| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pthd | Structured version Visualization version GIF version | ||
| Description: Two words representing a trail which also represent a path in a graph. (Contributed by AV, 10-Feb-2021.) (Proof shortened by AV, 30-Oct-2021.) |
| Ref | Expression |
|---|---|
| pthd.p | ⊢ (𝜑 → 𝑃 ∈ Word V) |
| pthd.r | ⊢ 𝑅 = ((♯‘𝑃) − 1) |
| pthd.s | ⊢ (𝜑 → ∀𝑖 ∈ (0..^(♯‘𝑃))∀𝑗 ∈ (1..^𝑅)(𝑖 ≠ 𝑗 → (𝑃‘𝑖) ≠ (𝑃‘𝑗))) |
| pthd.f | ⊢ (♯‘𝐹) = 𝑅 |
| pthd.t | ⊢ (𝜑 → 𝐹(Trails‘𝐺)𝑃) |
| Ref | Expression |
|---|---|
| pthd | ⊢ (𝜑 → 𝐹(Paths‘𝐺)𝑃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pthd.t | . 2 ⊢ (𝜑 → 𝐹(Trails‘𝐺)𝑃) | |
| 2 | pthd.p | . . 3 ⊢ (𝜑 → 𝑃 ∈ Word V) | |
| 3 | pthd.f | . . . 4 ⊢ (♯‘𝐹) = 𝑅 | |
| 4 | pthd.r | . . . 4 ⊢ 𝑅 = ((♯‘𝑃) − 1) | |
| 5 | 3, 4 | eqtri 2756 | . . 3 ⊢ (♯‘𝐹) = ((♯‘𝑃) − 1) |
| 6 | pthd.s | . . . 4 ⊢ (𝜑 → ∀𝑖 ∈ (0..^(♯‘𝑃))∀𝑗 ∈ (1..^𝑅)(𝑖 ≠ 𝑗 → (𝑃‘𝑖) ≠ (𝑃‘𝑗))) | |
| 7 | 3 | oveq2i 7363 | . . . . . 6 ⊢ (1..^(♯‘𝐹)) = (1..^𝑅) |
| 8 | 7 | raleqi 3291 | . . . . 5 ⊢ (∀𝑗 ∈ (1..^(♯‘𝐹))(𝑖 ≠ 𝑗 → (𝑃‘𝑖) ≠ (𝑃‘𝑗)) ↔ ∀𝑗 ∈ (1..^𝑅)(𝑖 ≠ 𝑗 → (𝑃‘𝑖) ≠ (𝑃‘𝑗))) |
| 9 | 8 | ralbii 3079 | . . . 4 ⊢ (∀𝑖 ∈ (0..^(♯‘𝑃))∀𝑗 ∈ (1..^(♯‘𝐹))(𝑖 ≠ 𝑗 → (𝑃‘𝑖) ≠ (𝑃‘𝑗)) ↔ ∀𝑖 ∈ (0..^(♯‘𝑃))∀𝑗 ∈ (1..^𝑅)(𝑖 ≠ 𝑗 → (𝑃‘𝑖) ≠ (𝑃‘𝑗))) |
| 10 | 6, 9 | sylibr 234 | . . 3 ⊢ (𝜑 → ∀𝑖 ∈ (0..^(♯‘𝑃))∀𝑗 ∈ (1..^(♯‘𝐹))(𝑖 ≠ 𝑗 → (𝑃‘𝑖) ≠ (𝑃‘𝑗))) |
| 11 | 2, 5, 10 | pthdlem1 29746 | . 2 ⊢ (𝜑 → Fun ◡(𝑃 ↾ (1..^(♯‘𝐹)))) |
| 12 | 2, 5, 10 | pthdlem2 29748 | . 2 ⊢ (𝜑 → ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅) |
| 13 | ispth 29701 | . 2 ⊢ (𝐹(Paths‘𝐺)𝑃 ↔ (𝐹(Trails‘𝐺)𝑃 ∧ Fun ◡(𝑃 ↾ (1..^(♯‘𝐹))) ∧ ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅)) | |
| 14 | 1, 11, 12, 13 | syl3anbrc 1344 | 1 ⊢ (𝜑 → 𝐹(Paths‘𝐺)𝑃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2113 ≠ wne 2929 ∀wral 3048 Vcvv 3437 ∩ cin 3897 ∅c0 4282 {cpr 4577 class class class wbr 5093 ◡ccnv 5618 ↾ cres 5621 “ cima 5622 Fun wfun 6480 ‘cfv 6486 (class class class)co 7352 0cc0 11013 1c1 11014 − cmin 11351 ..^cfzo 13556 ♯chash 14239 Word cword 14422 Trailsctrls 29669 Pathscpths 29690 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-cnex 11069 ax-resscn 11070 ax-1cn 11071 ax-icn 11072 ax-addcl 11073 ax-addrcl 11074 ax-mulcl 11075 ax-mulrcl 11076 ax-mulcom 11077 ax-addass 11078 ax-mulass 11079 ax-distr 11080 ax-i2m1 11081 ax-1ne0 11082 ax-1rid 11083 ax-rnegex 11084 ax-rrecex 11085 ax-cnre 11086 ax-pre-lttri 11087 ax-pre-lttrn 11088 ax-pre-ltadd 11089 ax-pre-mulgt0 11090 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-int 4898 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-om 7803 df-1st 7927 df-2nd 7928 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-1o 8391 df-er 8628 df-en 8876 df-dom 8877 df-sdom 8878 df-fin 8879 df-card 9839 df-pnf 11155 df-mnf 11156 df-xr 11157 df-ltxr 11158 df-le 11159 df-sub 11353 df-neg 11354 df-nn 12133 df-2 12195 df-n0 12389 df-z 12476 df-uz 12739 df-fz 13410 df-fzo 13557 df-hash 14240 df-word 14423 df-trls 29671 df-pths 29694 |
| This theorem is referenced by: 2pthd 29920 3pthd 30156 gpgprismgr4cycllem11 48229 |
| Copyright terms: Public domain | W3C validator |