Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > isoco | Structured version Visualization version GIF version |
Description: The composition of two isomorphisms is an isomorphism. Proposition 3.14(2) of [Adamek] p. 29. (Contributed by Mario Carneiro, 2-Jan-2017.) |
Ref | Expression |
---|---|
isoco.b | ⊢ 𝐵 = (Base‘𝐶) |
isoco.o | ⊢ · = (comp‘𝐶) |
isoco.n | ⊢ 𝐼 = (Iso‘𝐶) |
isoco.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
isoco.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
isoco.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
isoco.z | ⊢ (𝜑 → 𝑍 ∈ 𝐵) |
isoco.f | ⊢ (𝜑 → 𝐹 ∈ (𝑋𝐼𝑌)) |
isoco.g | ⊢ (𝜑 → 𝐺 ∈ (𝑌𝐼𝑍)) |
Ref | Expression |
---|---|
isoco | ⊢ (𝜑 → (𝐺(〈𝑋, 𝑌〉 · 𝑍)𝐹) ∈ (𝑋𝐼𝑍)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isoco.b | . 2 ⊢ 𝐵 = (Base‘𝐶) | |
2 | eqid 2738 | . 2 ⊢ (Inv‘𝐶) = (Inv‘𝐶) | |
3 | isoco.c | . 2 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
4 | isoco.x | . 2 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
5 | isoco.z | . 2 ⊢ (𝜑 → 𝑍 ∈ 𝐵) | |
6 | isoco.n | . 2 ⊢ 𝐼 = (Iso‘𝐶) | |
7 | isoco.y | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
8 | isoco.f | . . 3 ⊢ (𝜑 → 𝐹 ∈ (𝑋𝐼𝑌)) | |
9 | isoco.o | . . 3 ⊢ · = (comp‘𝐶) | |
10 | isoco.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ (𝑌𝐼𝑍)) | |
11 | 1, 2, 3, 4, 7, 6, 8, 9, 5, 10 | invco 17483 | . 2 ⊢ (𝜑 → (𝐺(〈𝑋, 𝑌〉 · 𝑍)𝐹)(𝑋(Inv‘𝐶)𝑍)(((𝑋(Inv‘𝐶)𝑌)‘𝐹)(〈𝑍, 𝑌〉 · 𝑋)((𝑌(Inv‘𝐶)𝑍)‘𝐺))) |
12 | 1, 2, 3, 4, 5, 6, 11 | inviso1 17478 | 1 ⊢ (𝜑 → (𝐺(〈𝑋, 𝑌〉 · 𝑍)𝐹) ∈ (𝑋𝐼𝑍)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2106 〈cop 4567 ‘cfv 6433 (class class class)co 7275 Basecbs 16912 compcco 16974 Catccat 17373 Invcinv 17457 Isociso 17458 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-1st 7831 df-2nd 7832 df-cat 17377 df-cid 17378 df-sect 17459 df-inv 17460 df-iso 17461 |
This theorem is referenced by: cictr 17517 |
Copyright terms: Public domain | W3C validator |