![]() |
Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > isnatd | Structured version Visualization version GIF version |
Description: Property of being a natural transformation; deduction form. (Contributed by Zhi Wang, 29-Sep-2025.) |
Ref | Expression |
---|---|
isnatd.1 | ⊢ 𝑁 = (𝐶 Nat 𝐷) |
isnatd.b | ⊢ 𝐵 = (Base‘𝐶) |
isnatd.h | ⊢ 𝐻 = (Hom ‘𝐶) |
isnatd.j | ⊢ 𝐽 = (Hom ‘𝐷) |
isnatd.o | ⊢ · = (comp‘𝐷) |
isnatd.f | ⊢ (𝜑 → 𝐹(𝐶 Func 𝐷)𝐺) |
isnatd.g | ⊢ (𝜑 → 𝐾(𝐶 Func 𝐷)𝐿) |
isnatd.a | ⊢ (𝜑 → 𝐴 Fn 𝐵) |
isnatd.2 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝐴‘𝑥) ∈ ((𝐹‘𝑥)𝐽(𝐾‘𝑥))) |
isnatd.3 | ⊢ (((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) ∧ ℎ ∈ (𝑥𝐻𝑦)) → ((𝐴‘𝑦)(〈(𝐹‘𝑥), (𝐹‘𝑦)〉 · (𝐾‘𝑦))((𝑥𝐺𝑦)‘ℎ)) = (((𝑥𝐿𝑦)‘ℎ)(〈(𝐹‘𝑥), (𝐾‘𝑥)〉 · (𝐾‘𝑦))(𝐴‘𝑥))) |
Ref | Expression |
---|---|
isnatd | ⊢ (𝜑 → 𝐴 ∈ (〈𝐹, 𝐺〉𝑁〈𝐾, 𝐿〉)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isnatd.a | . . . . 5 ⊢ (𝜑 → 𝐴 Fn 𝐵) | |
2 | dffn5 6974 | . . . . 5 ⊢ (𝐴 Fn 𝐵 ↔ 𝐴 = (𝑥 ∈ 𝐵 ↦ (𝐴‘𝑥))) | |
3 | 1, 2 | sylib 218 | . . . 4 ⊢ (𝜑 → 𝐴 = (𝑥 ∈ 𝐵 ↦ (𝐴‘𝑥))) |
4 | isnatd.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐶) | |
5 | 4 | fvexi 6928 | . . . . 5 ⊢ 𝐵 ∈ V |
6 | 5 | mptex 7250 | . . . 4 ⊢ (𝑥 ∈ 𝐵 ↦ (𝐴‘𝑥)) ∈ V |
7 | 3, 6 | eqeltrdi 2849 | . . 3 ⊢ (𝜑 → 𝐴 ∈ V) |
8 | isnatd.2 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝐴‘𝑥) ∈ ((𝐹‘𝑥)𝐽(𝐾‘𝑥))) | |
9 | 8 | ralrimiva 3146 | . . 3 ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 (𝐴‘𝑥) ∈ ((𝐹‘𝑥)𝐽(𝐾‘𝑥))) |
10 | elixp2 8949 | . . 3 ⊢ (𝐴 ∈ X𝑥 ∈ 𝐵 ((𝐹‘𝑥)𝐽(𝐾‘𝑥)) ↔ (𝐴 ∈ V ∧ 𝐴 Fn 𝐵 ∧ ∀𝑥 ∈ 𝐵 (𝐴‘𝑥) ∈ ((𝐹‘𝑥)𝐽(𝐾‘𝑥)))) | |
11 | 7, 1, 9, 10 | syl3anbrc 1344 | . 2 ⊢ (𝜑 → 𝐴 ∈ X𝑥 ∈ 𝐵 ((𝐹‘𝑥)𝐽(𝐾‘𝑥))) |
12 | isnatd.3 | . . . 4 ⊢ (((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) ∧ ℎ ∈ (𝑥𝐻𝑦)) → ((𝐴‘𝑦)(〈(𝐹‘𝑥), (𝐹‘𝑦)〉 · (𝐾‘𝑦))((𝑥𝐺𝑦)‘ℎ)) = (((𝑥𝐿𝑦)‘ℎ)(〈(𝐹‘𝑥), (𝐾‘𝑥)〉 · (𝐾‘𝑦))(𝐴‘𝑥))) | |
