| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > isubgr3stgrlem2 | Structured version Visualization version GIF version | ||
| Description: Lemma 2 for isubgr3stgr 47935. (Contributed by AV, 16-Sep-2025.) |
| Ref | Expression |
|---|---|
| isubgr3stgr.v | ⊢ 𝑉 = (Vtx‘𝐺) |
| isubgr3stgr.u | ⊢ 𝑈 = (𝐺 NeighbVtx 𝑋) |
| isubgr3stgr.c | ⊢ 𝐶 = (𝐺 ClNeighbVtx 𝑋) |
| isubgr3stgr.n | ⊢ 𝑁 ∈ ℕ0 |
| isubgr3stgr.s | ⊢ 𝑆 = (StarGr‘𝑁) |
| isubgr3stgr.w | ⊢ 𝑊 = (Vtx‘𝑆) |
| Ref | Expression |
|---|---|
| isubgr3stgrlem2 | ⊢ ((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ (♯‘𝑈) = 𝑁) → ∃𝑓 𝑓:𝑈–1-1-onto→(𝑊 ∖ {0})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isubgr3stgr.n | . . 3 ⊢ 𝑁 ∈ ℕ0 | |
| 2 | isubgr3stgr.s | . . . 4 ⊢ 𝑆 = (StarGr‘𝑁) | |
| 3 | isubgr3stgr.w | . . . 4 ⊢ 𝑊 = (Vtx‘𝑆) | |
| 4 | 2, 3 | stgrorder 47923 | . . 3 ⊢ (𝑁 ∈ ℕ0 → (♯‘𝑊) = (𝑁 + 1)) |
| 5 | 1, 4 | ax-mp 5 | . 2 ⊢ (♯‘𝑊) = (𝑁 + 1) |
| 6 | oveq1 7410 | . . . . . 6 ⊢ ((♯‘𝑊) = (𝑁 + 1) → ((♯‘𝑊) − 1) = ((𝑁 + 1) − 1)) | |
| 7 | nn0cn 12509 | . . . . . . . 8 ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ ℂ) | |
| 8 | pncan1 11659 | . . . . . . . 8 ⊢ (𝑁 ∈ ℂ → ((𝑁 + 1) − 1) = 𝑁) | |
| 9 | 7, 8 | syl 17 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ0 → ((𝑁 + 1) − 1) = 𝑁) |
| 10 | 1, 9 | mp1i 13 | . . . . . 6 ⊢ ((♯‘𝑊) = (𝑁 + 1) → ((𝑁 + 1) − 1) = 𝑁) |
| 11 | 6, 10 | eqtrd 2770 | . . . . 5 ⊢ ((♯‘𝑊) = (𝑁 + 1) → ((♯‘𝑊) − 1) = 𝑁) |
| 12 | 11 | adantr 480 | . . . 4 ⊢ (((♯‘𝑊) = (𝑁 + 1) ∧ (𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ (♯‘𝑈) = 𝑁)) → ((♯‘𝑊) − 1) = 𝑁) |
| 13 | peano2nn0 12539 | . . . . . . . . 9 ⊢ (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ0) | |
| 14 | 1, 13 | ax-mp 5 | . . . . . . . 8 ⊢ (𝑁 + 1) ∈ ℕ0 |
| 15 | eleq1 2822 | . . . . . . . 8 ⊢ ((♯‘𝑊) = (𝑁 + 1) → ((♯‘𝑊) ∈ ℕ0 ↔ (𝑁 + 1) ∈ ℕ0)) | |
| 16 | 14, 15 | mpbiri 258 | . . . . . . 7 ⊢ ((♯‘𝑊) = (𝑁 + 1) → (♯‘𝑊) ∈ ℕ0) |
| 17 | 16 | adantr 480 | . . . . . 6 ⊢ (((♯‘𝑊) = (𝑁 + 1) ∧ (𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ (♯‘𝑈) = 𝑁)) → (♯‘𝑊) ∈ ℕ0) |
| 18 | 3 | fvexi 6889 | . . . . . . 7 ⊢ 𝑊 ∈ V |
