| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > isnatd | Structured version Visualization version GIF version | ||
| Description: Property of being a natural transformation; deduction form. (Contributed by Zhi Wang, 29-Sep-2025.) |
| Ref | Expression |
|---|---|
| isnatd.1 | ⊢ 𝑁 = (𝐶 Nat 𝐷) |
| isnatd.b | ⊢ 𝐵 = (Base‘𝐶) |
| isnatd.h | ⊢ 𝐻 = (Hom ‘𝐶) |
| isnatd.j | ⊢ 𝐽 = (Hom ‘𝐷) |
| isnatd.o | ⊢ · = (comp‘𝐷) |
| isnatd.f | ⊢ (𝜑 → 𝐹(𝐶 Func 𝐷)𝐺) |
| isnatd.g | ⊢ (𝜑 → 𝐾(𝐶 Func 𝐷)𝐿) |
| isnatd.a | ⊢ (𝜑 → 𝐴 Fn 𝐵) |
| isnatd.2 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝐴‘𝑥) ∈ ((𝐹‘𝑥)𝐽(𝐾‘𝑥))) |
| isnatd.3 | ⊢ (((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) ∧ ℎ ∈ (𝑥𝐻𝑦)) → ((𝐴‘𝑦)(〈(𝐹‘𝑥), (𝐹‘𝑦)〉 · (𝐾‘𝑦))((𝑥𝐺𝑦)‘ℎ)) = (((𝑥𝐿𝑦)‘ℎ)(〈(𝐹‘𝑥), (𝐾‘𝑥)〉 · (𝐾‘𝑦))(𝐴‘𝑥))) |
| Ref | Expression |
|---|---|
| isnatd | ⊢ (𝜑 → 𝐴 ∈ (〈𝐹, 𝐺〉𝑁〈𝐾, 𝐿〉)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isnatd.a | . . . . 5 ⊢ (𝜑 → 𝐴 Fn 𝐵) | |
| 2 | dffn5 6875 | . . . . 5 ⊢ (𝐴 Fn 𝐵 ↔ 𝐴 = (𝑥 ∈ 𝐵 ↦ (𝐴‘𝑥))) | |
| 3 | 1, 2 | sylib 218 | . . . 4 ⊢ (𝜑 → 𝐴 = (𝑥 ∈ 𝐵 ↦ (𝐴‘𝑥))) |
| 4 | isnatd.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐶) | |
| 5 | 4 | fvexi 6831 | . . . . 5 ⊢ 𝐵 ∈ V |
| 6 | 5 | mptex 7152 | . . . 4 ⊢ (𝑥 ∈ 𝐵 ↦ (𝐴‘𝑥)) ∈ V |
| 7 | 3, 6 | eqeltrdi 2837 | . . 3 ⊢ (𝜑 → 𝐴 ∈ V) |
| 8 | isnatd.2 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝐴‘𝑥) ∈ ((𝐹‘𝑥)𝐽(𝐾‘𝑥))) | |
| 9 | 8 | ralrimiva 3122 | . . 3 ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 (𝐴‘𝑥) ∈ ((𝐹‘𝑥)𝐽(𝐾‘𝑥))) |
| 10 | elixp2 8820 | . . 3 ⊢ (𝐴 ∈ X𝑥 ∈ 𝐵 ((𝐹‘𝑥)𝐽(𝐾‘𝑥)) ↔ (𝐴 ∈ V ∧ 𝐴 Fn 𝐵 ∧ ∀𝑥 ∈ 𝐵 (𝐴‘𝑥) ∈ ((𝐹‘𝑥)𝐽(𝐾‘𝑥)))) | |
| 11 | 7, 1, 9, 10 | syl3anbrc 1344 | . 2 ⊢ (𝜑 → 𝐴 ∈ X𝑥 ∈ 𝐵 ((𝐹‘𝑥)𝐽(𝐾‘𝑥))) |
| 12 | isnatd.3 | . . . 4 ⊢ (((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) ∧ ℎ ∈ (𝑥𝐻𝑦)) → ((𝐴‘𝑦)(〈(𝐹‘𝑥), (𝐹‘𝑦)〉 · (𝐾‘𝑦))((𝑥𝐺𝑦)‘ℎ)) = (((𝑥𝐿𝑦)‘ℎ)(〈(𝐹‘𝑥), (𝐾‘𝑥)〉 · (𝐾‘𝑦))(𝐴‘𝑥))) | |
