![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > isoco | Structured version Visualization version GIF version |
Description: The composition of two isomorphisms is an isomorphism. Proposition 3.14(2) of [Adamek] p. 29. (Contributed by Mario Carneiro, 2-Jan-2017.) |
Ref | Expression |
---|---|
isoco.b | ⊢ 𝐵 = (Base‘𝐶) |
isoco.o | ⊢ · = (comp‘𝐶) |
isoco.n | ⊢ 𝐼 = (Iso‘𝐶) |
isoco.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
isoco.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
isoco.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
isoco.z | ⊢ (𝜑 → 𝑍 ∈ 𝐵) |
isoco.f | ⊢ (𝜑 → 𝐹 ∈ (𝑋𝐼𝑌)) |
isoco.g | ⊢ (𝜑 → 𝐺 ∈ (𝑌𝐼𝑍)) |
Ref | Expression |
---|---|
isoco | ⊢ (𝜑 → (𝐺(〈𝑋, 𝑌〉 · 𝑍)𝐹) ∈ (𝑋𝐼𝑍)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isoco.b | . 2 ⊢ 𝐵 = (Base‘𝐶) | |
2 | eqid 2740 | . 2 ⊢ (Inv‘𝐶) = (Inv‘𝐶) | |
3 | isoco.c | . 2 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
4 | isoco.x | . 2 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
5 | isoco.z | . 2 ⊢ (𝜑 → 𝑍 ∈ 𝐵) | |
6 | isoco.n | . 2 ⊢ 𝐼 = (Iso‘𝐶) | |
7 | isoco.y | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
8 | isoco.f | . . 3 ⊢ (𝜑 → 𝐹 ∈ (𝑋𝐼𝑌)) | |
9 | isoco.o | . . 3 ⊢ · = (comp‘𝐶) | |
10 | isoco.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ (𝑌𝐼𝑍)) | |
11 | 1, 2, 3, 4, 7, 6, 8, 9, 5, 10 | invco 17832 | . 2 ⊢ (𝜑 → (𝐺(〈𝑋, 𝑌〉 · 𝑍)𝐹)(𝑋(Inv‘𝐶)𝑍)(((𝑋(Inv‘𝐶)𝑌)‘𝐹)(〈𝑍, 𝑌〉 · 𝑋)((𝑌(Inv‘𝐶)𝑍)‘𝐺))) |
12 | 1, 2, 3, 4, 5, 6, 11 | inviso1 17827 | 1 ⊢ (𝜑 → (𝐺(〈𝑋, 𝑌〉 · 𝑍)𝐹) ∈ (𝑋𝐼𝑍)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2108 〈cop 4654 ‘cfv 6573 (class class class)co 7448 Basecbs 17258 compcco 17323 Catccat 17722 Invcinv 17806 Isociso 17807 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-1st 8030 df-2nd 8031 df-cat 17726 df-cid 17727 df-sect 17808 df-inv 17809 df-iso 17810 |
This theorem is referenced by: cictr 17866 |
Copyright terms: Public domain | W3C validator |