![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ist1-5lem | Structured version Visualization version GIF version |
Description: Lemma for ist1-5 23846 and similar theorems. If 𝐴 is a topological property which implies T0, such as T1 or T2, the property can be "decomposed" into T0 and a non-T0 version of property 𝐴 (which is defined as stating that the Kolmogorov quotient of the space has property 𝐴). For example, if 𝐴 is T1, then the theorem states that a space is T1 iff it is T0 and its Kolmogorov quotient is T1 (we call this property R0). (Contributed by Mario Carneiro, 25-Aug-2015.) |
Ref | Expression |
---|---|
ist1-5lem.1 | ⊢ (𝐽 ∈ 𝐴 → 𝐽 ∈ Kol2) |
ist1-5lem.2 | ⊢ (𝐽 ≃ (KQ‘𝐽) → (𝐽 ∈ 𝐴 → (KQ‘𝐽) ∈ 𝐴)) |
ist1-5lem.3 | ⊢ ((KQ‘𝐽) ≃ 𝐽 → ((KQ‘𝐽) ∈ 𝐴 → 𝐽 ∈ 𝐴)) |
Ref | Expression |
---|---|
ist1-5lem | ⊢ (𝐽 ∈ 𝐴 ↔ (𝐽 ∈ Kol2 ∧ (KQ‘𝐽) ∈ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ist1-5lem.1 | . . 3 ⊢ (𝐽 ∈ 𝐴 → 𝐽 ∈ Kol2) | |
2 | kqhmph 23843 | . . . . 5 ⊢ (𝐽 ∈ Kol2 ↔ 𝐽 ≃ (KQ‘𝐽)) | |
3 | 1, 2 | sylib 218 | . . . 4 ⊢ (𝐽 ∈ 𝐴 → 𝐽 ≃ (KQ‘𝐽)) |
4 | ist1-5lem.2 | . . . 4 ⊢ (𝐽 ≃ (KQ‘𝐽) → (𝐽 ∈ 𝐴 → (KQ‘𝐽) ∈ 𝐴)) | |
5 | 3, 4 | mpcom 38 | . . 3 ⊢ (𝐽 ∈ 𝐴 → (KQ‘𝐽) ∈ 𝐴) |
6 | 1, 5 | jca 511 | . 2 ⊢ (𝐽 ∈ 𝐴 → (𝐽 ∈ Kol2 ∧ (KQ‘𝐽) ∈ 𝐴)) |
7 | hmphsym 23806 | . . . . 5 ⊢ (𝐽 ≃ (KQ‘𝐽) → (KQ‘𝐽) ≃ 𝐽) | |
8 | 2, 7 | sylbi 217 | . . . 4 ⊢ (𝐽 ∈ Kol2 → (KQ‘𝐽) ≃ 𝐽) |
9 | ist1-5lem.3 | . . . 4 ⊢ ((KQ‘𝐽) ≃ 𝐽 → ((KQ‘𝐽) ∈ 𝐴 → 𝐽 ∈ 𝐴)) | |
10 | 8, 9 | syl 17 | . . 3 ⊢ (𝐽 ∈ Kol2 → ((KQ‘𝐽) ∈ 𝐴 → 𝐽 ∈ 𝐴)) |
11 | 10 | imp 406 | . 2 ⊢ ((𝐽 ∈ Kol2 ∧ (KQ‘𝐽) ∈ 𝐴) → 𝐽 ∈ 𝐴) |
12 | 6, 11 | impbii 209 | 1 ⊢ (𝐽 ∈ 𝐴 ↔ (𝐽 ∈ Kol2 ∧ (KQ‘𝐽) ∈ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2106 class class class wbr 5148 ‘cfv 6563 Kol2ct0 23330 KQckq 23717 ≃ chmph 23778 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-ov 7434 df-oprab 7435 df-mpo 7436 df-1st 8013 df-2nd 8014 df-1o 8505 df-map 8867 df-qtop 17554 df-top 22916 df-topon 22933 df-cn 23251 df-t0 23337 df-kq 23718 df-hmeo 23779 df-hmph 23780 |
This theorem is referenced by: ist1-5 23846 ishaus3 23847 |
Copyright terms: Public domain | W3C validator |