MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isneip Structured version   Visualization version   GIF version

Theorem isneip 23113
Description: The predicate "the class 𝑁 is a neighborhood of point 𝑃". (Contributed by NM, 26-Feb-2007.)
Hypothesis
Ref Expression
neifval.1 𝑋 = 𝐽
Assertion
Ref Expression
isneip ((𝐽 ∈ Top ∧ 𝑃𝑋) → (𝑁 ∈ ((nei‘𝐽)‘{𝑃}) ↔ (𝑁𝑋 ∧ ∃𝑔𝐽 (𝑃𝑔𝑔𝑁))))
Distinct variable groups:   𝑔,𝐽   𝑔,𝑁   𝑃,𝑔   𝑔,𝑋

Proof of Theorem isneip
StepHypRef Expression
1 snssi 4808 . . 3 (𝑃𝑋 → {𝑃} ⊆ 𝑋)
2 neifval.1 . . . 4 𝑋 = 𝐽
32isnei 23111 . . 3 ((𝐽 ∈ Top ∧ {𝑃} ⊆ 𝑋) → (𝑁 ∈ ((nei‘𝐽)‘{𝑃}) ↔ (𝑁𝑋 ∧ ∃𝑔𝐽 ({𝑃} ⊆ 𝑔𝑔𝑁))))
41, 3sylan2 593 . 2 ((𝐽 ∈ Top ∧ 𝑃𝑋) → (𝑁 ∈ ((nei‘𝐽)‘{𝑃}) ↔ (𝑁𝑋 ∧ ∃𝑔𝐽 ({𝑃} ⊆ 𝑔𝑔𝑁))))
5 snssg 4783 . . . . . 6 (𝑃𝑋 → (𝑃𝑔 ↔ {𝑃} ⊆ 𝑔))
65anbi1d 631 . . . . 5 (𝑃𝑋 → ((𝑃𝑔𝑔𝑁) ↔ ({𝑃} ⊆ 𝑔𝑔𝑁)))
76rexbidv 3179 . . . 4 (𝑃𝑋 → (∃𝑔𝐽 (𝑃𝑔𝑔𝑁) ↔ ∃𝑔𝐽 ({𝑃} ⊆ 𝑔𝑔𝑁)))
87anbi2d 630 . . 3 (𝑃𝑋 → ((𝑁𝑋 ∧ ∃𝑔𝐽 (𝑃𝑔𝑔𝑁)) ↔ (𝑁𝑋 ∧ ∃𝑔𝐽 ({𝑃} ⊆ 𝑔𝑔𝑁))))
98adantl 481 . 2 ((𝐽 ∈ Top ∧ 𝑃𝑋) → ((𝑁𝑋 ∧ ∃𝑔𝐽 (𝑃𝑔𝑔𝑁)) ↔ (𝑁𝑋 ∧ ∃𝑔𝐽 ({𝑃} ⊆ 𝑔𝑔𝑁))))
104, 9bitr4d 282 1 ((𝐽 ∈ Top ∧ 𝑃𝑋) → (𝑁 ∈ ((nei‘𝐽)‘{𝑃}) ↔ (𝑁𝑋 ∧ ∃𝑔𝐽 (𝑃𝑔𝑔𝑁))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  wrex 3070  wss 3951  {csn 4626   cuni 4907  cfv 6561  Topctop 22899  neicnei 23105
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-top 22900  df-nei 23106
This theorem is referenced by:  neips  23121  neindisj  23125  neindisj2  23131  neiptopnei  23140  cnpnei  23272  fbflim2  23985  cnpflf2  24008  neibl  24514  neibastop2  36362  neibastop3  36363
  Copyright terms: Public domain W3C validator