| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > isoco | Structured version Visualization version GIF version | ||
| Description: The composition of two isomorphisms is an isomorphism. Proposition 3.14(2) of [Adamek] p. 29. (Contributed by Mario Carneiro, 2-Jan-2017.) |
| Ref | Expression |
|---|---|
| isoco.b | ⊢ 𝐵 = (Base‘𝐶) |
| isoco.o | ⊢ · = (comp‘𝐶) |
| isoco.n | ⊢ 𝐼 = (Iso‘𝐶) |
| isoco.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
| isoco.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| isoco.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| isoco.z | ⊢ (𝜑 → 𝑍 ∈ 𝐵) |
| isoco.f | ⊢ (𝜑 → 𝐹 ∈ (𝑋𝐼𝑌)) |
| isoco.g | ⊢ (𝜑 → 𝐺 ∈ (𝑌𝐼𝑍)) |
| Ref | Expression |
|---|---|
| isoco | ⊢ (𝜑 → (𝐺(〈𝑋, 𝑌〉 · 𝑍)𝐹) ∈ (𝑋𝐼𝑍)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isoco.b | . 2 ⊢ 𝐵 = (Base‘𝐶) | |
| 2 | eqid 2730 | . 2 ⊢ (Inv‘𝐶) = (Inv‘𝐶) | |
| 3 | isoco.c | . 2 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
| 4 | isoco.x | . 2 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 5 | isoco.z | . 2 ⊢ (𝜑 → 𝑍 ∈ 𝐵) | |
| 6 | isoco.n | . 2 ⊢ 𝐼 = (Iso‘𝐶) | |
| 7 | isoco.y | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 8 | isoco.f | . . 3 ⊢ (𝜑 → 𝐹 ∈ (𝑋𝐼𝑌)) | |
| 9 | isoco.o | . . 3 ⊢ · = (comp‘𝐶) | |
| 10 | isoco.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ (𝑌𝐼𝑍)) | |
| 11 | 1, 2, 3, 4, 7, 6, 8, 9, 5, 10 | invco 17740 | . 2 ⊢ (𝜑 → (𝐺(〈𝑋, 𝑌〉 · 𝑍)𝐹)(𝑋(Inv‘𝐶)𝑍)(((𝑋(Inv‘𝐶)𝑌)‘𝐹)(〈𝑍, 𝑌〉 · 𝑋)((𝑌(Inv‘𝐶)𝑍)‘𝐺))) |
| 12 | 1, 2, 3, 4, 5, 6, 11 | inviso1 17735 | 1 ⊢ (𝜑 → (𝐺(〈𝑋, 𝑌〉 · 𝑍)𝐹) ∈ (𝑋𝐼𝑍)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 〈cop 4598 ‘cfv 6514 (class class class)co 7390 Basecbs 17186 compcco 17239 Catccat 17632 Invcinv 17714 Isociso 17715 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-1st 7971 df-2nd 7972 df-cat 17636 df-cid 17637 df-sect 17716 df-inv 17717 df-iso 17718 |
| This theorem is referenced by: cictr 17774 |
| Copyright terms: Public domain | W3C validator |