![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 2trlond | Structured version Visualization version GIF version |
Description: A trail of length 2 from one vertex to another, different vertex via a third vertex. (Contributed by Alexander van der Vekens, 6-Dec-2017.) (Revised by AV, 30-Jan-2021.) (Revised by AV, 24-Mar-2021.) |
Ref | Expression |
---|---|
2wlkd.p | ⊢ 𝑃 = 〈“𝐴𝐵𝐶”〉 |
2wlkd.f | ⊢ 𝐹 = 〈“𝐽𝐾”〉 |
2wlkd.s | ⊢ (𝜑 → (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) |
2wlkd.n | ⊢ (𝜑 → (𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶)) |
2wlkd.e | ⊢ (𝜑 → ({𝐴, 𝐵} ⊆ (𝐼‘𝐽) ∧ {𝐵, 𝐶} ⊆ (𝐼‘𝐾))) |
2wlkd.v | ⊢ 𝑉 = (Vtx‘𝐺) |
2wlkd.i | ⊢ 𝐼 = (iEdg‘𝐺) |
2trld.n | ⊢ (𝜑 → 𝐽 ≠ 𝐾) |
Ref | Expression |
---|---|
2trlond | ⊢ (𝜑 → 𝐹(𝐴(TrailsOn‘𝐺)𝐶)𝑃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2wlkd.p | . . 3 ⊢ 𝑃 = 〈“𝐴𝐵𝐶”〉 | |
2 | 2wlkd.f | . . 3 ⊢ 𝐹 = 〈“𝐽𝐾”〉 | |
3 | 2wlkd.s | . . 3 ⊢ (𝜑 → (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) | |
4 | 2wlkd.n | . . 3 ⊢ (𝜑 → (𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶)) | |
5 | 2wlkd.e | . . 3 ⊢ (𝜑 → ({𝐴, 𝐵} ⊆ (𝐼‘𝐽) ∧ {𝐵, 𝐶} ⊆ (𝐼‘𝐾))) | |
6 | 2wlkd.v | . . 3 ⊢ 𝑉 = (Vtx‘𝐺) | |
7 | 2wlkd.i | . . 3 ⊢ 𝐼 = (iEdg‘𝐺) | |
8 | 1, 2, 3, 4, 5, 6, 7 | 2wlkond 29766 | . 2 ⊢ (𝜑 → 𝐹(𝐴(WalksOn‘𝐺)𝐶)𝑃) |
9 | 2trld.n | . . 3 ⊢ (𝜑 → 𝐽 ≠ 𝐾) | |
10 | 1, 2, 3, 4, 5, 6, 7, 9 | 2trld 29767 | . 2 ⊢ (𝜑 → 𝐹(Trails‘𝐺)𝑃) |
11 | 3 | simp1d 1139 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
12 | 3 | simp3d 1141 | . . 3 ⊢ (𝜑 → 𝐶 ∈ 𝑉) |
13 | s2cli 14869 | . . . . 5 ⊢ 〈“𝐽𝐾”〉 ∈ Word V | |
14 | 2, 13 | eqeltri 2824 | . . . 4 ⊢ 𝐹 ∈ Word V |
15 | 14 | a1i 11 | . . 3 ⊢ (𝜑 → 𝐹 ∈ Word V) |
16 | s3cli 14870 | . . . . 5 ⊢ 〈“𝐴𝐵𝐶”〉 ∈ Word V | |
17 | 1, 16 | eqeltri 2824 | . . . 4 ⊢ 𝑃 ∈ Word V |
18 | 17 | a1i 11 | . . 3 ⊢ (𝜑 → 𝑃 ∈ Word V) |
19 | 6 | istrlson 29539 | . . 3 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉) ∧ (𝐹 ∈ Word V ∧ 𝑃 ∈ Word V)) → (𝐹(𝐴(TrailsOn‘𝐺)𝐶)𝑃 ↔ (𝐹(𝐴(WalksOn‘𝐺)𝐶)𝑃 ∧ 𝐹(Trails‘𝐺)𝑃))) |
20 | 11, 12, 15, 18, 19 | syl22anc 837 | . 2 ⊢ (𝜑 → (𝐹(𝐴(TrailsOn‘𝐺)𝐶)𝑃 ↔ (𝐹(𝐴(WalksOn‘𝐺)𝐶)𝑃 ∧ 𝐹(Trails‘𝐺)𝑃))) |
21 | 8, 10, 20 | mpbir2and 711 | 1 ⊢ (𝜑 → 𝐹(𝐴(TrailsOn‘𝐺)𝐶)𝑃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 ∧ w3a 1084 = wceq 1533 ∈ wcel 2098 ≠ wne 2936 Vcvv 3471 ⊆ wss 3947 {cpr 4632 class class class wbr 5150 ‘cfv 6551 (class class class)co 7424 Word cword 14502 〈“cs2 14830 〈“cs3 14831 Vtxcvtx 28827 iEdgciedg 28828 WalksOncwlkson 29429 Trailsctrls 29522 TrailsOnctrlson 29523 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2698 ax-rep 5287 ax-sep 5301 ax-nul 5308 ax-pow 5367 ax-pr 5431 ax-un 7744 ax-cnex 11200 ax-resscn 11201 ax-1cn 11202 ax-icn 11203 ax-addcl 11204 ax-addrcl 11205 ax-mulcl 11206 ax-mulrcl 11207 ax-mulcom 11208 ax-addass 11209 ax-mulass 11210 ax-distr 11211 ax-i2m1 11212 ax-1ne0 11213 ax-1rid 11214 ax-rnegex 11215 ax-rrecex 11216 ax-cnre 11217 ax-pre-lttri 11218 ax-pre-lttrn 11219 ax-pre-ltadd 11220 ax-pre-mulgt0 11221 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-ifp 1061 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2937 df-nel 3043 df-ral 3058 df-rex 3067 df-reu 3373 df-rab 3429 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4325 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-tp 4635 df-op 4637 df-uni 4911 df-int 4952 df-iun 5000 df-br 5151 df-opab 5213 df-mpt 5234 df-tr 5268 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5635 df-we 5637 df-xp 5686 df-rel 5687 df-cnv 5688 df-co 5689 df-dm 5690 df-rn 5691 df-res 5692 df-ima 5693 df-pred 6308 df-ord 6375 df-on 6376 df-lim 6377 df-suc 6378 df-iota 6503 df-fun 6553 df-fn 6554 df-f 6555 df-f1 6556 df-fo 6557 df-f1o 6558 df-fv 6559 df-riota 7380 df-ov 7427 df-oprab 7428 df-mpo 7429 df-om 7875 df-1st 7997 df-2nd 7998 df-frecs 8291 df-wrecs 8322 df-recs 8396 df-rdg 8435 df-1o 8491 df-er 8729 df-map 8851 df-en 8969 df-dom 8970 df-sdom 8971 df-fin 8972 df-card 9968 df-pnf 11286 df-mnf 11287 df-xr 11288 df-ltxr 11289 df-le 11290 df-sub 11482 df-neg 11483 df-nn 12249 df-2 12311 df-3 12312 df-n0 12509 df-z 12595 df-uz 12859 df-fz 13523 df-fzo 13666 df-hash 14328 df-word 14503 df-concat 14559 df-s1 14584 df-s2 14837 df-s3 14838 df-wlks 29431 df-wlkson 29432 df-trls 29524 df-trlson 29525 |
This theorem is referenced by: 2pthond 29771 |
Copyright terms: Public domain | W3C validator |