| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 1pthd | Structured version Visualization version GIF version | ||
| Description: In a graph with two vertices and an edge connecting these two vertices, to go from one vertex to the other vertex via this edge is a path. The two vertices need not be distinct (in the case of a loop) - in this case, however, the path is not a simple path. (Contributed by Alexander van der Vekens, 3-Dec-2017.) (Revised by AV, 22-Jan-2021.) (Revised by AV, 23-Mar-2021.) (Proof shortened by AV, 30-Oct-2021.) |
| Ref | Expression |
|---|---|
| 1wlkd.p | ⊢ 𝑃 = 〈“𝑋𝑌”〉 |
| 1wlkd.f | ⊢ 𝐹 = 〈“𝐽”〉 |
| 1wlkd.x | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
| 1wlkd.y | ⊢ (𝜑 → 𝑌 ∈ 𝑉) |
| 1wlkd.l | ⊢ ((𝜑 ∧ 𝑋 = 𝑌) → (𝐼‘𝐽) = {𝑋}) |
| 1wlkd.j | ⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → {𝑋, 𝑌} ⊆ (𝐼‘𝐽)) |
| 1wlkd.v | ⊢ 𝑉 = (Vtx‘𝐺) |
| 1wlkd.i | ⊢ 𝐼 = (iEdg‘𝐺) |
| Ref | Expression |
|---|---|
| 1pthd | ⊢ (𝜑 → 𝐹(Paths‘𝐺)𝑃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1wlkd.p | . . 3 ⊢ 𝑃 = 〈“𝑋𝑌”〉 | |
| 2 | 1wlkd.f | . . 3 ⊢ 𝐹 = 〈“𝐽”〉 | |
| 3 | 1wlkd.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
| 4 | 1wlkd.y | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝑉) | |
| 5 | 1wlkd.l | . . 3 ⊢ ((𝜑 ∧ 𝑋 = 𝑌) → (𝐼‘𝐽) = {𝑋}) | |
| 6 | 1wlkd.j | . . 3 ⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → {𝑋, 𝑌} ⊆ (𝐼‘𝐽)) | |
| 7 | 1wlkd.v | . . 3 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 8 | 1wlkd.i | . . 3 ⊢ 𝐼 = (iEdg‘𝐺) | |
| 9 | 1, 2, 3, 4, 5, 6, 7, 8 | 1trld 30128 | . 2 ⊢ (𝜑 → 𝐹(Trails‘𝐺)𝑃) |
| 10 | simpr 484 | . . 3 ⊢ ((𝜑 ∧ 𝐹(Trails‘𝐺)𝑃) → 𝐹(Trails‘𝐺)𝑃) | |
| 11 | 1, 2 | 1pthdlem1 30121 | . . . 4 ⊢ Fun ◡(𝑃 ↾ (1..^(♯‘𝐹))) |
| 12 | 11 | a1i 11 | . . 3 ⊢ ((𝜑 ∧ 𝐹(Trails‘𝐺)𝑃) → Fun ◡(𝑃 ↾ (1..^(♯‘𝐹)))) |
| 13 | 1, 2 | 1pthdlem2 30122 | . . . 4 ⊢ ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅ |
| 14 | 13 | a1i 11 | . . 3 ⊢ ((𝜑 ∧ 𝐹(Trails‘𝐺)𝑃) → ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅) |
| 15 | ispth 29708 | . . 3 ⊢ (𝐹(Paths‘𝐺)𝑃 ↔ (𝐹(Trails‘𝐺)𝑃 ∧ Fun ◡(𝑃 ↾ (1..^(♯‘𝐹))) ∧ ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅)) | |
| 16 | 10, 12, 14, 15 | syl3anbrc 1344 | . 2 ⊢ ((𝜑 ∧ 𝐹(Trails‘𝐺)𝑃) → 𝐹(Paths‘𝐺)𝑃) |
| 17 | 9, 16 | mpdan 687 | 1 ⊢ (𝜑 → 𝐹(Paths‘𝐺)𝑃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2933 ∩ cin 3930 ⊆ wss 3931 ∅c0 4313 {csn 4606 {cpr 4608 class class class wbr 5124 ◡ccnv 5658 ↾ cres 5661 “ cima 5662 Fun wfun 6530 ‘cfv 6536 (class class class)co 7410 0cc0 11134 1c1 11135 ..^cfzo 13676 ♯chash 14353 〈“cs1 14618 〈“cs2 14865 Vtxcvtx 28980 iEdgciedg 28981 Trailsctrls 29675 Pathscpths 29697 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-cnex 11190 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 ax-pre-mulgt0 11211 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ifp 1063 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-int 4928 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-om 7867 df-1st 7993 df-2nd 7994 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-1o 8485 df-er 8724 df-map 8847 df-pm 8848 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-card 9958 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-sub 11473 df-neg 11474 df-nn 12246 df-2 12308 df-n0 12507 df-z 12594 df-uz 12858 df-fz 13530 df-fzo 13677 df-hash 14354 df-word 14537 df-concat 14594 df-s1 14619 df-s2 14872 df-wlks 29584 df-trls 29677 df-pths 29701 |
| This theorem is referenced by: 1pthond 30130 upgr1pthd 30135 |
| Copyright terms: Public domain | W3C validator |