MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ist1-5lem Structured version   Visualization version   GIF version

Theorem ist1-5lem 23545
Description: Lemma for ist1-5 23547 and similar theorems. If 𝐴 is a topological property which implies T0, such as T1 or T2, the property can be "decomposed" into T0 and a non-T0 version of property 𝐴 (which is defined as stating that the Kolmogorov quotient of the space has property 𝐴). For example, if 𝐴 is T1, then the theorem states that a space is T1 iff it is T0 and its Kolmogorov quotient is T1 (we call this property R0). (Contributed by Mario Carneiro, 25-Aug-2015.)
Hypotheses
Ref Expression
ist1-5lem.1 (𝐽𝐴𝐽 ∈ Kol2)
ist1-5lem.2 (𝐽 ≃ (KQ‘𝐽) → (𝐽𝐴 → (KQ‘𝐽) ∈ 𝐴))
ist1-5lem.3 ((KQ‘𝐽) ≃ 𝐽 → ((KQ‘𝐽) ∈ 𝐴𝐽𝐴))
Assertion
Ref Expression
ist1-5lem (𝐽𝐴 ↔ (𝐽 ∈ Kol2 ∧ (KQ‘𝐽) ∈ 𝐴))

Proof of Theorem ist1-5lem
StepHypRef Expression
1 ist1-5lem.1 . . 3 (𝐽𝐴𝐽 ∈ Kol2)
2 kqhmph 23544 . . . . 5 (𝐽 ∈ Kol2 ↔ 𝐽 ≃ (KQ‘𝐽))
31, 2sylib 217 . . . 4 (𝐽𝐴𝐽 ≃ (KQ‘𝐽))
4 ist1-5lem.2 . . . 4 (𝐽 ≃ (KQ‘𝐽) → (𝐽𝐴 → (KQ‘𝐽) ∈ 𝐴))
53, 4mpcom 38 . . 3 (𝐽𝐴 → (KQ‘𝐽) ∈ 𝐴)
61, 5jca 511 . 2 (𝐽𝐴 → (𝐽 ∈ Kol2 ∧ (KQ‘𝐽) ∈ 𝐴))
7 hmphsym 23507 . . . . 5 (𝐽 ≃ (KQ‘𝐽) → (KQ‘𝐽) ≃ 𝐽)
82, 7sylbi 216 . . . 4 (𝐽 ∈ Kol2 → (KQ‘𝐽) ≃ 𝐽)
9 ist1-5lem.3 . . . 4 ((KQ‘𝐽) ≃ 𝐽 → ((KQ‘𝐽) ∈ 𝐴𝐽𝐴))
108, 9syl 17 . . 3 (𝐽 ∈ Kol2 → ((KQ‘𝐽) ∈ 𝐴𝐽𝐴))
1110imp 406 . 2 ((𝐽 ∈ Kol2 ∧ (KQ‘𝐽) ∈ 𝐴) → 𝐽𝐴)
126, 11impbii 208 1 (𝐽𝐴 ↔ (𝐽 ∈ Kol2 ∧ (KQ‘𝐽) ∈ 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  wcel 2105   class class class wbr 5148  cfv 6543  Kol2ct0 23031  KQckq 23418  chmph 23479
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7728
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-ov 7415  df-oprab 7416  df-mpo 7417  df-1st 7978  df-2nd 7979  df-1o 8469  df-map 8825  df-qtop 17458  df-top 22617  df-topon 22634  df-cn 22952  df-t0 23038  df-kq 23419  df-hmeo 23480  df-hmph 23481
This theorem is referenced by:  ist1-5  23547  ishaus3  23548
  Copyright terms: Public domain W3C validator