MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isneip Structured version   Visualization version   GIF version

Theorem isneip 21956
Description: The predicate "the class 𝑁 is a neighborhood of point 𝑃". (Contributed by NM, 26-Feb-2007.)
Hypothesis
Ref Expression
neifval.1 𝑋 = 𝐽
Assertion
Ref Expression
isneip ((𝐽 ∈ Top ∧ 𝑃𝑋) → (𝑁 ∈ ((nei‘𝐽)‘{𝑃}) ↔ (𝑁𝑋 ∧ ∃𝑔𝐽 (𝑃𝑔𝑔𝑁))))
Distinct variable groups:   𝑔,𝐽   𝑔,𝑁   𝑃,𝑔   𝑔,𝑋

Proof of Theorem isneip
StepHypRef Expression
1 snssi 4707 . . 3 (𝑃𝑋 → {𝑃} ⊆ 𝑋)
2 neifval.1 . . . 4 𝑋 = 𝐽
32isnei 21954 . . 3 ((𝐽 ∈ Top ∧ {𝑃} ⊆ 𝑋) → (𝑁 ∈ ((nei‘𝐽)‘{𝑃}) ↔ (𝑁𝑋 ∧ ∃𝑔𝐽 ({𝑃} ⊆ 𝑔𝑔𝑁))))
41, 3sylan2 596 . 2 ((𝐽 ∈ Top ∧ 𝑃𝑋) → (𝑁 ∈ ((nei‘𝐽)‘{𝑃}) ↔ (𝑁𝑋 ∧ ∃𝑔𝐽 ({𝑃} ⊆ 𝑔𝑔𝑁))))
5 snssg 4684 . . . . . 6 (𝑃𝑋 → (𝑃𝑔 ↔ {𝑃} ⊆ 𝑔))
65anbi1d 633 . . . . 5 (𝑃𝑋 → ((𝑃𝑔𝑔𝑁) ↔ ({𝑃} ⊆ 𝑔𝑔𝑁)))
76rexbidv 3206 . . . 4 (𝑃𝑋 → (∃𝑔𝐽 (𝑃𝑔𝑔𝑁) ↔ ∃𝑔𝐽 ({𝑃} ⊆ 𝑔𝑔𝑁)))
87anbi2d 632 . . 3 (𝑃𝑋 → ((𝑁𝑋 ∧ ∃𝑔𝐽 (𝑃𝑔𝑔𝑁)) ↔ (𝑁𝑋 ∧ ∃𝑔𝐽 ({𝑃} ⊆ 𝑔𝑔𝑁))))
98adantl 485 . 2 ((𝐽 ∈ Top ∧ 𝑃𝑋) → ((𝑁𝑋 ∧ ∃𝑔𝐽 (𝑃𝑔𝑔𝑁)) ↔ (𝑁𝑋 ∧ ∃𝑔𝐽 ({𝑃} ⊆ 𝑔𝑔𝑁))))
104, 9bitr4d 285 1 ((𝐽 ∈ Top ∧ 𝑃𝑋) → (𝑁 ∈ ((nei‘𝐽)‘{𝑃}) ↔ (𝑁𝑋 ∧ ∃𝑔𝐽 (𝑃𝑔𝑔𝑁))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1543  wcel 2112  wrex 3052  wss 3853  {csn 4527   cuni 4805  cfv 6358  Topctop 21744  neicnei 21948
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2708  ax-rep 5164  ax-sep 5177  ax-nul 5184  ax-pow 5243  ax-pr 5307
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2728  df-clel 2809  df-nfc 2879  df-ne 2933  df-ral 3056  df-rex 3057  df-reu 3058  df-rab 3060  df-v 3400  df-sbc 3684  df-csb 3799  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-nul 4224  df-if 4426  df-pw 4501  df-sn 4528  df-pr 4530  df-op 4534  df-uni 4806  df-iun 4892  df-br 5040  df-opab 5102  df-mpt 5121  df-id 5440  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-iota 6316  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-top 21745  df-nei 21949
This theorem is referenced by:  neips  21964  neindisj  21968  neindisj2  21974  neiptopnei  21983  cnpnei  22115  fbflim2  22828  cnpflf2  22851  neibl  23353  neibastop2  34236  neibastop3  34237
  Copyright terms: Public domain W3C validator