| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > isoco | Structured version Visualization version GIF version | ||
| Description: The composition of two isomorphisms is an isomorphism. Proposition 3.14(2) of [Adamek] p. 29. (Contributed by Mario Carneiro, 2-Jan-2017.) |
| Ref | Expression |
|---|---|
| isoco.b | ⊢ 𝐵 = (Base‘𝐶) |
| isoco.o | ⊢ · = (comp‘𝐶) |
| isoco.n | ⊢ 𝐼 = (Iso‘𝐶) |
| isoco.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
| isoco.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| isoco.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| isoco.z | ⊢ (𝜑 → 𝑍 ∈ 𝐵) |
| isoco.f | ⊢ (𝜑 → 𝐹 ∈ (𝑋𝐼𝑌)) |
| isoco.g | ⊢ (𝜑 → 𝐺 ∈ (𝑌𝐼𝑍)) |
| Ref | Expression |
|---|---|
| isoco | ⊢ (𝜑 → (𝐺(〈𝑋, 𝑌〉 · 𝑍)𝐹) ∈ (𝑋𝐼𝑍)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isoco.b | . 2 ⊢ 𝐵 = (Base‘𝐶) | |
| 2 | eqid 2734 | . 2 ⊢ (Inv‘𝐶) = (Inv‘𝐶) | |
| 3 | isoco.c | . 2 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
| 4 | isoco.x | . 2 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 5 | isoco.z | . 2 ⊢ (𝜑 → 𝑍 ∈ 𝐵) | |
| 6 | isoco.n | . 2 ⊢ 𝐼 = (Iso‘𝐶) | |
| 7 | isoco.y | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 8 | isoco.f | . . 3 ⊢ (𝜑 → 𝐹 ∈ (𝑋𝐼𝑌)) | |
| 9 | isoco.o | . . 3 ⊢ · = (comp‘𝐶) | |
| 10 | isoco.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ (𝑌𝐼𝑍)) | |
| 11 | 1, 2, 3, 4, 7, 6, 8, 9, 5, 10 | invco 17786 | . 2 ⊢ (𝜑 → (𝐺(〈𝑋, 𝑌〉 · 𝑍)𝐹)(𝑋(Inv‘𝐶)𝑍)(((𝑋(Inv‘𝐶)𝑌)‘𝐹)(〈𝑍, 𝑌〉 · 𝑋)((𝑌(Inv‘𝐶)𝑍)‘𝐺))) |
| 12 | 1, 2, 3, 4, 5, 6, 11 | inviso1 17781 | 1 ⊢ (𝜑 → (𝐺(〈𝑋, 𝑌〉 · 𝑍)𝐹) ∈ (𝑋𝐼𝑍)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2107 〈cop 4612 ‘cfv 6541 (class class class)co 7413 Basecbs 17229 compcco 17285 Catccat 17678 Invcinv 17760 Isociso 17761 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5259 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7737 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-iun 4973 df-br 5124 df-opab 5186 df-mpt 5206 df-id 5558 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-riota 7370 df-ov 7416 df-oprab 7417 df-mpo 7418 df-1st 7996 df-2nd 7997 df-cat 17682 df-cid 17683 df-sect 17762 df-inv 17763 df-iso 17764 |
| This theorem is referenced by: cictr 17820 |
| Copyright terms: Public domain | W3C validator |