![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ist1-5lem | Structured version Visualization version GIF version |
Description: Lemma for ist1-5 22034 and similar theorems. If 𝐴 is a topological property which implies T0, such as T1 or T2, the property can be "decomposed" into T0 and a non-T0 version of property 𝐴 (which is defined as stating that the Kolmogorov quotient of the space has property 𝐴). For example, if 𝐴 is T1, then the theorem states that a space is T1 iff it is T0 and its Kolmogorov quotient is T1 (we call this property R0). (Contributed by Mario Carneiro, 25-Aug-2015.) |
Ref | Expression |
---|---|
ist1-5lem.1 | ⊢ (𝐽 ∈ 𝐴 → 𝐽 ∈ Kol2) |
ist1-5lem.2 | ⊢ (𝐽 ≃ (KQ‘𝐽) → (𝐽 ∈ 𝐴 → (KQ‘𝐽) ∈ 𝐴)) |
ist1-5lem.3 | ⊢ ((KQ‘𝐽) ≃ 𝐽 → ((KQ‘𝐽) ∈ 𝐴 → 𝐽 ∈ 𝐴)) |
Ref | Expression |
---|---|
ist1-5lem | ⊢ (𝐽 ∈ 𝐴 ↔ (𝐽 ∈ Kol2 ∧ (KQ‘𝐽) ∈ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ist1-5lem.1 | . . 3 ⊢ (𝐽 ∈ 𝐴 → 𝐽 ∈ Kol2) | |
2 | kqhmph 22031 | . . . . 5 ⊢ (𝐽 ∈ Kol2 ↔ 𝐽 ≃ (KQ‘𝐽)) | |
3 | 1, 2 | sylib 210 | . . . 4 ⊢ (𝐽 ∈ 𝐴 → 𝐽 ≃ (KQ‘𝐽)) |
4 | ist1-5lem.2 | . . . 4 ⊢ (𝐽 ≃ (KQ‘𝐽) → (𝐽 ∈ 𝐴 → (KQ‘𝐽) ∈ 𝐴)) | |
5 | 3, 4 | mpcom 38 | . . 3 ⊢ (𝐽 ∈ 𝐴 → (KQ‘𝐽) ∈ 𝐴) |
6 | 1, 5 | jca 507 | . 2 ⊢ (𝐽 ∈ 𝐴 → (𝐽 ∈ Kol2 ∧ (KQ‘𝐽) ∈ 𝐴)) |
7 | hmphsym 21994 | . . . . 5 ⊢ (𝐽 ≃ (KQ‘𝐽) → (KQ‘𝐽) ≃ 𝐽) | |
8 | 2, 7 | sylbi 209 | . . . 4 ⊢ (𝐽 ∈ Kol2 → (KQ‘𝐽) ≃ 𝐽) |
9 | ist1-5lem.3 | . . . 4 ⊢ ((KQ‘𝐽) ≃ 𝐽 → ((KQ‘𝐽) ∈ 𝐴 → 𝐽 ∈ 𝐴)) | |
10 | 8, 9 | syl 17 | . . 3 ⊢ (𝐽 ∈ Kol2 → ((KQ‘𝐽) ∈ 𝐴 → 𝐽 ∈ 𝐴)) |
11 | 10 | imp 397 | . 2 ⊢ ((𝐽 ∈ Kol2 ∧ (KQ‘𝐽) ∈ 𝐴) → 𝐽 ∈ 𝐴) |
12 | 6, 11 | impbii 201 | 1 ⊢ (𝐽 ∈ 𝐴 ↔ (𝐽 ∈ Kol2 ∧ (KQ‘𝐽) ∈ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 386 ∈ wcel 2107 class class class wbr 4886 ‘cfv 6135 Kol2ct0 21518 KQckq 21905 ≃ chmph 21966 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-8 2109 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 ax-rep 5006 ax-sep 5017 ax-nul 5025 ax-pow 5077 ax-pr 5138 ax-un 7226 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2551 df-eu 2587 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ne 2970 df-ral 3095 df-rex 3096 df-reu 3097 df-rab 3099 df-v 3400 df-sbc 3653 df-csb 3752 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-nul 4142 df-if 4308 df-pw 4381 df-sn 4399 df-pr 4401 df-op 4405 df-uni 4672 df-iun 4755 df-br 4887 df-opab 4949 df-mpt 4966 df-id 5261 df-xp 5361 df-rel 5362 df-cnv 5363 df-co 5364 df-dm 5365 df-rn 5366 df-res 5367 df-ima 5368 df-suc 5982 df-iota 6099 df-fun 6137 df-fn 6138 df-f 6139 df-f1 6140 df-fo 6141 df-f1o 6142 df-fv 6143 df-ov 6925 df-oprab 6926 df-mpt2 6927 df-1st 7445 df-2nd 7446 df-1o 7843 df-map 8142 df-qtop 16553 df-top 21106 df-topon 21123 df-cn 21439 df-t0 21525 df-kq 21906 df-hmeo 21967 df-hmph 21968 |
This theorem is referenced by: ist1-5 22034 ishaus3 22035 |
Copyright terms: Public domain | W3C validator |