| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ist1-5lem | Structured version Visualization version GIF version | ||
| Description: Lemma for ist1-5 23777 and similar theorems. If 𝐴 is a topological property which implies T0, such as T1 or T2, the property can be "decomposed" into T0 and a non-T0 version of property 𝐴 (which is defined as stating that the Kolmogorov quotient of the space has property 𝐴). For example, if 𝐴 is T1, then the theorem states that a space is T1 iff it is T0 and its Kolmogorov quotient is T1 (we call this property R0). (Contributed by Mario Carneiro, 25-Aug-2015.) |
| Ref | Expression |
|---|---|
| ist1-5lem.1 | ⊢ (𝐽 ∈ 𝐴 → 𝐽 ∈ Kol2) |
| ist1-5lem.2 | ⊢ (𝐽 ≃ (KQ‘𝐽) → (𝐽 ∈ 𝐴 → (KQ‘𝐽) ∈ 𝐴)) |
| ist1-5lem.3 | ⊢ ((KQ‘𝐽) ≃ 𝐽 → ((KQ‘𝐽) ∈ 𝐴 → 𝐽 ∈ 𝐴)) |
| Ref | Expression |
|---|---|
| ist1-5lem | ⊢ (𝐽 ∈ 𝐴 ↔ (𝐽 ∈ Kol2 ∧ (KQ‘𝐽) ∈ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ist1-5lem.1 | . . 3 ⊢ (𝐽 ∈ 𝐴 → 𝐽 ∈ Kol2) | |
| 2 | kqhmph 23774 | . . . . 5 ⊢ (𝐽 ∈ Kol2 ↔ 𝐽 ≃ (KQ‘𝐽)) | |
| 3 | 1, 2 | sylib 218 | . . . 4 ⊢ (𝐽 ∈ 𝐴 → 𝐽 ≃ (KQ‘𝐽)) |
| 4 | ist1-5lem.2 | . . . 4 ⊢ (𝐽 ≃ (KQ‘𝐽) → (𝐽 ∈ 𝐴 → (KQ‘𝐽) ∈ 𝐴)) | |
| 5 | 3, 4 | mpcom 38 | . . 3 ⊢ (𝐽 ∈ 𝐴 → (KQ‘𝐽) ∈ 𝐴) |
| 6 | 1, 5 | jca 511 | . 2 ⊢ (𝐽 ∈ 𝐴 → (𝐽 ∈ Kol2 ∧ (KQ‘𝐽) ∈ 𝐴)) |
| 7 | hmphsym 23737 | . . . . 5 ⊢ (𝐽 ≃ (KQ‘𝐽) → (KQ‘𝐽) ≃ 𝐽) | |
| 8 | 2, 7 | sylbi 217 | . . . 4 ⊢ (𝐽 ∈ Kol2 → (KQ‘𝐽) ≃ 𝐽) |
| 9 | ist1-5lem.3 | . . . 4 ⊢ ((KQ‘𝐽) ≃ 𝐽 → ((KQ‘𝐽) ∈ 𝐴 → 𝐽 ∈ 𝐴)) | |
| 10 | 8, 9 | syl 17 | . . 3 ⊢ (𝐽 ∈ Kol2 → ((KQ‘𝐽) ∈ 𝐴 → 𝐽 ∈ 𝐴)) |
| 11 | 10 | imp 406 | . 2 ⊢ ((𝐽 ∈ Kol2 ∧ (KQ‘𝐽) ∈ 𝐴) → 𝐽 ∈ 𝐴) |
| 12 | 6, 11 | impbii 209 | 1 ⊢ (𝐽 ∈ 𝐴 ↔ (𝐽 ∈ Kol2 ∧ (KQ‘𝐽) ∈ 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2107 class class class wbr 5123 ‘cfv 6541 Kol2ct0 23261 KQckq 23648 ≃ chmph 23709 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5259 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7737 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-iun 4973 df-br 5124 df-opab 5186 df-mpt 5206 df-id 5558 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-suc 6369 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-ov 7416 df-oprab 7417 df-mpo 7418 df-1st 7996 df-2nd 7997 df-1o 8488 df-map 8850 df-qtop 17524 df-top 22849 df-topon 22866 df-cn 23182 df-t0 23268 df-kq 23649 df-hmeo 23710 df-hmph 23711 |
| This theorem is referenced by: ist1-5 23777 ishaus3 23778 |
| Copyright terms: Public domain | W3C validator |