MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ist1-5lem Structured version   Visualization version   GIF version

Theorem ist1-5lem 23849
Description: Lemma for ist1-5 23851 and similar theorems. If 𝐴 is a topological property which implies T0, such as T1 or T2, the property can be "decomposed" into T0 and a non-T0 version of property 𝐴 (which is defined as stating that the Kolmogorov quotient of the space has property 𝐴). For example, if 𝐴 is T1, then the theorem states that a space is T1 iff it is T0 and its Kolmogorov quotient is T1 (we call this property R0). (Contributed by Mario Carneiro, 25-Aug-2015.)
Hypotheses
Ref Expression
ist1-5lem.1 (𝐽𝐴𝐽 ∈ Kol2)
ist1-5lem.2 (𝐽 ≃ (KQ‘𝐽) → (𝐽𝐴 → (KQ‘𝐽) ∈ 𝐴))
ist1-5lem.3 ((KQ‘𝐽) ≃ 𝐽 → ((KQ‘𝐽) ∈ 𝐴𝐽𝐴))
Assertion
Ref Expression
ist1-5lem (𝐽𝐴 ↔ (𝐽 ∈ Kol2 ∧ (KQ‘𝐽) ∈ 𝐴))

Proof of Theorem ist1-5lem
StepHypRef Expression
1 ist1-5lem.1 . . 3 (𝐽𝐴𝐽 ∈ Kol2)
2 kqhmph 23848 . . . . 5 (𝐽 ∈ Kol2 ↔ 𝐽 ≃ (KQ‘𝐽))
31, 2sylib 218 . . . 4 (𝐽𝐴𝐽 ≃ (KQ‘𝐽))
4 ist1-5lem.2 . . . 4 (𝐽 ≃ (KQ‘𝐽) → (𝐽𝐴 → (KQ‘𝐽) ∈ 𝐴))
53, 4mpcom 38 . . 3 (𝐽𝐴 → (KQ‘𝐽) ∈ 𝐴)
61, 5jca 511 . 2 (𝐽𝐴 → (𝐽 ∈ Kol2 ∧ (KQ‘𝐽) ∈ 𝐴))
7 hmphsym 23811 . . . . 5 (𝐽 ≃ (KQ‘𝐽) → (KQ‘𝐽) ≃ 𝐽)
82, 7sylbi 217 . . . 4 (𝐽 ∈ Kol2 → (KQ‘𝐽) ≃ 𝐽)
9 ist1-5lem.3 . . . 4 ((KQ‘𝐽) ≃ 𝐽 → ((KQ‘𝐽) ∈ 𝐴𝐽𝐴))
108, 9syl 17 . . 3 (𝐽 ∈ Kol2 → ((KQ‘𝐽) ∈ 𝐴𝐽𝐴))
1110imp 406 . 2 ((𝐽 ∈ Kol2 ∧ (KQ‘𝐽) ∈ 𝐴) → 𝐽𝐴)
126, 11impbii 209 1 (𝐽𝐴 ↔ (𝐽 ∈ Kol2 ∧ (KQ‘𝐽) ∈ 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wcel 2108   class class class wbr 5166  cfv 6573  Kol2ct0 23335  KQckq 23722  chmph 23783
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-1st 8030  df-2nd 8031  df-1o 8522  df-map 8886  df-qtop 17567  df-top 22921  df-topon 22938  df-cn 23256  df-t0 23342  df-kq 23723  df-hmeo 23784  df-hmph 23785
This theorem is referenced by:  ist1-5  23851  ishaus3  23852
  Copyright terms: Public domain W3C validator