MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ist1-5lem Structured version   Visualization version   GIF version

Theorem ist1-5lem 22032
Description: Lemma for ist1-5 22034 and similar theorems. If 𝐴 is a topological property which implies T0, such as T1 or T2, the property can be "decomposed" into T0 and a non-T0 version of property 𝐴 (which is defined as stating that the Kolmogorov quotient of the space has property 𝐴). For example, if 𝐴 is T1, then the theorem states that a space is T1 iff it is T0 and its Kolmogorov quotient is T1 (we call this property R0). (Contributed by Mario Carneiro, 25-Aug-2015.)
Hypotheses
Ref Expression
ist1-5lem.1 (𝐽𝐴𝐽 ∈ Kol2)
ist1-5lem.2 (𝐽 ≃ (KQ‘𝐽) → (𝐽𝐴 → (KQ‘𝐽) ∈ 𝐴))
ist1-5lem.3 ((KQ‘𝐽) ≃ 𝐽 → ((KQ‘𝐽) ∈ 𝐴𝐽𝐴))
Assertion
Ref Expression
ist1-5lem (𝐽𝐴 ↔ (𝐽 ∈ Kol2 ∧ (KQ‘𝐽) ∈ 𝐴))

Proof of Theorem ist1-5lem
StepHypRef Expression
1 ist1-5lem.1 . . 3 (𝐽𝐴𝐽 ∈ Kol2)
2 kqhmph 22031 . . . . 5 (𝐽 ∈ Kol2 ↔ 𝐽 ≃ (KQ‘𝐽))
31, 2sylib 210 . . . 4 (𝐽𝐴𝐽 ≃ (KQ‘𝐽))
4 ist1-5lem.2 . . . 4 (𝐽 ≃ (KQ‘𝐽) → (𝐽𝐴 → (KQ‘𝐽) ∈ 𝐴))
53, 4mpcom 38 . . 3 (𝐽𝐴 → (KQ‘𝐽) ∈ 𝐴)
61, 5jca 507 . 2 (𝐽𝐴 → (𝐽 ∈ Kol2 ∧ (KQ‘𝐽) ∈ 𝐴))
7 hmphsym 21994 . . . . 5 (𝐽 ≃ (KQ‘𝐽) → (KQ‘𝐽) ≃ 𝐽)
82, 7sylbi 209 . . . 4 (𝐽 ∈ Kol2 → (KQ‘𝐽) ≃ 𝐽)
9 ist1-5lem.3 . . . 4 ((KQ‘𝐽) ≃ 𝐽 → ((KQ‘𝐽) ∈ 𝐴𝐽𝐴))
108, 9syl 17 . . 3 (𝐽 ∈ Kol2 → ((KQ‘𝐽) ∈ 𝐴𝐽𝐴))
1110imp 397 . 2 ((𝐽 ∈ Kol2 ∧ (KQ‘𝐽) ∈ 𝐴) → 𝐽𝐴)
126, 11impbii 201 1 (𝐽𝐴 ↔ (𝐽 ∈ Kol2 ∧ (KQ‘𝐽) ∈ 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 386  wcel 2107   class class class wbr 4886  cfv 6135  Kol2ct0 21518  KQckq 21905  chmph 21966
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-rep 5006  ax-sep 5017  ax-nul 5025  ax-pow 5077  ax-pr 5138  ax-un 7226
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-ral 3095  df-rex 3096  df-reu 3097  df-rab 3099  df-v 3400  df-sbc 3653  df-csb 3752  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-op 4405  df-uni 4672  df-iun 4755  df-br 4887  df-opab 4949  df-mpt 4966  df-id 5261  df-xp 5361  df-rel 5362  df-cnv 5363  df-co 5364  df-dm 5365  df-rn 5366  df-res 5367  df-ima 5368  df-suc 5982  df-iota 6099  df-fun 6137  df-fn 6138  df-f 6139  df-f1 6140  df-fo 6141  df-f1o 6142  df-fv 6143  df-ov 6925  df-oprab 6926  df-mpt2 6927  df-1st 7445  df-2nd 7446  df-1o 7843  df-map 8142  df-qtop 16553  df-top 21106  df-topon 21123  df-cn 21439  df-t0 21525  df-kq 21906  df-hmeo 21967  df-hmph 21968
This theorem is referenced by:  ist1-5  22034  ishaus3  22035
  Copyright terms: Public domain W3C validator