MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isneip Structured version   Visualization version   GIF version

Theorem isneip 22256
Description: The predicate "the class 𝑁 is a neighborhood of point 𝑃". (Contributed by NM, 26-Feb-2007.)
Hypothesis
Ref Expression
neifval.1 𝑋 = 𝐽
Assertion
Ref Expression
isneip ((𝐽 ∈ Top ∧ 𝑃𝑋) → (𝑁 ∈ ((nei‘𝐽)‘{𝑃}) ↔ (𝑁𝑋 ∧ ∃𝑔𝐽 (𝑃𝑔𝑔𝑁))))
Distinct variable groups:   𝑔,𝐽   𝑔,𝑁   𝑃,𝑔   𝑔,𝑋

Proof of Theorem isneip
StepHypRef Expression
1 snssi 4741 . . 3 (𝑃𝑋 → {𝑃} ⊆ 𝑋)
2 neifval.1 . . . 4 𝑋 = 𝐽
32isnei 22254 . . 3 ((𝐽 ∈ Top ∧ {𝑃} ⊆ 𝑋) → (𝑁 ∈ ((nei‘𝐽)‘{𝑃}) ↔ (𝑁𝑋 ∧ ∃𝑔𝐽 ({𝑃} ⊆ 𝑔𝑔𝑁))))
41, 3sylan2 593 . 2 ((𝐽 ∈ Top ∧ 𝑃𝑋) → (𝑁 ∈ ((nei‘𝐽)‘{𝑃}) ↔ (𝑁𝑋 ∧ ∃𝑔𝐽 ({𝑃} ⊆ 𝑔𝑔𝑁))))
5 snssg 4718 . . . . . 6 (𝑃𝑋 → (𝑃𝑔 ↔ {𝑃} ⊆ 𝑔))
65anbi1d 630 . . . . 5 (𝑃𝑋 → ((𝑃𝑔𝑔𝑁) ↔ ({𝑃} ⊆ 𝑔𝑔𝑁)))
76rexbidv 3226 . . . 4 (𝑃𝑋 → (∃𝑔𝐽 (𝑃𝑔𝑔𝑁) ↔ ∃𝑔𝐽 ({𝑃} ⊆ 𝑔𝑔𝑁)))
87anbi2d 629 . . 3 (𝑃𝑋 → ((𝑁𝑋 ∧ ∃𝑔𝐽 (𝑃𝑔𝑔𝑁)) ↔ (𝑁𝑋 ∧ ∃𝑔𝐽 ({𝑃} ⊆ 𝑔𝑔𝑁))))
98adantl 482 . 2 ((𝐽 ∈ Top ∧ 𝑃𝑋) → ((𝑁𝑋 ∧ ∃𝑔𝐽 (𝑃𝑔𝑔𝑁)) ↔ (𝑁𝑋 ∧ ∃𝑔𝐽 ({𝑃} ⊆ 𝑔𝑔𝑁))))
104, 9bitr4d 281 1 ((𝐽 ∈ Top ∧ 𝑃𝑋) → (𝑁 ∈ ((nei‘𝐽)‘{𝑃}) ↔ (𝑁𝑋 ∧ ∃𝑔𝐽 (𝑃𝑔𝑔𝑁))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  wrex 3065  wss 3887  {csn 4561   cuni 4839  cfv 6433  Topctop 22042  neicnei 22248
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-top 22043  df-nei 22249
This theorem is referenced by:  neips  22264  neindisj  22268  neindisj2  22274  neiptopnei  22283  cnpnei  22415  fbflim2  23128  cnpflf2  23151  neibl  23657  neibastop2  34550  neibastop3  34551
  Copyright terms: Public domain W3C validator