| 19 | hashclb 14374 | . . . . . . 7 ⊢ (𝑊 ∈ V → (𝑊 ∈ Fin ↔ (♯‘𝑊) ∈ ℕ0)) | |
| 20 | 18, 19 | mp1i 13 | . . . . . 6 ⊢ (((♯‘𝑊) = (𝑁 + 1) ∧ (𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ (♯‘𝑈) = 𝑁)) → (𝑊 ∈ Fin ↔ (♯‘𝑊) ∈ ℕ0)) |
| 21 | 17, 20 | mpbird 257 | . . . . 5 ⊢ (((♯‘𝑊) = (𝑁 + 1) ∧ (𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ (♯‘𝑈) = 𝑁)) → 𝑊 ∈ Fin) |
| 22 | 2, 3 | stgrvtx0 47922 | . . . . . 6 ⊢ (𝑁 ∈ ℕ0 → 0 ∈ 𝑊) |
| 23 | 1, 22 | ax-mp 5 | . . . . 5 ⊢ 0 ∈ 𝑊 |
| 24 | hashdifsn 14430 | . . . . 5 ⊢ ((𝑊 ∈ Fin ∧ 0 ∈ 𝑊) → (♯‘(𝑊 ∖ {0})) = ((♯‘𝑊) − 1)) | |
| 25 | 21, 23, 24 | sylancl 586 | . . . 4 ⊢ (((♯‘𝑊) = (𝑁 + 1) ∧ (𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ (♯‘𝑈) = 𝑁)) → (♯‘(𝑊 ∖ {0})) = ((♯‘𝑊) − 1)) |
| 26 | simpr3 1197 | . . . 4 ⊢ (((♯‘𝑊) = (𝑁 + 1) ∧ (𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ (♯‘𝑈) = 𝑁)) → (♯‘𝑈) = 𝑁) | |
| 27 | 12, 25, 26 | 3eqtr4rd 2781 | . . 3 ⊢ (((♯‘𝑊) = (𝑁 + 1) ∧ (𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ (♯‘𝑈) = 𝑁)) → (♯‘𝑈) = (♯‘(𝑊 ∖ {0}))) |
| 28 | eleq1 2822 | . . . . . . 7 ⊢ ((♯‘𝑈) = 𝑁 → ((♯‘𝑈) ∈ ℕ0 ↔ 𝑁 ∈ ℕ0)) | |
| 29 | 1, 28 | mpbiri 258 | . . . . . 6 ⊢ ((♯‘𝑈) = 𝑁 → (♯‘𝑈) ∈ ℕ0) |
| 30 | 29 | 3ad2ant3 1135 | . . . . 5 ⊢ ((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ (♯‘𝑈) = 𝑁) → (♯‘𝑈) ∈ ℕ0) |
| 31 | isubgr3stgr.u | . . . . . . 7 ⊢ 𝑈 = (𝐺 NeighbVtx 𝑋) | |
| 32 | 31 | ovexi 7437 | . . . . . 6 ⊢ 𝑈 ∈ V |
| 33 | hashclb 14374 | . . . . . 6 ⊢ (𝑈 ∈ V → (𝑈 ∈ Fin ↔ (♯‘𝑈) ∈ ℕ0)) | |
| 34 | 32, 33 | mp1i 13 | . . . . 5 ⊢ ((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ (♯‘𝑈) = 𝑁) → (𝑈 ∈ Fin ↔ (♯‘𝑈) ∈ ℕ0)) |
| 35 | 30, 34 | mpbird 257 | . . . 4 ⊢ ((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ (♯‘𝑈) = 𝑁) → 𝑈 ∈ Fin) |
| 36 | diffi 9187 | . . . . 5 ⊢ (𝑊 ∈ Fin → (𝑊 ∖ {0}) ∈ Fin) | |
| 37 | 21, 36 | syl 17 | . . . 4 ⊢ (((♯‘𝑊) = (𝑁 + 1) ∧ (𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ (♯‘𝑈) = 𝑁)) → (𝑊 ∖ {0}) ∈ Fin) |
| 38 | hasheqf1o 14365 | . . . 4 ⊢ ((𝑈 ∈ Fin ∧ (𝑊 ∖ {0}) ∈ Fin) → ((♯‘𝑈) = (♯‘(𝑊 ∖ {0})) ↔ ∃𝑓 𝑓:𝑈–1-1-onto→(𝑊 ∖ {0}))) | |
