![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 1pthd | Structured version Visualization version GIF version |
Description: In a graph with two vertices and an edge connecting these two vertices, to go from one vertex to the other vertex via this edge is a path. The two vertices need not be distinct (in the case of a loop) - in this case, however, the path is not a simple path. (Contributed by Alexander van der Vekens, 3-Dec-2017.) (Revised by AV, 22-Jan-2021.) (Revised by AV, 23-Mar-2021.) (Proof shortened by AV, 30-Oct-2021.) |
Ref | Expression |
---|---|
1wlkd.p | β’ π = β¨βππββ© |
1wlkd.f | β’ πΉ = β¨βπ½ββ© |
1wlkd.x | β’ (π β π β π) |
1wlkd.y | β’ (π β π β π) |
1wlkd.l | β’ ((π β§ π = π) β (πΌβπ½) = {π}) |
1wlkd.j | β’ ((π β§ π β π) β {π, π} β (πΌβπ½)) |
1wlkd.v | β’ π = (VtxβπΊ) |
1wlkd.i | β’ πΌ = (iEdgβπΊ) |
Ref | Expression |
---|---|
1pthd | β’ (π β πΉ(PathsβπΊ)π) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1wlkd.p | . . 3 β’ π = β¨βππββ© | |
2 | 1wlkd.f | . . 3 β’ πΉ = β¨βπ½ββ© | |
3 | 1wlkd.x | . . 3 β’ (π β π β π) | |
4 | 1wlkd.y | . . 3 β’ (π β π β π) | |
5 | 1wlkd.l | . . 3 β’ ((π β§ π = π) β (πΌβπ½) = {π}) | |
6 | 1wlkd.j | . . 3 β’ ((π β§ π β π) β {π, π} β (πΌβπ½)) | |
7 | 1wlkd.v | . . 3 β’ π = (VtxβπΊ) | |
8 | 1wlkd.i | . . 3 β’ πΌ = (iEdgβπΊ) | |
9 | 1, 2, 3, 4, 5, 6, 7, 8 | 1trld 29828 | . 2 β’ (π β πΉ(TrailsβπΊ)π) |
10 | simpr 484 | . . 3 β’ ((π β§ πΉ(TrailsβπΊ)π) β πΉ(TrailsβπΊ)π) | |
11 | 1, 2 | 1pthdlem1 29821 | . . . 4 β’ Fun β‘(π βΎ (1..^(β―βπΉ))) |
12 | 11 | a1i 11 | . . 3 β’ ((π β§ πΉ(TrailsβπΊ)π) β Fun β‘(π βΎ (1..^(β―βπΉ)))) |
13 | 1, 2 | 1pthdlem2 29822 | . . . 4 β’ ((π β {0, (β―βπΉ)}) β© (π β (1..^(β―βπΉ)))) = β |
14 | 13 | a1i 11 | . . 3 β’ ((π β§ πΉ(TrailsβπΊ)π) β ((π β {0, (β―βπΉ)}) β© (π β (1..^(β―βπΉ)))) = β ) |
15 | ispth 29413 | . . 3 β’ (πΉ(PathsβπΊ)π β (πΉ(TrailsβπΊ)π β§ Fun β‘(π βΎ (1..^(β―βπΉ))) β§ ((π β {0, (β―βπΉ)}) β© (π β (1..^(β―βπΉ)))) = β )) | |
16 | 10, 12, 14, 15 | syl3anbrc 1342 | . 2 β’ ((π β§ πΉ(TrailsβπΊ)π) β πΉ(PathsβπΊ)π) |
17 | 9, 16 | mpdan 684 | 1 β’ (π β πΉ(PathsβπΊ)π) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 395 = wceq 1540 β wcel 2105 β wne 2939 β© cin 3947 β wss 3948 β c0 4322 {csn 4628 {cpr 4630 class class class wbr 5148 β‘ccnv 5675 βΎ cres 5678 β cima 5679 Fun wfun 6537 βcfv 6543 (class class class)co 7412 0cc0 11116 1c1 11117 ..^cfzo 13634 β―chash 14297 β¨βcs1 14552 β¨βcs2 14799 Vtxcvtx 28689 iEdgciedg 28690 Trailsctrls 29380 Pathscpths 29402 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 ax-cnex 11172 ax-resscn 11173 ax-1cn 11174 ax-icn 11175 ax-addcl 11176 ax-addrcl 11177 ax-mulcl 11178 ax-mulrcl 11179 ax-mulcom 11180 ax-addass 11181 ax-mulass 11182 ax-distr 11183 ax-i2m1 11184 ax-1ne0 11185 ax-1rid 11186 ax-rnegex 11187 ax-rrecex 11188 ax-cnre 11189 ax-pre-lttri 11190 ax-pre-lttrn 11191 ax-pre-ltadd 11192 ax-pre-mulgt0 11193 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-ifp 1061 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-om 7860 df-1st 7979 df-2nd 7980 df-frecs 8272 df-wrecs 8303 df-recs 8377 df-rdg 8416 df-1o 8472 df-er 8709 df-map 8828 df-pm 8829 df-en 8946 df-dom 8947 df-sdom 8948 df-fin 8949 df-card 9940 df-pnf 11257 df-mnf 11258 df-xr 11259 df-ltxr 11260 df-le 11261 df-sub 11453 df-neg 11454 df-nn 12220 df-2 12282 df-n0 12480 df-z 12566 df-uz 12830 df-fz 13492 df-fzo 13635 df-hash 14298 df-word 14472 df-concat 14528 df-s1 14553 df-s2 14806 df-wlks 29289 df-trls 29382 df-pths 29406 |
This theorem is referenced by: 1pthond 29830 upgr1pthd 29835 |
Copyright terms: Public domain | W3C validator |