| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > isnatd | Structured version Visualization version GIF version | ||
| Description: Property of being a natural transformation; deduction form. (Contributed by Zhi Wang, 29-Sep-2025.) |
| Ref | Expression |
|---|---|
| isnatd.1 | ⊢ 𝑁 = (𝐶 Nat 𝐷) |
| isnatd.b | ⊢ 𝐵 = (Base‘𝐶) |
| isnatd.h | ⊢ 𝐻 = (Hom ‘𝐶) |
| isnatd.j | ⊢ 𝐽 = (Hom ‘𝐷) |
| isnatd.o | ⊢ · = (comp‘𝐷) |
| isnatd.f | ⊢ (𝜑 → 𝐹(𝐶 Func 𝐷)𝐺) |
| isnatd.g | ⊢ (𝜑 → 𝐾(𝐶 Func 𝐷)𝐿) |
| isnatd.a | ⊢ (𝜑 → 𝐴 Fn 𝐵) |
| isnatd.2 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝐴‘𝑥) ∈ ((𝐹‘𝑥)𝐽(𝐾‘𝑥))) |
| isnatd.3 | ⊢ (((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) ∧ ℎ ∈ (𝑥𝐻𝑦)) → ((𝐴‘𝑦)(〈(𝐹‘𝑥), (𝐹‘𝑦)〉 · (𝐾‘𝑦))((𝑥𝐺𝑦)‘ℎ)) = (((𝑥𝐿𝑦)‘ℎ)(〈(𝐹‘𝑥), (𝐾‘𝑥)〉 · (𝐾‘𝑦))(𝐴‘𝑥))) |
| Ref | Expression |
|---|---|
| isnatd | ⊢ (𝜑 → 𝐴 ∈ (〈𝐹, 𝐺〉𝑁〈𝐾, 𝐿〉)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isnatd.a | . . . . 5 ⊢ (𝜑 → 𝐴 Fn 𝐵) | |
| 2 | dffn5 6889 | . . . . 5 ⊢ (𝐴 Fn 𝐵 ↔ 𝐴 = (𝑥 ∈ 𝐵 ↦ (𝐴‘𝑥))) | |
| 3 | 1, 2 | sylib 218 | . . . 4 ⊢ (𝜑 → 𝐴 = (𝑥 ∈ 𝐵 ↦ (𝐴‘𝑥))) |
| 4 | isnatd.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐶) | |
| 5 | 4 | fvexi 6845 | . . . . 5 ⊢ 𝐵 ∈ V |
| 6 | 5 | mptex 7166 | . . . 4 ⊢ (𝑥 ∈ 𝐵 ↦ (𝐴‘𝑥)) ∈ V |
| 7 | 3, 6 | eqeltrdi 2841 | . . 3 ⊢ (𝜑 → 𝐴 ∈ V) |
| 8 | isnatd.2 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝐴‘𝑥) ∈ ((𝐹‘𝑥)𝐽(𝐾‘𝑥))) | |
| 9 | 8 | ralrimiva 3126 | . . 3 ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 (𝐴‘𝑥) ∈ ((𝐹‘𝑥)𝐽(𝐾‘𝑥))) |
| 10 | elixp2 8834 | . . 3 ⊢ (𝐴 ∈ X𝑥 ∈ 𝐵 ((𝐹‘𝑥)𝐽(𝐾‘𝑥)) ↔ (𝐴 ∈ V ∧ 𝐴 Fn 𝐵 ∧ ∀𝑥 ∈ 𝐵 (𝐴‘𝑥) ∈ ((𝐹‘𝑥)𝐽(𝐾‘𝑥)))) | |
| 11 | 7, 1, 9, 10 | syl3anbrc 1344 | . 2 ⊢ (𝜑 → 𝐴 ∈ X𝑥 ∈ 𝐵 ((𝐹‘𝑥)𝐽(𝐾‘𝑥))) |
| 12 | isnatd.3 | . . . 4 ⊢ (((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) ∧ ℎ ∈ (𝑥𝐻𝑦)) → ((𝐴‘𝑦)(〈(𝐹‘𝑥), (𝐹‘𝑦)〉 · (𝐾‘𝑦))((𝑥𝐺𝑦)‘ℎ)) = (((𝑥𝐿𝑦)‘ℎ)(〈(𝐹‘𝑥), (𝐾‘𝑥)〉 · (𝐾‘𝑦))(𝐴‘𝑥))) | |
