Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isubgr3stgrlem2 Structured version   Visualization version   GIF version

Theorem isubgr3stgrlem2 47961
Description: Lemma 2 for isubgr3stgr 47969. (Contributed by AV, 16-Sep-2025.)
Hypotheses
Ref Expression
isubgr3stgr.v 𝑉 = (Vtx‘𝐺)
isubgr3stgr.u 𝑈 = (𝐺 NeighbVtx 𝑋)
isubgr3stgr.c 𝐶 = (𝐺 ClNeighbVtx 𝑋)
isubgr3stgr.n 𝑁 ∈ ℕ0
isubgr3stgr.s 𝑆 = (StarGr‘𝑁)
isubgr3stgr.w 𝑊 = (Vtx‘𝑆)
Assertion
Ref Expression
isubgr3stgrlem2 ((𝐺 ∈ USGraph ∧ 𝑋𝑉 ∧ (♯‘𝑈) = 𝑁) → ∃𝑓 𝑓:𝑈1-1-onto→(𝑊 ∖ {0}))
Distinct variable groups:   𝑈,𝑓   𝑓,𝑊
Allowed substitution hints:   𝐶(𝑓)   𝑆(𝑓)   𝐺(𝑓)   𝑁(𝑓)   𝑉(𝑓)   𝑋(𝑓)

Proof of Theorem isubgr3stgrlem2
StepHypRef Expression
1 isubgr3stgr.n . . 3 𝑁 ∈ ℕ0
2 isubgr3stgr.s . . . 4 𝑆 = (StarGr‘𝑁)
3 isubgr3stgr.w . . . 4 𝑊 = (Vtx‘𝑆)
42, 3stgrorder 47957 . . 3 (𝑁 ∈ ℕ0 → (♯‘𝑊) = (𝑁 + 1))
51, 4ax-mp 5 . 2 (♯‘𝑊) = (𝑁 + 1)
6 oveq1 7356 . . . . . 6 ((♯‘𝑊) = (𝑁 + 1) → ((♯‘𝑊) − 1) = ((𝑁 + 1) − 1))
7 nn0cn 12394 . . . . . . . 8 (𝑁 ∈ ℕ0𝑁 ∈ ℂ)
8 pncan1 11544 . . . . . . . 8 (𝑁 ∈ ℂ → ((𝑁 + 1) − 1) = 𝑁)
97, 8syl 17 . . . . . . 7 (𝑁 ∈ ℕ0 → ((𝑁 + 1) − 1) = 𝑁)
101, 9mp1i 13 . . . . . 6 ((♯‘𝑊) = (𝑁 + 1) → ((𝑁 + 1) − 1) = 𝑁)
116, 10eqtrd 2764 . . . . 5 ((♯‘𝑊) = (𝑁 + 1) → ((♯‘𝑊) − 1) = 𝑁)
1211adantr 480 . . . 4 (((♯‘𝑊) = (𝑁 + 1) ∧ (𝐺 ∈ USGraph ∧ 𝑋𝑉 ∧ (♯‘𝑈) = 𝑁)) → ((♯‘𝑊) − 1) = 𝑁)
13 peano2nn0 12424 . . . . . . . . 9 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ0)
141, 13ax-mp 5 . . . . . . . 8 (𝑁 + 1) ∈ ℕ0
15 eleq1 2816 . . . . . . . 8 ((♯‘𝑊) = (𝑁 + 1) → ((♯‘𝑊) ∈ ℕ0 ↔ (𝑁 + 1) ∈ ℕ0))
1614, 15mpbiri 258 . . . . . . 7 ((♯‘𝑊) = (𝑁 + 1) → (♯‘𝑊) ∈ ℕ0)
1716adantr 480 . . . . . 6 (((♯‘𝑊) = (𝑁 + 1) ∧ (𝐺 ∈ USGraph ∧ 𝑋𝑉 ∧ (♯‘𝑈) = 𝑁)) → (♯‘𝑊) ∈ ℕ0)
183fvexi 6836 . . . . . . 7 𝑊 ∈ V
19 hashclb 14265 . . . . . . 7 (𝑊 ∈ V → (𝑊 ∈ Fin ↔ (♯‘𝑊) ∈ ℕ0))
2018, 19mp1i 13 . . . . . 6 (((♯‘𝑊) = (𝑁 + 1) ∧ (𝐺 ∈ USGraph ∧ 𝑋𝑉 ∧ (♯‘𝑈) = 𝑁)) → (𝑊 ∈ Fin ↔ (♯‘𝑊) ∈ ℕ0))
2117, 20mpbird 257 . . . . 5 (((♯‘𝑊) = (𝑁 + 1) ∧ (𝐺 ∈ USGraph ∧ 𝑋𝑉 ∧ (♯‘𝑈) = 𝑁)) → 𝑊 ∈ Fin)
222, 3stgrvtx0 47956 . . . . . 6 (𝑁 ∈ ℕ0 → 0 ∈ 𝑊)
231, 22ax-mp 5 . . . . 5 0 ∈ 𝑊
24 hashdifsn 14321 . . . . 5 ((𝑊 ∈ Fin ∧ 0 ∈ 𝑊) → (♯‘(𝑊 ∖ {0})) = ((♯‘𝑊) − 1))
2521, 23, 24sylancl 586 . . . 4 (((♯‘𝑊) = (𝑁 + 1) ∧ (𝐺 ∈ USGraph ∧ 𝑋𝑉 ∧ (♯‘𝑈) = 𝑁)) → (♯‘(𝑊 ∖ {0})) = ((♯‘𝑊) − 1))
