜑 → 𝐹(𝐶 Func 𝐷)𝐺) | 
| isnatd.g | ⊢ (𝜑 → 𝐾(𝐶 Func 𝐷)𝐿) | 
| isnatd.a | ⊢ (𝜑 → 𝐴 Fn 𝐵) | 
| isnatd.2 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝐴‘𝑥) ∈ ((𝐹‘𝑥)𝐽(𝐾‘𝑥))) | 
| isnatd.3 | ⊢ (((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) ∧ ℎ ∈ (𝑥𝐻𝑦)) → ((𝐴‘𝑦)(〈(𝐹‘𝑥), (𝐹‘𝑦)〉 · (𝐾‘𝑦))((𝑥𝐺𝑦)‘ℎ)) = (((𝑥𝐿𝑦)‘ℎ)(〈(𝐹‘𝑥), (𝐾‘𝑥)〉 · (𝐾‘𝑦))(𝐴‘𝑥))) | 
| Ref | Expression | 
|---|---|
| isnatd | ⊢ (𝜑 → 𝐴 ∈ (〈𝐹, 𝐺〉𝑁〈𝐾, 𝐿〉)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | isnatd.a | . . . . 5 ⊢ (𝜑 → 𝐴 Fn 𝐵) | |
| 2 | dffn5 6948 | . . . . 5 ⊢ (𝐴 Fn 𝐵 ↔ 𝐴 = (𝑥 ∈ 𝐵 ↦ (𝐴‘𝑥))) | |
| 3 | 1, 2 | sylib 218 | . . . 4 ⊢ (𝜑 → 𝐴 = (𝑥 ∈ 𝐵 ↦ (𝐴‘𝑥))) | 
| 4 | isnatd.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐶) | |
| 5 | 4 | fvexi 6901 | . . . . 5 ⊢ 𝐵 ∈ V | 
| 6 | 5 | mptex 7226 | . . . 4 ⊢ (𝑥 ∈ 𝐵 ↦ (𝐴‘𝑥)) ∈ V | 
| 7 | 3, 6 | eqeltrdi 2841 | . . 3 ⊢ (𝜑 → 𝐴 ∈ V) | 
| 8 | isnatd.2 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝐴‘𝑥) ∈ ((𝐹‘𝑥)𝐽(𝐾‘𝑥))) | |
| 9 | 8 | ralrimiva 3133 | . . 3 ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 (𝐴‘𝑥) ∈ ((𝐹‘𝑥)𝐽(𝐾‘𝑥))) | 
| 10 | elixp2 8924 | . . 3 ⊢ (𝐴 ∈ X𝑥 ∈ 𝐵 ((𝐹‘𝑥)𝐽(𝐾‘𝑥)) ↔ (𝐴 ∈ V ∧ 𝐴 Fn 𝐵 ∧ ∀𝑥 ∈ 𝐵 (𝐴‘𝑥) ∈ ((𝐹‘𝑥)𝐽(𝐾‘𝑥)))) | |
| 11 | 7, 1, 9, 10 | syl3anbrc 1343 | . 2 ⊢ (𝜑 → 𝐴 ∈ X𝑥 ∈ 𝐵 ((𝐹‘𝑥)𝐽(𝐾‘𝑥))) | 
| 12 | isnatd.3 | . . . 4 ⊢ (((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) ∧ ℎ ∈ (𝑥𝐻𝑦)) → ((𝐴‘𝑦)(〈(𝐹‘𝑥), (𝐹‘𝑦)〉 · (𝐾‘𝑦))((𝑥𝐺𝑦)‘ℎ)) = (((𝑥𝐿𝑦)‘ℎ)(〈(𝐹‘𝑥), (𝐾‘𝑥)〉 · (𝐾‘𝑦))(𝐴‘𝑥))) | |
| 13 | 12 | ralrimiva 3133 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → ∀ℎ ∈ (𝑥𝐻𝑦)((𝐴‘𝑦)(〈(𝐹‘𝑥), (𝐹‘𝑦)〉 · (𝐾‘𝑦))((𝑥𝐺𝑦)‘ℎ)) = (((𝑥𝐿𝑦)‘ℎ)(〈(𝐹‘𝑥), (𝐾‘𝑥)〉 · (𝐾‘𝑦))(𝐴‘𝑥))) | 
| 14 | 13 | ralrimivva 3189 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∀ℎ ∈ (𝑥𝐻𝑦)((𝐴‘𝑦)(〈(𝐹‘𝑥), (𝐹‘𝑦)〉 · (𝐾‘𝑦))((𝑥𝐺𝑦)‘ℎ)) = (((𝑥𝐿𝑦)‘ℎ)(〈(𝐹‘𝑥), (𝐾‘𝑥)〉 · (𝐾‘𝑦))(𝐴‘𝑥))) | 
| 15 | isnatd.1 | . . 3 ⊢ 𝑁 = (𝐶 Nat 𝐷) | |
| 16 | isnatd.h | . . 3 ⊢ 𝐻 = (Hom ‘𝐶) | |
| 17 | isnatd.j | . . 3 ⊢ 𝐽 = (Hom ‘𝐷) | |
| 18 | isnatd.o | . . 3 ⊢ · = (comp‘𝐷) | |
| 19 | isnatd.f | . . 3 ⊢ (𝜑 → 𝐹(𝐶 Func 𝐷)𝐺) | |
| 20 | isnatd.g | . . 3 ⊢ (𝜑 → 𝐾(𝐶 Func 𝐷)𝐿) | |
| 21 | 15, 4, 16, 17, 18, 19, 20 | isnat 17967 | . 2 ⊢ (𝜑 → (𝐴 ∈ (〈𝐹, 𝐺〉𝑁〈𝐾, 𝐿〉) ↔ (𝐴 ∈ X𝑥 ∈ 𝐵 ((𝐹‘𝑥)𝐽(𝐾‘𝑥)) ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∀ℎ ∈ (𝑥𝐻𝑦)((𝐴‘𝑦)(〈(𝐹‘𝑥), (𝐹‘𝑦)〉 · (𝐾‘𝑦))((𝑥𝐺𝑦)‘ℎ)) = (((𝑥𝐿𝑦)‘ℎ)(〈(𝐹‘𝑥), (𝐾‘𝑥)〉 · (𝐾‘𝑦))(𝐴‘𝑥))))) | 
| 22 | 11, 14, 21 | mpbir2and 713 | 1 ⊢ (𝜑 → 𝐴 ∈ (〈𝐹, 𝐺〉𝑁〈𝐾, 𝐿〉)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2107 ∀wral 3050 Vcvv 3464 〈cop 4614 class class class wbr 5125 ↦ cmpt 5207 Fn wfn 6537 ‘cfv 6542 (class class class)co 7414 Xcixp 8920 Basecbs 17230 Hom chom 17285 compcco 17286 Func cfunc 17871 Nat cnat 17961 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5261 ax-sep 5278 ax-nul 5288 ax-pow 5347 ax-pr 5414 ax-un 7738 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3773 df-csb 3882 df-dif 3936 df-un 3938 df-in 3940 df-ss 3950 df-nul 4316 df-if 4508 df-pw 4584 df-sn 4609 df-pr 4611 df-op 4615 df-uni 4890 df-iun 4975 df-br 5126 df-opab 5188 df-mpt 5208 df-id 5560 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-iota 6495 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-ov 7417 df-oprab 7418 df-mpo 7419 df-1st 7997 df-2nd 7998 df-ixp 8921 df-func 17875 df-nat 17963 | 
| This theorem is referenced by: fuco22natlem 49000 | 
| Copyright terms: Public domain | W3C validator |