Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isubgr3stgrlem3 Structured version   Visualization version   GIF version

Theorem isubgr3stgrlem3 47935
Description: Lemma 3 for isubgr3stgr 47942. (Contributed by AV, 17-Sep-2025.)
Hypotheses
Ref Expression
isubgr3stgr.v 𝑉 = (Vtx‘𝐺)
isubgr3stgr.u 𝑈 = (𝐺 NeighbVtx 𝑋)
isubgr3stgr.c 𝐶 = (𝐺 ClNeighbVtx 𝑋)
isubgr3stgr.n 𝑁 ∈ ℕ0
isubgr3stgr.s 𝑆 = (StarGr‘𝑁)
isubgr3stgr.w 𝑊 = (Vtx‘𝑆)
Assertion
Ref Expression
isubgr3stgrlem3 ((𝐺 ∈ USGraph ∧ 𝑋𝑉 ∧ (♯‘𝑈) = 𝑁) → ∃𝑔(𝑔:𝐶1-1-onto𝑊 ∧ (𝑔𝑋) = 0))
Distinct variable groups:   𝐶,𝑔   𝑔,𝑊   𝑔,𝑋
Allowed substitution hints:   𝑆(𝑔)   𝑈(𝑔)   𝐺(𝑔)   𝑁(𝑔)   𝑉(𝑔)

Proof of Theorem isubgr3stgrlem3
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 isubgr3stgr.v . . 3 𝑉 = (Vtx‘𝐺)
2 isubgr3stgr.u . . 3 𝑈 = (𝐺 NeighbVtx 𝑋)
3 isubgr3stgr.c . . 3 𝐶 = (𝐺 ClNeighbVtx 𝑋)
4 isubgr3stgr.n . . 3 𝑁 ∈ ℕ0
5 isubgr3stgr.s . . 3 𝑆 = (StarGr‘𝑁)
6 isubgr3stgr.w . . 3 𝑊 = (Vtx‘𝑆)
71, 2, 3, 4, 5, 6isubgr3stgrlem2 47934 . 2 ((𝐺 ∈ USGraph ∧ 𝑋𝑉 ∧ (♯‘𝑈) = 𝑁) → ∃𝑓 𝑓:𝑈1-1-onto→(𝑊 ∖ {0}))
8 f1odm 6852 . . . 4 (𝑓:𝑈1-1-onto→(𝑊 ∖ {0}) → dom 𝑓 = 𝑈)
9 simpr 484 . . . . . . 7 (((𝐺 ∈ USGraph ∧ 𝑋𝑉 ∧ (♯‘𝑈) = 𝑁) ∧ 𝑓:𝑈1-1-onto→(𝑊 ∖ {0})) → 𝑓:𝑈1-1-onto→(𝑊 ∖ {0}))
10 simpl2 1193 . . . . . . 7 (((𝐺 ∈ USGraph ∧ 𝑋𝑉 ∧ (♯‘𝑈) = 𝑁) ∧ 𝑓:𝑈1-1-onto→(𝑊 ∖ {0})) → 𝑋𝑉)
11 c0ex 11255 . . . . . . . 8 0 ∈ V
1211a1i 11 . . . . . . 7 (((𝐺 ∈ USGraph ∧ 𝑋𝑉 ∧ (♯‘𝑈) = 𝑁) ∧ 𝑓:𝑈1-1-onto→(𝑊 ∖ {0})) → 0 ∈ V)
13 neldifsnd 4793 . . . . . . . 8 (((𝐺 ∈ USGraph ∧ 𝑋𝑉 ∧ (♯‘𝑈) = 𝑁) ∧ 𝑓:𝑈1-1-onto→(𝑊 ∖ {0})) → ¬ 0 ∈ (𝑊 ∖ {0}))
14 df-nel 3047 . . . . . . . 8 (0 ∉ (𝑊 ∖ {0}) ↔ ¬ 0 ∈ (𝑊 ∖ {0}))
1513, 14sylibr 234 . . . . . . 7 (((𝐺 ∈ USGraph ∧ 𝑋𝑉 ∧ (♯‘𝑈) = 𝑁) ∧ 𝑓:𝑈1-1-onto→(𝑊 ∖ {0})) → 0 ∉ (𝑊 ∖ {0}))
16 eqid 2737 . . . . . . . 8 (𝑓 ∪ {⟨𝑋, 0⟩}) = (𝑓 ∪ {⟨𝑋, 0⟩})