26 simpr3 1197 . . . 4 (((♯‘𝑊) = (𝑁 + 1) ∧ (𝐺 ∈ USGraph ∧ 𝑋𝑉 ∧ (♯‘𝑈) = 𝑁)) → (♯‘𝑈) = 𝑁)
2712, 25, 263eqtr4rd 2775 . . 3 (((♯‘𝑊) = (𝑁 + 1) ∧ (𝐺 ∈ USGraph ∧ 𝑋𝑉 ∧ (♯‘𝑈) = 𝑁)) → (♯‘𝑈) = (♯‘(𝑊 ∖ {0})))
28 eleq1 2816 . . . . . . 7 ((♯‘𝑈) = 𝑁 → ((♯‘𝑈) ∈ ℕ0𝑁 ∈ ℕ0))
291, 28mpbiri 258 . . . . . 6 ((♯‘𝑈) = 𝑁 → (♯‘𝑈) ∈ ℕ0)
30293ad2ant3 1135 . . . . 5 ((𝐺 ∈ USGraph ∧ 𝑋𝑉 ∧ (♯‘𝑈) = 𝑁) → (♯‘𝑈) ∈ ℕ0)
31 isubgr3stgr.u . . . . . . 7 𝑈 = (𝐺 NeighbVtx 𝑋)
3231ovexi 7383 . . . . . 6 𝑈 ∈ V
33 hashclb 14265 . . . . . 6 (𝑈 ∈ V → (𝑈 ∈ Fin ↔ (♯‘𝑈) ∈ ℕ0))
3432, 33mp1i 13 . . . . 5 ((𝐺 ∈ USGraph ∧ 𝑋𝑉 ∧ (♯‘𝑈) = 𝑁) → (𝑈 ∈ Fin ↔ (♯‘𝑈) ∈ ℕ0))
3530, 34mpbird 257 . . . 4 ((𝐺 ∈ USGraph ∧ 𝑋𝑉 ∧ (♯‘𝑈) = 𝑁) → 𝑈 ∈ Fin)
36 diffi 9089 . . . . 5 (𝑊 ∈ Fin → (𝑊 ∖ {0}) ∈ Fin)
3721, 36syl 17 . . . 4 (((♯‘𝑊) = (𝑁 + 1) ∧ (𝐺 ∈ USGraph ∧ 𝑋𝑉 ∧ (♯‘𝑈) = 𝑁)) → (𝑊 ∖ {0}) ∈ Fin)
38 hasheqf1o 14256 . . . 4 ((𝑈 ∈ Fin ∧ (𝑊 ∖ {0}) ∈ Fin) → ((♯‘𝑈) = (♯‘(𝑊 ∖ {0})) ↔ ∃𝑓 𝑓:𝑈1-1-onto→(𝑊 ∖ {0})))
3935, 37, 38syl2an2 686 . . 3 (((♯‘𝑊) = (𝑁 + 1) ∧ (𝐺 ∈ USGraph ∧ 𝑋𝑉 ∧ (♯‘𝑈) = 𝑁)) → ((♯‘𝑈) = (♯‘(𝑊 ∖ {0})) ↔ ∃𝑓 𝑓:𝑈1-1-onto→(𝑊 ∖ {0})))
4027, 39mpbid 232 . 2 (((♯‘𝑊) = (𝑁 + 1) ∧ (𝐺 ∈ USGraph ∧ 𝑋𝑉 ∧ (♯‘𝑈) = 𝑁)) → ∃𝑓 𝑓:𝑈1-1-onto→(𝑊 ∖ {0}))
415, 40mpan 690 1 ((𝐺 ∈ USGraph ∧ 𝑋𝑉 ∧ (♯‘𝑈) = 𝑁) → ∃𝑓 𝑓:𝑈1-1-onto→(𝑊 ∖ {0}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wex 1779  wcel 2109  Vcvv 3436  cdif 3900  {csn 4577  1-1-ontowf1o 6481  cfv 6482  (class class class)co 7349  Fincfn 8872  cc 11007  0cc0 11009  1c1 11010   + caddc 11012  cmin 11347  0cn0 12384  chash 14237  Vtxcvtx 28941  USGraphcusgr 29094   NeighbVtx cnbgr 29277   ClNeighbVtx cclnbgr 47812  StarGrcstgr 47945
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-oadd 8392  df-er 8625  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-dju 9797  df-card 9835  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-nn 12129  df-2 12191  df-3 12192  df-4 12193  df-5 12194  df-6 12195  df-7 12196  df-8 12197  df-9 12198  df-n0 12385  df-xnn0 12458  df-z 12472  df-dec 12592  df-uz 12736  df-fz 13411  df-hash 14238  df-struct 17058  df-slot 17093  df-ndx 17105  df-base 17121  df-edgf 28934  df-vtx 28943  df-stgr 47946
This theorem is referenced by:  isubgr3stgrlem3  47962
  Copyright terms: Public domain W3C validator