Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > isoco | Structured version Visualization version GIF version |
Description: The composition of two isomorphisms is an isomorphism. Proposition 3.14(2) of [Adamek] p. 29. (Contributed by Mario Carneiro, 2-Jan-2017.) |
Ref | Expression |
---|---|
isoco.b | ⊢ 𝐵 = (Base‘𝐶) |
isoco.o | ⊢ · = (comp‘𝐶) |
isoco.n | ⊢ 𝐼 = (Iso‘𝐶) |
isoco.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
isoco.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
isoco.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
isoco.z | ⊢ (𝜑 → 𝑍 ∈ 𝐵) |
isoco.f | ⊢ (𝜑 → 𝐹 ∈ (𝑋𝐼𝑌)) |
isoco.g | ⊢ (𝜑 → 𝐺 ∈ (𝑌𝐼𝑍)) |
Ref | Expression |
---|---|
isoco | ⊢ (𝜑 → (𝐺(〈𝑋, 𝑌〉 · 𝑍)𝐹) ∈ (𝑋𝐼𝑍)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isoco.b | . 2 ⊢ 𝐵 = (Base‘𝐶) | |
2 | eqid 2736 | . 2 ⊢ (Inv‘𝐶) = (Inv‘𝐶) | |
3 | isoco.c | . 2 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
4 | isoco.x | . 2 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
5 | isoco.z | . 2 ⊢ (𝜑 → 𝑍 ∈ 𝐵) | |
6 | isoco.n | . 2 ⊢ 𝐼 = (Iso‘𝐶) | |
7 | isoco.y | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
8 | isoco.f | . . 3 ⊢ (𝜑 → 𝐹 ∈ (𝑋𝐼𝑌)) | |
9 | isoco.o | . . 3 ⊢ · = (comp‘𝐶) | |
10 | isoco.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ (𝑌𝐼𝑍)) | |
11 | 1, 2, 3, 4, 7, 6, 8, 9, 5, 10 | invco 17581 | . 2 ⊢ (𝜑 → (𝐺(〈𝑋, 𝑌〉 · 𝑍)𝐹)(𝑋(Inv‘𝐶)𝑍)(((𝑋(Inv‘𝐶)𝑌)‘𝐹)(〈𝑍, 𝑌〉 · 𝑋)((𝑌(Inv‘𝐶)𝑍)‘𝐺))) |
12 | 1, 2, 3, 4, 5, 6, 11 | inviso1 17576 | 1 ⊢ (𝜑 → (𝐺(〈𝑋, 𝑌〉 · 𝑍)𝐹) ∈ (𝑋𝐼𝑍)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2105 〈cop 4580 ‘cfv 6480 (class class class)co 7338 Basecbs 17010 compcco 17072 Catccat 17471 Invcinv 17555 Isociso 17556 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-rep 5230 ax-sep 5244 ax-nul 5251 ax-pow 5309 ax-pr 5373 ax-un 7651 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-ral 3062 df-rex 3071 df-rmo 3349 df-reu 3350 df-rab 3404 df-v 3443 df-sbc 3728 df-csb 3844 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4271 df-if 4475 df-pw 4550 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4854 df-iun 4944 df-br 5094 df-opab 5156 df-mpt 5177 df-id 5519 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-iota 6432 df-fun 6482 df-fn 6483 df-f 6484 df-f1 6485 df-fo 6486 df-f1o 6487 df-fv 6488 df-riota 7294 df-ov 7341 df-oprab 7342 df-mpo 7343 df-1st 7900 df-2nd 7901 df-cat 17475 df-cid 17476 df-sect 17557 df-inv 17558 df-iso 17559 |
This theorem is referenced by: cictr 17615 |
Copyright terms: Public domain | W3C validator |