| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pthd | Structured version Visualization version GIF version | ||
| Description: Two words representing a trail which also represent a path in a graph. (Contributed by AV, 10-Feb-2021.) (Proof shortened by AV, 30-Oct-2021.) |
| Ref | Expression |
|---|---|
| pthd.p | ⊢ (𝜑 → 𝑃 ∈ Word V) |
| pthd.r | ⊢ 𝑅 = ((♯‘𝑃) − 1) |
| pthd.s | ⊢ (𝜑 → ∀𝑖 ∈ (0..^(♯‘𝑃))∀𝑗 ∈ (1..^𝑅)(𝑖 ≠ 𝑗 → (𝑃‘𝑖) ≠ (𝑃‘𝑗))) |
| pthd.f | ⊢ (♯‘𝐹) = 𝑅 |
| pthd.t | ⊢ (𝜑 → 𝐹(Trails‘𝐺)𝑃) |
| Ref | Expression |
|---|---|
| pthd | ⊢ (𝜑 → 𝐹(Paths‘𝐺)𝑃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pthd.t | . 2 ⊢ (𝜑 → 𝐹(Trails‘𝐺)𝑃) | |
| 2 | pthd.p | . . 3 ⊢ (𝜑 → 𝑃 ∈ Word V) | |
| 3 | pthd.f | . . . 4 ⊢ (♯‘𝐹) = 𝑅 | |
| 4 | pthd.r | . . . 4 ⊢ 𝑅 = ((♯‘𝑃) − 1) | |
| 5 | 3, 4 | eqtri 2752 | . . 3 ⊢ (♯‘𝐹) = ((♯‘𝑃) − 1) |
| 6 | pthd.s | . . . 4 ⊢ (𝜑 → ∀𝑖 ∈ (0..^(♯‘𝑃))∀𝑗 ∈ (1..^𝑅)(𝑖 ≠ 𝑗 → (𝑃‘𝑖) ≠ (𝑃‘𝑗))) | |
| 7 | 3 | oveq2i 7364 | . . . . . 6 ⊢ (1..^(♯‘𝐹)) = (1..^𝑅) |
| 8 | 7 | raleqi 3288 | . . . . 5 ⊢ (∀𝑗 ∈ (1..^(♯‘𝐹))(𝑖 ≠ 𝑗 → (𝑃‘𝑖) ≠ (𝑃‘𝑗)) ↔ ∀𝑗 ∈ (1..^𝑅)(𝑖 ≠ 𝑗 → (𝑃‘𝑖) ≠ (𝑃‘𝑗))) |
| 9 | 8 | ralbii 3075 | . . . 4 ⊢ (∀𝑖 ∈ (0..^(♯‘𝑃))∀𝑗 ∈ (1..^(♯‘𝐹))(𝑖 ≠ 𝑗 → (𝑃‘𝑖) ≠ (𝑃‘𝑗)) ↔ ∀𝑖 ∈ (0..^(♯‘𝑃))∀𝑗 ∈ (1..^𝑅)(𝑖 ≠ 𝑗 → (𝑃‘𝑖) ≠ (𝑃‘𝑗))) |
| 10 | 6, 9 | sylibr 234 | . . 3 ⊢ (𝜑 → ∀𝑖 ∈ (0..^(♯‘𝑃))∀𝑗 ∈ (1..^(♯‘𝐹))(𝑖 ≠ 𝑗 → (𝑃‘𝑖) ≠ (𝑃‘𝑗))) |
| 11 | 2, 5, 10 | pthdlem1 29729 | . 2 ⊢ (𝜑 → Fun ◡(𝑃 ↾ (1..^(♯‘𝐹)))) |
| 12 | 2, 5, 10 | pthdlem2 29731 | . 2 ⊢ (𝜑 → ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅) |
| 13 | ispth 29684 | . 2 ⊢ (𝐹(Paths‘𝐺)𝑃 ↔ (𝐹(Trails‘𝐺)𝑃 ∧ Fun ◡(𝑃 ↾ (1..^(♯‘𝐹))) ∧ ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅)) | |
| 14 | 1, 11, 12, 13 | syl3anbrc 1344 | 1 ⊢ (𝜑 → 𝐹(Paths‘𝐺)𝑃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ∀wral 3044 Vcvv 3438 ∩ cin 3904 ∅c0 4286 {cpr 4581 class class class wbr 5095 ◡ccnv 5622 ↾ cres 5625 “ cima 5626 Fun wfun 6480 ‘cfv 6486 (class class class)co 7353 0cc0 11028 1c1 11029 − cmin 11365 ..^cfzo 13575 ♯chash 14255 Word cword 14438 Trailsctrls 29652 Pathscpths 29673 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-int 4900 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-1st 7931 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-1o 8395 df-er 8632 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-card 9854 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-nn 12147 df-2 12209 df-n0 12403 df-z 12490 df-uz 12754 df-fz 13429 df-fzo 13576 df-hash 14256 df-word 14439 df-trls 29654 df-pths 29677 |
| This theorem is referenced by: 2pthd 29903 3pthd 30136 gpgprismgr4cycllem11 48090 |
| Copyright terms: Public domain | W3C validator |