Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ist1-5lem | Structured version Visualization version GIF version |
Description: Lemma for ist1-5 22973 and similar theorems. If 𝐴 is a topological property which implies T0, such as T1 or T2, the property can be "decomposed" into T0 and a non-T0 version of property 𝐴 (which is defined as stating that the Kolmogorov quotient of the space has property 𝐴). For example, if 𝐴 is T1, then the theorem states that a space is T1 iff it is T0 and its Kolmogorov quotient is T1 (we call this property R0). (Contributed by Mario Carneiro, 25-Aug-2015.) |
Ref | Expression |
---|---|
ist1-5lem.1 | ⊢ (𝐽 ∈ 𝐴 → 𝐽 ∈ Kol2) |
ist1-5lem.2 | ⊢ (𝐽 ≃ (KQ‘𝐽) → (𝐽 ∈ 𝐴 → (KQ‘𝐽) ∈ 𝐴)) |
ist1-5lem.3 | ⊢ ((KQ‘𝐽) ≃ 𝐽 → ((KQ‘𝐽) ∈ 𝐴 → 𝐽 ∈ 𝐴)) |
Ref | Expression |
---|---|
ist1-5lem | ⊢ (𝐽 ∈ 𝐴 ↔ (𝐽 ∈ Kol2 ∧ (KQ‘𝐽) ∈ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ist1-5lem.1 | . . 3 ⊢ (𝐽 ∈ 𝐴 → 𝐽 ∈ Kol2) | |
2 | kqhmph 22970 | . . . . 5 ⊢ (𝐽 ∈ Kol2 ↔ 𝐽 ≃ (KQ‘𝐽)) | |
3 | 1, 2 | sylib 217 | . . . 4 ⊢ (𝐽 ∈ 𝐴 → 𝐽 ≃ (KQ‘𝐽)) |
4 | ist1-5lem.2 | . . . 4 ⊢ (𝐽 ≃ (KQ‘𝐽) → (𝐽 ∈ 𝐴 → (KQ‘𝐽) ∈ 𝐴)) | |
5 | 3, 4 | mpcom 38 | . . 3 ⊢ (𝐽 ∈ 𝐴 → (KQ‘𝐽) ∈ 𝐴) |
6 | 1, 5 | jca 512 | . 2 ⊢ (𝐽 ∈ 𝐴 → (𝐽 ∈ Kol2 ∧ (KQ‘𝐽) ∈ 𝐴)) |
7 | hmphsym 22933 | . . . . 5 ⊢ (𝐽 ≃ (KQ‘𝐽) → (KQ‘𝐽) ≃ 𝐽) | |
8 | 2, 7 | sylbi 216 | . . . 4 ⊢ (𝐽 ∈ Kol2 → (KQ‘𝐽) ≃ 𝐽) |
9 | ist1-5lem.3 | . . . 4 ⊢ ((KQ‘𝐽) ≃ 𝐽 → ((KQ‘𝐽) ∈ 𝐴 → 𝐽 ∈ 𝐴)) | |
10 | 8, 9 | syl 17 | . . 3 ⊢ (𝐽 ∈ Kol2 → ((KQ‘𝐽) ∈ 𝐴 → 𝐽 ∈ 𝐴)) |
11 | 10 | imp 407 | . 2 ⊢ ((𝐽 ∈ Kol2 ∧ (KQ‘𝐽) ∈ 𝐴) → 𝐽 ∈ 𝐴) |
12 | 6, 11 | impbii 208 | 1 ⊢ (𝐽 ∈ 𝐴 ↔ (𝐽 ∈ Kol2 ∧ (KQ‘𝐽) ∈ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∈ wcel 2106 class class class wbr 5074 ‘cfv 6433 Kol2ct0 22457 KQckq 22844 ≃ chmph 22905 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-ov 7278 df-oprab 7279 df-mpo 7280 df-1st 7831 df-2nd 7832 df-1o 8297 df-map 8617 df-qtop 17218 df-top 22043 df-topon 22060 df-cn 22378 df-t0 22464 df-kq 22845 df-hmeo 22906 df-hmph 22907 |
This theorem is referenced by: ist1-5 22973 ishaus3 22974 |
Copyright terms: Public domain | W3C validator |