MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isoco Structured version   Visualization version   GIF version

Theorem isoco 17406
Description: The composition of two isomorphisms is an isomorphism. Proposition 3.14(2) of [Adamek] p. 29. (Contributed by Mario Carneiro, 2-Jan-2017.)
Hypotheses
Ref Expression
isoco.b 𝐵 = (Base‘𝐶)
isoco.o · = (comp‘𝐶)
isoco.n 𝐼 = (Iso‘𝐶)
isoco.c (𝜑𝐶 ∈ Cat)
isoco.x (𝜑𝑋𝐵)
isoco.y (𝜑𝑌𝐵)
isoco.z (𝜑𝑍𝐵)
isoco.f (𝜑𝐹 ∈ (𝑋𝐼𝑌))
isoco.g (𝜑𝐺 ∈ (𝑌𝐼𝑍))
Assertion
Ref Expression
isoco (𝜑 → (𝐺(⟨𝑋, 𝑌· 𝑍)𝐹) ∈ (𝑋𝐼𝑍))

Proof of Theorem isoco
StepHypRef Expression
1 isoco.b . 2 𝐵 = (Base‘𝐶)
2 eqid 2738 . 2 (Inv‘𝐶) = (Inv‘𝐶)
3 isoco.c . 2 (𝜑𝐶 ∈ Cat)
4 isoco.x . 2 (𝜑𝑋𝐵)
5 isoco.z . 2 (𝜑𝑍𝐵)
6 isoco.n . 2 𝐼 = (Iso‘𝐶)
7 isoco.y . . 3 (𝜑𝑌𝐵)
8 isoco.f . . 3 (𝜑𝐹 ∈ (𝑋𝐼𝑌))
9 isoco.o . . 3 · = (comp‘𝐶)
10 isoco.g . . 3 (𝜑𝐺 ∈ (𝑌𝐼𝑍))
111, 2, 3, 4, 7, 6, 8, 9, 5, 10invco 17400 . 2 (𝜑 → (𝐺(⟨𝑋, 𝑌· 𝑍)𝐹)(𝑋(Inv‘𝐶)𝑍)(((𝑋(Inv‘𝐶)𝑌)‘𝐹)(⟨𝑍, 𝑌· 𝑋)((𝑌(Inv‘𝐶)𝑍)‘𝐺)))
121, 2, 3, 4, 5, 6, 11inviso1 17395 1 (𝜑 → (𝐺(⟨𝑋, 𝑌· 𝑍)𝐹) ∈ (𝑋𝐼𝑍))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2108  cop 4564  cfv 6418  (class class class)co 7255  Basecbs 16840  compcco 16900  Catccat 17290  Invcinv 17374  Isociso 17375
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-1st 7804  df-2nd 7805  df-cat 17294  df-cid 17295  df-sect 17376  df-inv 17377  df-iso 17378
This theorem is referenced by:  cictr  17434
  Copyright terms: Public domain W3C validator