| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > isoco | Structured version Visualization version GIF version | ||
| Description: The composition of two isomorphisms is an isomorphism. Proposition 3.14(2) of [Adamek] p. 29. (Contributed by Mario Carneiro, 2-Jan-2017.) |
| Ref | Expression |
|---|---|
| isoco.b | ⊢ 𝐵 = (Base‘𝐶) |
| isoco.o | ⊢ · = (comp‘𝐶) |
| isoco.n | ⊢ 𝐼 = (Iso‘𝐶) |
| isoco.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
| isoco.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| isoco.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| isoco.z | ⊢ (𝜑 → 𝑍 ∈ 𝐵) |
| isoco.f | ⊢ (𝜑 → 𝐹 ∈ (𝑋𝐼𝑌)) |
| isoco.g | ⊢ (𝜑 → 𝐺 ∈ (𝑌𝐼𝑍)) |
| Ref | Expression |
|---|---|
| isoco | ⊢ (𝜑 → (𝐺(〈𝑋, 𝑌〉 · 𝑍)𝐹) ∈ (𝑋𝐼𝑍)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isoco.b | . 2 ⊢ 𝐵 = (Base‘𝐶) | |
| 2 | eqid 2736 | . 2 ⊢ (Inv‘𝐶) = (Inv‘𝐶) | |
| 3 | isoco.c | . 2 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
| 4 | isoco.x | . 2 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 5 | isoco.z | . 2 ⊢ (𝜑 → 𝑍 ∈ 𝐵) | |
| 6 | isoco.n | . 2 ⊢ 𝐼 = (Iso‘𝐶) | |
| 7 | isoco.y | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 8 | isoco.f | . . 3 ⊢ (𝜑 → 𝐹 ∈ (𝑋𝐼𝑌)) | |
| 9 | isoco.o | . . 3 ⊢ · = (comp‘𝐶) | |
| 10 | isoco.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ (𝑌𝐼𝑍)) | |
| 11 | 1, 2, 3, 4, 7, 6, 8, 9, 5, 10 | invco 17789 | . 2 ⊢ (𝜑 → (𝐺(〈𝑋, 𝑌〉 · 𝑍)𝐹)(𝑋(Inv‘𝐶)𝑍)(((𝑋(Inv‘𝐶)𝑌)‘𝐹)(〈𝑍, 𝑌〉 · 𝑋)((𝑌(Inv‘𝐶)𝑍)‘𝐺))) |
| 12 | 1, 2, 3, 4, 5, 6, 11 | inviso1 17784 | 1 ⊢ (𝜑 → (𝐺(〈𝑋, 𝑌〉 · 𝑍)𝐹) ∈ (𝑋𝐼𝑍)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 〈cop 4612 ‘cfv 6536 (class class class)co 7410 Basecbs 17233 compcco 17288 Catccat 17681 Invcinv 17763 Isociso 17764 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-1st 7993 df-2nd 7994 df-cat 17685 df-cid 17686 df-sect 17765 df-inv 17766 df-iso 17767 |
| This theorem is referenced by: cictr 17823 |
| Copyright terms: Public domain | W3C validator |