| 39 | 35, 37, 38 | syl2an2 686 | . . 3 ⊢ (((♯‘𝑊) = (𝑁 + 1) ∧ (𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ (♯‘𝑈) = 𝑁)) → ((♯‘𝑈) = (♯‘(𝑊 ∖ {0})) ↔ ∃𝑓 𝑓:𝑈–1-1-onto→(𝑊 ∖ {0}))) |
| 40 | 27, 39 | mpbid 232 | . 2 ⊢ (((♯‘𝑊) = (𝑁 + 1) ∧ (𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ (♯‘𝑈) = 𝑁)) → ∃𝑓 𝑓:𝑈–1-1-onto→(𝑊 ∖ {0})) |
| 41 | 5, 40 | mpan 690 | 1 ⊢ ((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ (♯‘𝑈) = 𝑁) → ∃𝑓 𝑓:𝑈–1-1-onto→(𝑊 ∖ {0})) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∃wex 1779 ∈ wcel 2108 Vcvv 3459 ∖ cdif 3923 {csn 4601 –1-1-onto→wf1o 6529 ‘cfv 6530 (class class class)co 7403 Fincfn 8957 ℂcc 11125 0cc0 11127 1c1 11128 + caddc 11130 − cmin 11464 ℕ0cn0 12499 ♯chash 14346 Vtxcvtx 28921 USGraphcusgr 29074 NeighbVtx cnbgr 29257 ClNeighbVtx cclnbgr 47780 StarGrcstgr 47911 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7727 ax-cnex 11183 ax-resscn 11184 ax-1cn 11185 ax-icn 11186 ax-addcl 11187 ax-addrcl 11188 ax-mulcl 11189 ax-mulrcl 11190 ax-mulcom 11191 ax-addass 11192 ax-mulass 11193 ax-distr 11194 ax-i2m1 11195 ax-1ne0 11196 ax-1rid 11197 ax-rnegex 11198 ax-rrecex 11199 ax-cnre 11200 ax-pre-lttri 11201 ax-pre-lttrn 11202 ax-pre-ltadd 11203 ax-pre-mulgt0 11204 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6483 df-fun 6532 df-fn 6533 df-f 6534 df-f1 6535 df-fo 6536 df-f1o 6537 df-fv 6538 df-riota 7360 df-ov 7406 df-oprab 7407 df-mpo 7408 df-om 7860 df-1st 7986 df-2nd 7987 df-frecs 8278 df-wrecs 8309 df-recs 8383 df-rdg 8422 df-1o 8478 df-oadd 8482 df-er 8717 df-en 8958 df-dom 8959 df-sdom 8960 df-fin 8961 df-dju 9913 df-card 9951 df-pnf 11269 df-mnf 11270 df-xr 11271 df-ltxr 11272 df-le 11273 df-sub 11466 df-neg 11467 df-nn 12239 df-2 12301 df-3 12302 df-4 12303 df-5 12304 df-6 12305 df-7 12306 df-8 12307 df-9 12308 df-n0 12500 df-xnn0 12573 df-z 12587 df-dec 12707 df-uz 12851 df-fz 13523 df-hash 14347 df-struct 17164 df-slot 17199 df-ndx 17211 df-base 17227 df-edgf 28914 df-vtx 28923 df-stgr 47912 |
| This theorem is referenced by: isubgr3stgrlem3 47928 |
| Copyright terms: Public domain | W3C validator |