171, 2, 3, 16isubgr3stgrlem1 47933 . . . . . . 7 ((𝑓:𝑈1-1-onto→(𝑊 ∖ {0}) ∧ 𝑋𝑉 ∧ (0 ∈ V ∧ 0 ∉ (𝑊 ∖ {0}))) → (𝑓 ∪ {⟨𝑋, 0⟩}):𝐶1-1-onto→((𝑊 ∖ {0}) ∪ {0}))
189, 10, 12, 15, 17syl112anc 1376 . . . . . 6 (((𝐺 ∈ USGraph ∧ 𝑋𝑉 ∧ (♯‘𝑈) = 𝑁) ∧ 𝑓:𝑈1-1-onto→(𝑊 ∖ {0})) → (𝑓 ∪ {⟨𝑋, 0⟩}):𝐶1-1-onto→((𝑊 ∖ {0}) ∪ {0}))
1918ex 412 . . . . 5 ((𝐺 ∈ USGraph ∧ 𝑋𝑉 ∧ (♯‘𝑈) = 𝑁) → (𝑓:𝑈1-1-onto→(𝑊 ∖ {0}) → (𝑓 ∪ {⟨𝑋, 0⟩}):𝐶1-1-onto→((𝑊 ∖ {0}) ∪ {0})))
20 f1of 6848 . . . . . . . . 9 ((𝑓 ∪ {⟨𝑋, 0⟩}):𝐶1-1-onto→((𝑊 ∖ {0}) ∪ {0}) → (𝑓 ∪ {⟨𝑋, 0⟩}):𝐶⟶((𝑊 ∖ {0}) ∪ {0}))
21203ad2ant2 1135 . . . . . . . 8 (((𝐺 ∈ USGraph ∧ 𝑋𝑉 ∧ (♯‘𝑈) = 𝑁) ∧ (𝑓 ∪ {⟨𝑋, 0⟩}):𝐶1-1-onto→((𝑊 ∖ {0}) ∪ {0}) ∧ dom 𝑓 = 𝑈) → (𝑓 ∪ {⟨𝑋, 0⟩}):𝐶⟶((𝑊 ∖ {0}) ∪ {0}))
223ovexi 7465 . . . . . . . . 9 𝐶 ∈ V
2322a1i 11 . . . . . . . 8 (((𝐺 ∈ USGraph ∧ 𝑋𝑉 ∧ (♯‘𝑈) = 𝑁) ∧ (𝑓 ∪ {⟨𝑋, 0⟩}):𝐶1-1-onto→((𝑊 ∖ {0}) ∪ {0}) ∧ dom 𝑓 = 𝑈) → 𝐶 ∈ V)
2421, 23fexd 7247 . . . . . . 7 (((𝐺 ∈ USGraph ∧ 𝑋𝑉 ∧ (♯‘𝑈) = 𝑁) ∧ (𝑓 ∪ {⟨𝑋, 0⟩}):𝐶1-1-onto→((𝑊 ∖ {0}) ∪ {0}) ∧ dom 𝑓 = 𝑈) → (𝑓 ∪ {⟨𝑋, 0⟩}) ∈ V)
255, 6stgrvtx0 47929 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ0 → 0 ∈ 𝑊)
264, 25mp1i 13 . . . . . . . . . . . . 13 ((𝐺 ∈ USGraph ∧ 𝑋𝑉 ∧ (♯‘𝑈) = 𝑁) → 0 ∈ 𝑊)
2726snssd 4809 . . . . . . . . . . . 12 ((𝐺 ∈ USGraph ∧ 𝑋𝑉 ∧ (♯‘𝑈) = 𝑁) → {0} ⊆ 𝑊)
28 undifr 4483 . . . . . . . . . . . 12 ({0} ⊆ 𝑊 ↔ ((𝑊 ∖ {0}) ∪ {0}) = 𝑊)
2927, 28sylib 218 . . . . . . . . . . 11 ((𝐺 ∈ USGraph ∧ 𝑋𝑉 ∧ (♯‘𝑈) = 𝑁) → ((𝑊 ∖ {0}) ∪ {0}) = 𝑊)
3029f1oeq3d 6845 . . . . . . . . . 10 ((𝐺 ∈ USGraph ∧ 𝑋𝑉 ∧ (♯‘𝑈) = 𝑁) → ((𝑓 ∪ {⟨𝑋, 0⟩}):𝐶1-1-onto→((𝑊 ∖ {0}) ∪ {0}) ↔ (𝑓 ∪ {⟨𝑋, 0⟩}):𝐶1-1-onto𝑊))
3130biimpa 476 . . . . . . . . 9 (((𝐺 ∈ USGraph ∧ 𝑋𝑉 ∧ (♯‘𝑈) = 𝑁) ∧ (𝑓 ∪ {⟨𝑋, 0⟩}):𝐶1-1-onto→((𝑊 ∖ {0}) ∪ {0})) → (𝑓 ∪ {⟨𝑋, 0⟩}):𝐶1-1-onto𝑊)
32313adant3 1133 . . . . . . . 8 (((𝐺 ∈ USGraph ∧ 𝑋𝑉 ∧ (♯‘𝑈) = 𝑁) ∧ (𝑓 ∪ {⟨𝑋, 0⟩}):𝐶1-1-onto→((𝑊 ∖ {0}) ∪ {0}) ∧ dom 𝑓 = 𝑈) → (𝑓 ∪ {⟨𝑋, 0⟩}):𝐶1-1-onto𝑊)
