Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  1pthd Structured version   Visualization version   GIF version

Theorem 1pthd 27914
 Description: In a graph with two vertices and an edge connecting these two vertices, to go from one vertex to the other vertex via this edge is a path. The two vertices need not be distinct (in the case of a loop) - in this case, however, the path is not a simple path. (Contributed by Alexander van der Vekens, 3-Dec-2017.) (Revised by AV, 22-Jan-2021.) (Revised by AV, 23-Mar-2021.) (Proof shortened by AV, 30-Oct-2021.)
Hypotheses
Ref Expression
1wlkd.p 𝑃 = ⟨“𝑋𝑌”⟩
1wlkd.f 𝐹 = ⟨“𝐽”⟩
1wlkd.x (𝜑𝑋𝑉)
1wlkd.y (𝜑𝑌𝑉)
1wlkd.l ((𝜑𝑋 = 𝑌) → (𝐼𝐽) = {𝑋})
1wlkd.j ((𝜑𝑋𝑌) → {𝑋, 𝑌} ⊆ (𝐼𝐽))
1wlkd.v 𝑉 = (Vtx‘𝐺)
1wlkd.i 𝐼 = (iEdg‘𝐺)
Assertion
Ref Expression
1pthd (𝜑𝐹(Paths‘𝐺)𝑃)

Proof of Theorem 1pthd
StepHypRef Expression
1 1wlkd.p . . 3 𝑃 = ⟨“𝑋𝑌”⟩
2 1wlkd.f . . 3 𝐹 = ⟨“𝐽”⟩
3 1wlkd.x . . 3 (𝜑𝑋𝑉)
4 1wlkd.y . . 3 (𝜑𝑌𝑉)
5 1wlkd.l . . 3 ((𝜑𝑋 = 𝑌) → (𝐼𝐽) = {𝑋})
6 1wlkd.j . . 3 ((𝜑𝑋𝑌) → {𝑋, 𝑌} ⊆ (𝐼𝐽))
7 1wlkd.v . . 3 𝑉 = (Vtx‘𝐺)
8 1wlkd.i . . 3 𝐼 = (iEdg‘𝐺)
91, 2, 3, 4, 5, 6, 7, 81trld 27913 . 2 (𝜑𝐹(Trails‘𝐺)𝑃)
10 simpr 487 . . 3 ((𝜑𝐹(Trails‘𝐺)𝑃) → 𝐹(Trails‘𝐺)𝑃)
111, 21pthdlem1 27906 . . . 4 Fun (𝑃 ↾ (1..^(♯‘𝐹)))
1211a1i 11 . . 3 ((𝜑𝐹(Trails‘𝐺)𝑃) → Fun (𝑃 ↾ (1..^(♯‘𝐹))))
131, 21pthdlem2 27907 . . . 4 ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅
1413a1i 11 . . 3 ((𝜑𝐹(Trails‘𝐺)𝑃) → ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅)
15 ispth 27496 . . 3 (𝐹(Paths‘𝐺)𝑃 ↔ (𝐹(Trails‘𝐺)𝑃 ∧ Fun (𝑃 ↾ (1..^(♯‘𝐹))) ∧ ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅))
1610, 12, 14, 15syl3anbrc 1337 . 2 ((𝜑𝐹(Trails‘𝐺)𝑃) → 𝐹(Paths‘𝐺)𝑃)
179, 16mpdan 685 1 (𝜑𝐹(Paths‘𝐺)𝑃)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 398   = wceq 1530   ∈ wcel 2107   ≠ wne 3014   ∩ cin 3933   ⊆ wss 3934  ∅c0 4289  {csn 4559  {cpr 4561   class class class wbr 5057  ◡ccnv 5547   ↾ cres 5550   “ cima 5551  Fun wfun 6342  ‘cfv 6348  (class class class)co 7148  0cc0 10529  1c1 10530  ..^cfzo 13025  ♯chash 13682  ⟨“cs1 13941  ⟨“cs2 14195  Vtxcvtx 26773  iEdgciedg 26774  Trailsctrls 27464  Pathscpths 27485 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2791  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7453  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606 This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-ifp 1057  df-3or 1082  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ne 3015  df-nel 3122  df-ral 3141  df-rex 3142  df-reu 3143  df-rab 3145  df-v 3495  df-sbc 3771  df-csb 3882  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-pss 3952  df-nul 4290  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-tp 4564  df-op 4566  df-uni 4831  df-int 4868  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7106  df-ov 7151  df-oprab 7152  df-mpo 7153  df-om 7573  df-1st 7681  df-2nd 7682  df-wrecs 7939  df-recs 8000  df-rdg 8038  df-1o 8094  df-oadd 8098  df-er 8281  df-map 8400  df-pm 8401  df-en 8502  df-dom 8503  df-sdom 8504  df-fin 8505  df-card 9360  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-nn 11631  df-2 11692  df-n0 11890  df-z 11974  df-uz 12236  df-fz 12885  df-fzo 13026  df-hash 13683  df-word 13854  df-concat 13915  df-s1 13942  df-s2 14202  df-wlks 27373  df-trls 27466  df-pths 27489 This theorem is referenced by:  1pthond  27915  upgr1pthd  27920
 Copyright terms: Public domain W3C validator