| 13 | 12 | ralrimiva 3122 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → ∀ℎ ∈ (𝑥𝐻𝑦)((𝐴‘𝑦)(〈(𝐹‘𝑥), (𝐹‘𝑦)〉 · (𝐾‘𝑦))((𝑥𝐺𝑦)‘ℎ)) = (((𝑥𝐿𝑦)‘ℎ)(〈(𝐹‘𝑥), (𝐾‘𝑥)〉 · (𝐾‘𝑦))(𝐴‘𝑥))) |
| 14 | 13 | ralrimivva 3173 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∀ℎ ∈ (𝑥𝐻𝑦)((𝐴‘𝑦)(〈(𝐹‘𝑥), (𝐹‘𝑦)〉 · (𝐾‘𝑦))((𝑥𝐺𝑦)‘ℎ)) = (((𝑥𝐿𝑦)‘ℎ)(〈(𝐹‘𝑥), (𝐾‘𝑥)〉 · (𝐾‘𝑦))(𝐴‘𝑥))) |
| 15 | isnatd.1 | . . 3 ⊢ 𝑁 = (𝐶 Nat 𝐷) | |
| 16 | isnatd.h | . . 3 ⊢ 𝐻 = (Hom ‘𝐶) | |
| 17 | isnatd.j | . . 3 ⊢ 𝐽 = (Hom ‘𝐷) | |
| 18 | isnatd.o | . . 3 ⊢ · = (comp‘𝐷) | |
| 19 | isnatd.f | . . 3 ⊢ (𝜑 → 𝐹(𝐶 Func 𝐷)𝐺) | |
| 20 | isnatd.g | . . 3 ⊢ (𝜑 → 𝐾(𝐶 Func 𝐷)𝐿) | |
| 21 | 15, 4, 16, 17, 18, 19, 20 | isnat 17849 | . 2 ⊢ (𝜑 → (𝐴 ∈ (〈𝐹, 𝐺〉𝑁〈𝐾, 𝐿〉) ↔ (𝐴 ∈ X𝑥 ∈ 𝐵 ((𝐹‘𝑥)𝐽(𝐾‘𝑥)) ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∀ℎ ∈ (𝑥𝐻𝑦)((𝐴‘𝑦)(〈(𝐹‘𝑥), (𝐹‘𝑦)〉 · (𝐾‘𝑦))((𝑥𝐺𝑦)‘ℎ)) = (((𝑥𝐿𝑦)‘ℎ)(〈(𝐹‘𝑥), (𝐾‘𝑥)〉 · (𝐾‘𝑦))(𝐴‘𝑥))))) |
| 22 | 11, 14, 21 | mpbir2and 713 | 1 ⊢ (𝜑 → 𝐴 ∈ (〈𝐹, 𝐺〉𝑁〈𝐾, 𝐿〉)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2110 ∀wral 3045 Vcvv 3434 〈cop 4580 class class class wbr 5089 ↦ cmpt 5170 Fn wfn 6472 ‘cfv 6477 (class class class)co 7341 Xcixp 8816 Basecbs 17112 Hom chom 17164 compcco 17165 Func cfunc 17753 Nat cnat 17843 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-10 2143 ax-11 2159 ax-12 2179 ax-ext 2702 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7663 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3345 df-rab 3394 df-v 3436 df-sbc 3740 df-csb 3849 df-dif 3903 df-un 3905 df-in 3907 df-ss 3917 df-nul 4282 df-if 4474 df-pw 4550 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4858 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6433 df-fun 6479 df-fn 6480 df-f 6481 df-f1 6482 df-fo 6483 df-f1o 6484 df-fv 6485 df-ov 7344 df-oprab 7345 df-mpo 7346 df-1st 7916 df-2nd 7917 df-ixp 8817 df-func 17757 df-nat 17845 |
| This theorem is referenced by: natoppf 49240 fuco22natlem 49356 |
| Copyright terms: Public domain | W3C validator |