33 simp12 1205 . . . . . . . . 9 (((𝐺 ∈ USGraph ∧ 𝑋𝑉 ∧ (♯‘𝑈) = 𝑁) ∧ (𝑓 ∪ {⟨𝑋, 0⟩}):𝐶1-1-onto→((𝑊 ∖ {0}) ∪ {0}) ∧ dom 𝑓 = 𝑈) → 𝑋𝑉)
3411a1i 11 . . . . . . . . 9 (((𝐺 ∈ USGraph ∧ 𝑋𝑉 ∧ (♯‘𝑈) = 𝑁) ∧ (𝑓 ∪ {⟨𝑋, 0⟩}):𝐶1-1-onto→((𝑊 ∖ {0}) ∪ {0}) ∧ dom 𝑓 = 𝑈) → 0 ∈ V)
35 nbgrnself2 29377 . . . . . . . . . . 11 𝑋 ∉ (𝐺 NeighbVtx 𝑋)
36 df-nel 3047 . . . . . . . . . . . 12 (𝑋 ∉ (𝐺 NeighbVtx 𝑋) ↔ ¬ 𝑋 ∈ (𝐺 NeighbVtx 𝑋))
372eleq2i 2833 . . . . . . . . . . . 12 (𝑋𝑈𝑋 ∈ (𝐺 NeighbVtx 𝑋))
3836, 37xchbinxr 335 . . . . . . . . . . 11 (𝑋 ∉ (𝐺 NeighbVtx 𝑋) ↔ ¬ 𝑋𝑈)
3935, 38mpbi 230 . . . . . . . . . 10 ¬ 𝑋𝑈
40 eleq2 2830 . . . . . . . . . . . 12 (dom 𝑓 = 𝑈 → (𝑋 ∈ dom 𝑓𝑋𝑈))
4140notbid 318 . . . . . . . . . . 11 (dom 𝑓 = 𝑈 → (¬ 𝑋 ∈ dom 𝑓 ↔ ¬ 𝑋𝑈))
42413ad2ant3 1136 . . . . . . . . . 10 (((𝐺 ∈ USGraph ∧ 𝑋𝑉 ∧ (♯‘𝑈) = 𝑁) ∧ (𝑓 ∪ {⟨𝑋, 0⟩}):𝐶1-1-onto→((𝑊 ∖ {0}) ∪ {0}) ∧ dom 𝑓 = 𝑈) → (¬ 𝑋 ∈ dom 𝑓 ↔ ¬ 𝑋𝑈))
4339, 42mpbiri 258 . . . . . . . . 9 (((𝐺 ∈ USGraph ∧ 𝑋𝑉 ∧ (♯‘𝑈) = 𝑁) ∧ (𝑓 ∪ {⟨𝑋, 0⟩}):𝐶1-1-onto→((𝑊 ∖ {0}) ∪ {0}) ∧ dom 𝑓 = 𝑈) → ¬ 𝑋 ∈ dom 𝑓)
44 fsnunfv 7207 . . . . . . . . 9 ((𝑋𝑉 ∧ 0 ∈ V ∧ ¬ 𝑋 ∈ dom 𝑓) → ((𝑓 ∪ {⟨𝑋, 0⟩})‘𝑋) = 0)
4533, 34, 43, 44syl3anc 1373 . . . . . . . 8 (((𝐺 ∈ USGraph ∧ 𝑋𝑉 ∧ (♯‘𝑈) = 𝑁) ∧ (𝑓 ∪ {⟨𝑋, 0⟩}):𝐶1-1-onto→((𝑊 ∖ {0}) ∪ {0}) ∧ dom 𝑓 = 𝑈) → ((𝑓 ∪ {⟨𝑋, 0⟩})‘𝑋) = 0)
4632, 45jca 511 . . . . . . 7 (((𝐺 ∈ USGraph ∧ 𝑋𝑉 ∧ (♯‘𝑈) = 𝑁) ∧ (𝑓 ∪ {⟨𝑋, 0⟩}):𝐶1-1-onto→((𝑊 ∖ {0}) ∪ {0}) ∧ dom 𝑓 = 𝑈) → ((𝑓 ∪ {⟨𝑋, 0⟩}):𝐶1-1-onto𝑊 ∧ ((𝑓 ∪ {⟨𝑋, 0⟩})‘𝑋) = 0))
47 f1oeq1 6836 . . . . . . . 8 (𝑔 = (𝑓 ∪ {⟨𝑋, 0⟩}) → (𝑔:𝐶1-1-onto𝑊 ↔ (𝑓 ∪ {⟨𝑋, 0⟩}):𝐶1-1-onto𝑊))
48 fveq1 6905 . . . . . . . . 9 (𝑔 = (𝑓 ∪ {⟨𝑋, 0⟩}) → (𝑔𝑋) = ((𝑓 ∪ {⟨𝑋, 0⟩})‘𝑋))
4948eqeq1d 2739 . . . . . . . 8 (𝑔 = (𝑓 ∪ {⟨𝑋, 0⟩}) → ((𝑔𝑋) = 0 ↔ ((𝑓 ∪ {⟨𝑋, 0⟩})‘𝑋) = 0))
