![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > isoco | Structured version Visualization version GIF version |
Description: The composition of two isomorphisms is an isomorphism. Proposition 3.14(2) of [Adamek] p. 29. (Contributed by Mario Carneiro, 2-Jan-2017.) |
Ref | Expression |
---|---|
isoco.b | β’ π΅ = (BaseβπΆ) |
isoco.o | β’ Β· = (compβπΆ) |
isoco.n | β’ πΌ = (IsoβπΆ) |
isoco.c | β’ (π β πΆ β Cat) |
isoco.x | β’ (π β π β π΅) |
isoco.y | β’ (π β π β π΅) |
isoco.z | β’ (π β π β π΅) |
isoco.f | β’ (π β πΉ β (ππΌπ)) |
isoco.g | β’ (π β πΊ β (ππΌπ)) |
Ref | Expression |
---|---|
isoco | β’ (π β (πΊ(β¨π, πβ© Β· π)πΉ) β (ππΌπ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isoco.b | . 2 β’ π΅ = (BaseβπΆ) | |
2 | eqid 2730 | . 2 β’ (InvβπΆ) = (InvβπΆ) | |
3 | isoco.c | . 2 β’ (π β πΆ β Cat) | |
4 | isoco.x | . 2 β’ (π β π β π΅) | |
5 | isoco.z | . 2 β’ (π β π β π΅) | |
6 | isoco.n | . 2 β’ πΌ = (IsoβπΆ) | |
7 | isoco.y | . . 3 β’ (π β π β π΅) | |
8 | isoco.f | . . 3 β’ (π β πΉ β (ππΌπ)) | |
9 | isoco.o | . . 3 β’ Β· = (compβπΆ) | |
10 | isoco.g | . . 3 β’ (π β πΊ β (ππΌπ)) | |
11 | 1, 2, 3, 4, 7, 6, 8, 9, 5, 10 | invco 17724 | . 2 β’ (π β (πΊ(β¨π, πβ© Β· π)πΉ)(π(InvβπΆ)π)(((π(InvβπΆ)π)βπΉ)(β¨π, πβ© Β· π)((π(InvβπΆ)π)βπΊ))) |
12 | 1, 2, 3, 4, 5, 6, 11 | inviso1 17719 | 1 β’ (π β (πΊ(β¨π, πβ© Β· π)πΉ) β (ππΌπ)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 = wceq 1539 β wcel 2104 β¨cop 4635 βcfv 6544 (class class class)co 7413 Basecbs 17150 compcco 17215 Catccat 17614 Invcinv 17698 Isociso 17699 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7729 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-ral 3060 df-rex 3069 df-rmo 3374 df-reu 3375 df-rab 3431 df-v 3474 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7369 df-ov 7416 df-oprab 7417 df-mpo 7418 df-1st 7979 df-2nd 7980 df-cat 17618 df-cid 17619 df-sect 17700 df-inv 17701 df-iso 17702 |
This theorem is referenced by: cictr 17758 |
Copyright terms: Public domain | W3C validator |