| 13 | 12 | ralrimiva 3126 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → ∀ℎ ∈ (𝑥𝐻𝑦)((𝐴‘𝑦)(〈(𝐹‘𝑥), (𝐹‘𝑦)〉 · (𝐾‘𝑦))((𝑥𝐺𝑦)‘ℎ)) = (((𝑥𝐿𝑦)‘ℎ)(〈(𝐹‘𝑥), (𝐾‘𝑥)〉 · (𝐾‘𝑦))(𝐴‘𝑥))) |
| 14 | 13 | ralrimivva 3177 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∀ℎ ∈ (𝑥𝐻𝑦)((𝐴‘𝑦)(〈(𝐹‘𝑥), (𝐹‘𝑦)〉 · (𝐾‘𝑦))((𝑥𝐺𝑦)‘ℎ)) = (((𝑥𝐿𝑦)‘ℎ)(〈(𝐹‘𝑥), (𝐾‘𝑥)〉 · (𝐾‘𝑦))(𝐴‘𝑥))) |
| 15 | isnatd.1 | . . 3 ⊢ 𝑁 = (𝐶 Nat 𝐷) | |
| 16 | isnatd.h | . . 3 ⊢ 𝐻 = (Hom ‘𝐶) | |
| 17 | isnatd.j | . . 3 ⊢ 𝐽 = (Hom ‘𝐷) | |
| 18 | isnatd.o | . . 3 ⊢ · = (comp‘𝐷) | |
| 19 | isnatd.f | . . 3 ⊢ (𝜑 → 𝐹(𝐶 Func 𝐷)𝐺) | |
| 20 | isnatd.g | . . 3 ⊢ (𝜑 → 𝐾(𝐶 Func 𝐷)𝐿) | |
| 21 | 15, 4, 16, 17, 18, 19, 20 | isnat 17867 | . 2 ⊢ (𝜑 → (𝐴 ∈ (〈𝐹, 𝐺〉𝑁〈𝐾, 𝐿〉) ↔ (𝐴 ∈ X𝑥 ∈ 𝐵 ((𝐹‘𝑥)𝐽(𝐾‘𝑥)) ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∀ℎ ∈ (𝑥𝐻𝑦)((𝐴‘𝑦)(〈(𝐹‘𝑥), (𝐹‘𝑦)〉 · (𝐾‘𝑦))((𝑥𝐺𝑦)‘ℎ)) = (((𝑥𝐿𝑦)‘ℎ)(〈(𝐹‘𝑥), (𝐾‘𝑥)〉 · (𝐾‘𝑦))(𝐴‘𝑥))))) |
| 22 | 11, 14, 21 | mpbir2and 713 | 1 ⊢ (𝜑 → 𝐴 ∈ (〈𝐹, 𝐺〉𝑁〈𝐾, 𝐿〉)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ∀wral 3049 Vcvv 3438 〈cop 4583 class class class wbr 5095 ↦ cmpt 5176 Fn wfn 6484 ‘cfv 6489 (class class class)co 7355 Xcixp 8830 Basecbs 17130 Hom chom 17182 compcco 17183 Func cfunc 17771 Nat cnat 17861 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2883 df-ne 2931 df-ral 3050 df-rex 3059 df-reu 3349 df-rab 3398 df-v 3440 df-sbc 3739 df-csb 3848 df-dif 3902 df-un 3904 df-in 3906 df-ss 3916 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5516 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-ov 7358 df-oprab 7359 df-mpo 7360 df-1st 7930 df-2nd 7931 df-ixp 8831 df-func 17775 df-nat 17863 |
| This theorem is referenced by: natoppf 49344 fuco22natlem 49460 |
| Copyright terms: Public domain | W3C validator |