Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > isoco | Structured version Visualization version GIF version |
Description: The composition of two isomorphisms is an isomorphism. Proposition 3.14(2) of [Adamek] p. 29. (Contributed by Mario Carneiro, 2-Jan-2017.) |
Ref | Expression |
---|---|
isoco.b | ⊢ 𝐵 = (Base‘𝐶) |
isoco.o | ⊢ · = (comp‘𝐶) |
isoco.n | ⊢ 𝐼 = (Iso‘𝐶) |
isoco.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
isoco.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
isoco.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
isoco.z | ⊢ (𝜑 → 𝑍 ∈ 𝐵) |
isoco.f | ⊢ (𝜑 → 𝐹 ∈ (𝑋𝐼𝑌)) |
isoco.g | ⊢ (𝜑 → 𝐺 ∈ (𝑌𝐼𝑍)) |
Ref | Expression |
---|---|
isoco | ⊢ (𝜑 → (𝐺(〈𝑋, 𝑌〉 · 𝑍)𝐹) ∈ (𝑋𝐼𝑍)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isoco.b | . 2 ⊢ 𝐵 = (Base‘𝐶) | |
2 | eqid 2738 | . 2 ⊢ (Inv‘𝐶) = (Inv‘𝐶) | |
3 | isoco.c | . 2 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
4 | isoco.x | . 2 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
5 | isoco.z | . 2 ⊢ (𝜑 → 𝑍 ∈ 𝐵) | |
6 | isoco.n | . 2 ⊢ 𝐼 = (Iso‘𝐶) | |
7 | isoco.y | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
8 | isoco.f | . . 3 ⊢ (𝜑 → 𝐹 ∈ (𝑋𝐼𝑌)) | |
9 | isoco.o | . . 3 ⊢ · = (comp‘𝐶) | |
10 | isoco.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ (𝑌𝐼𝑍)) | |
11 | 1, 2, 3, 4, 7, 6, 8, 9, 5, 10 | invco 17400 | . 2 ⊢ (𝜑 → (𝐺(〈𝑋, 𝑌〉 · 𝑍)𝐹)(𝑋(Inv‘𝐶)𝑍)(((𝑋(Inv‘𝐶)𝑌)‘𝐹)(〈𝑍, 𝑌〉 · 𝑋)((𝑌(Inv‘𝐶)𝑍)‘𝐺))) |
12 | 1, 2, 3, 4, 5, 6, 11 | inviso1 17395 | 1 ⊢ (𝜑 → (𝐺(〈𝑋, 𝑌〉 · 𝑍)𝐹) ∈ (𝑋𝐼𝑍)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 〈cop 4564 ‘cfv 6418 (class class class)co 7255 Basecbs 16840 compcco 16900 Catccat 17290 Invcinv 17374 Isociso 17375 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-1st 7804 df-2nd 7805 df-cat 17294 df-cid 17295 df-sect 17376 df-inv 17377 df-iso 17378 |
This theorem is referenced by: cictr 17434 |
Copyright terms: Public domain | W3C validator |