13 | 12 | ralrimiva 3146 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → ∀ℎ ∈ (𝑥𝐻𝑦)((𝐴‘𝑦)(〈(𝐹‘𝑥), (𝐹‘𝑦)〉 · (𝐾‘𝑦))((𝑥𝐺𝑦)‘ℎ)) = (((𝑥𝐿𝑦)‘ℎ)(〈(𝐹‘𝑥), (𝐾‘𝑥)〉 · (𝐾‘𝑦))(𝐴‘𝑥))) |
14 | 13 | ralrimivva 3202 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∀ℎ ∈ (𝑥𝐻𝑦)((𝐴‘𝑦)(〈(𝐹‘𝑥), (𝐹‘𝑦)〉 · (𝐾‘𝑦))((𝑥𝐺𝑦)‘ℎ)) = (((𝑥𝐿𝑦)‘ℎ)(〈(𝐹‘𝑥), (𝐾‘𝑥)〉 · (𝐾‘𝑦))(𝐴‘𝑥))) |
15 | isnatd.1 | . . 3 ⊢ 𝑁 = (𝐶 Nat 𝐷) | |
16 | isnatd.h | . . 3 ⊢ 𝐻 = (Hom ‘𝐶) | |
17 | isnatd.j | . . 3 ⊢ 𝐽 = (Hom ‘𝐷) | |
18 | isnatd.o | . . 3 ⊢ · = (comp‘𝐷) | |
19 | isnatd.f | . . 3 ⊢ (𝜑 → 𝐹(𝐶 Func 𝐷)𝐺) | |
20 | isnatd.g | . . 3 ⊢ (𝜑 → 𝐾(𝐶 Func 𝐷)𝐿) | |
21 | 15, 4, 16, 17, 18, 19, 20 | isnat 18011 | . 2 ⊢ (𝜑 → (𝐴 ∈ (〈𝐹, 𝐺〉𝑁〈𝐾, 𝐿〉) ↔ (𝐴 ∈ X𝑥 ∈ 𝐵 ((𝐹‘𝑥)𝐽(𝐾‘𝑥)) ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∀ℎ ∈ (𝑥𝐻𝑦)((𝐴‘𝑦)(〈(𝐹‘𝑥), (𝐹‘𝑦)〉 · (𝐾‘𝑦))((𝑥𝐺𝑦)‘ℎ)) = (((𝑥𝐿𝑦)‘ℎ)(〈(𝐹‘𝑥), (𝐾‘𝑥)〉 · (𝐾‘𝑦))(𝐴‘𝑥))))) |
22 | 11, 14, 21 | mpbir2and 713 | 1 ⊢ (𝜑 → 𝐴 ∈ (〈𝐹, 𝐺〉𝑁〈𝐾, 𝐿〉)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∀wral 3061 Vcvv 3481 〈cop 4640 class class class wbr 5151 ↦ cmpt 5234 Fn wfn 6564 ‘cfv 6569 (class class class)co 7438 Xcixp 8945 Basecbs 17254 Hom chom 17318 compcco 17319 Func cfunc 17914 Nat cnat 18005 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5288 ax-sep 5305 ax-nul 5315 ax-pow 5374 ax-pr 5441 ax-un 7761 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3381 df-rab 3437 df-v 3483 df-sbc 3795 df-csb 3912 df-dif 3969 df-un 3971 df-in 3973 df-ss 3983 df-nul 4343 df-if 4535 df-pw 4610 df-sn 4635 df-pr 4637 df-op 4641 df-uni 4916 df-iun 5001 df-br 5152 df-opab 5214 df-mpt 5235 df-id 5587 df-xp 5699 df-rel 5700 df-cnv 5701 df-co 5702 df-dm 5703 df-rn 5704 df-res 5705 df-ima 5706 df-iota 6522 df-fun 6571 df-fn 6572 df-f 6573 df-f1 6574 df-fo 6575 df-f1o 6576 df-fv 6577 df-ov 7441 df-oprab 7442 df-mpo 7443 df-1st 8022 df-2nd 8023 df-ixp 8946 df-func 17918 df-nat 18007 |
This theorem is referenced by: fuco22natlem 48912 |
Copyright terms: Public domain | W3C validator |