5047, 49anbi12d 632 . . . . . . 7 (𝑔 = (𝑓 ∪ {⟨𝑋, 0⟩}) → ((𝑔:𝐶1-1-onto𝑊 ∧ (𝑔𝑋) = 0) ↔ ((𝑓 ∪ {⟨𝑋, 0⟩}):𝐶1-1-onto𝑊 ∧ ((𝑓 ∪ {⟨𝑋, 0⟩})‘𝑋) = 0)))
5124, 46, 50spcedv 3598 . . . . . 6 (((𝐺 ∈ USGraph ∧ 𝑋𝑉 ∧ (♯‘𝑈) = 𝑁) ∧ (𝑓 ∪ {⟨𝑋, 0⟩}):𝐶1-1-onto→((𝑊 ∖ {0}) ∪ {0}) ∧ dom 𝑓 = 𝑈) → ∃𝑔(𝑔:𝐶1-1-onto𝑊 ∧ (𝑔𝑋) = 0))
52513exp 1120 . . . . 5 ((𝐺 ∈ USGraph ∧ 𝑋𝑉 ∧ (♯‘𝑈) = 𝑁) → ((𝑓 ∪ {⟨𝑋, 0⟩}):𝐶1-1-onto→((𝑊 ∖ {0}) ∪ {0}) → (dom 𝑓 = 𝑈 → ∃𝑔(𝑔:𝐶1-1-onto𝑊 ∧ (𝑔𝑋) = 0))))
5319, 52syld 47 . . . 4 ((𝐺 ∈ USGraph ∧ 𝑋𝑉 ∧ (♯‘𝑈) = 𝑁) → (𝑓:𝑈1-1-onto→(𝑊 ∖ {0}) → (dom 𝑓 = 𝑈 → ∃𝑔(𝑔:𝐶1-1-onto𝑊 ∧ (𝑔𝑋) = 0))))
548, 53mpdi 45 . . 3 ((𝐺 ∈ USGraph ∧ 𝑋𝑉 ∧ (♯‘𝑈) = 𝑁) → (𝑓:𝑈1-1-onto→(𝑊 ∖ {0}) → ∃𝑔(𝑔:𝐶1-1-onto𝑊 ∧ (𝑔𝑋) = 0)))
5554exlimdv 1933 . 2 ((𝐺 ∈ USGraph ∧ 𝑋𝑉 ∧ (♯‘𝑈) = 𝑁) → (∃𝑓 𝑓:𝑈1-1-onto→(𝑊 ∖ {0}) → ∃𝑔(𝑔:𝐶1-1-onto𝑊 ∧ (𝑔𝑋) = 0)))
567, 55mpd 15 1 ((𝐺 ∈ USGraph ∧ 𝑋𝑉 ∧ (♯‘𝑈) = 𝑁) → ∃𝑔(𝑔:𝐶1-1-onto𝑊 ∧ (𝑔𝑋) = 0))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1087   = wceq 1540  wex 1779  wcel 2108  wnel 3046  Vcvv 3480  cdif 3948  cun 3949  wss 3951  {csn 4626  cop 4632  dom cdm 5685  wf 6557  1-1-ontowf1o 6560  cfv 6561  (class class class)co 7431  0cc0 11155  0cn0 12526  chash 14369  Vtxcvtx 29013  USGraphcusgr 29166   NeighbVtx cnbgr 29349   ClNeighbVtx cclnbgr 47805  StarGrcstgr 47918
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-oadd 8510  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-dju 9941  df-card 9979  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-5 12332  df-6 12333  df-7 12334  df-8 12335  df-9 12336  df-n0 12527  df-xnn0 12600  df-z 12614  df-dec 12734  df-uz 12879  df-fz 13548  df-hash 14370  df-struct 17184  df-slot 17219  df-ndx 17231  df-base 17248  df-edgf 29004  df-vtx 29015  df-nbgr 29350  df-clnbgr 47806  df-stgr 47919
This theorem is referenced by:  isubgr3stgr  47942
  Copyright terms: Public domain W3C validator