Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > isneip | Structured version Visualization version GIF version |
Description: The predicate "the class 𝑁 is a neighborhood of point 𝑃". (Contributed by NM, 26-Feb-2007.) |
Ref | Expression |
---|---|
neifval.1 | ⊢ 𝑋 = ∪ 𝐽 |
Ref | Expression |
---|---|
isneip | ⊢ ((𝐽 ∈ Top ∧ 𝑃 ∈ 𝑋) → (𝑁 ∈ ((nei‘𝐽)‘{𝑃}) ↔ (𝑁 ⊆ 𝑋 ∧ ∃𝑔 ∈ 𝐽 (𝑃 ∈ 𝑔 ∧ 𝑔 ⊆ 𝑁)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | snssi 4741 | . . 3 ⊢ (𝑃 ∈ 𝑋 → {𝑃} ⊆ 𝑋) | |
2 | neifval.1 | . . . 4 ⊢ 𝑋 = ∪ 𝐽 | |
3 | 2 | isnei 22254 | . . 3 ⊢ ((𝐽 ∈ Top ∧ {𝑃} ⊆ 𝑋) → (𝑁 ∈ ((nei‘𝐽)‘{𝑃}) ↔ (𝑁 ⊆ 𝑋 ∧ ∃𝑔 ∈ 𝐽 ({𝑃} ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑁)))) |
4 | 1, 3 | sylan2 593 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝑃 ∈ 𝑋) → (𝑁 ∈ ((nei‘𝐽)‘{𝑃}) ↔ (𝑁 ⊆ 𝑋 ∧ ∃𝑔 ∈ 𝐽 ({𝑃} ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑁)))) |
5 | snssg 4718 | . . . . . 6 ⊢ (𝑃 ∈ 𝑋 → (𝑃 ∈ 𝑔 ↔ {𝑃} ⊆ 𝑔)) | |
6 | 5 | anbi1d 630 | . . . . 5 ⊢ (𝑃 ∈ 𝑋 → ((𝑃 ∈ 𝑔 ∧ 𝑔 ⊆ 𝑁) ↔ ({𝑃} ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑁))) |
7 | 6 | rexbidv 3226 | . . . 4 ⊢ (𝑃 ∈ 𝑋 → (∃𝑔 ∈ 𝐽 (𝑃 ∈ 𝑔 ∧ 𝑔 ⊆ 𝑁) ↔ ∃𝑔 ∈ 𝐽 ({𝑃} ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑁))) |
8 | 7 | anbi2d 629 | . . 3 ⊢ (𝑃 ∈ 𝑋 → ((𝑁 ⊆ 𝑋 ∧ ∃𝑔 ∈ 𝐽 (𝑃 ∈ 𝑔 ∧ 𝑔 ⊆ 𝑁)) ↔ (𝑁 ⊆ 𝑋 ∧ ∃𝑔 ∈ 𝐽 ({𝑃} ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑁)))) |
9 | 8 | adantl 482 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝑃 ∈ 𝑋) → ((𝑁 ⊆ 𝑋 ∧ ∃𝑔 ∈ 𝐽 (𝑃 ∈ 𝑔 ∧ 𝑔 ⊆ 𝑁)) ↔ (𝑁 ⊆ 𝑋 ∧ ∃𝑔 ∈ 𝐽 ({𝑃} ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑁)))) |
10 | 4, 9 | bitr4d 281 | 1 ⊢ ((𝐽 ∈ Top ∧ 𝑃 ∈ 𝑋) → (𝑁 ∈ ((nei‘𝐽)‘{𝑃}) ↔ (𝑁 ⊆ 𝑋 ∧ ∃𝑔 ∈ 𝐽 (𝑃 ∈ 𝑔 ∧ 𝑔 ⊆ 𝑁)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ∃wrex 3065 ⊆ wss 3887 {csn 4561 ∪ cuni 4839 ‘cfv 6433 Topctop 22042 neicnei 22248 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-top 22043 df-nei 22249 |
This theorem is referenced by: neips 22264 neindisj 22268 neindisj2 22274 neiptopnei 22283 cnpnei 22415 fbflim2 23128 cnpflf2 23151 neibl 23657 neibastop2 34550 neibastop3 34551 |
Copyright terms: Public domain | W3C validator |