Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isubgr3stgrlem2 Structured version   Visualization version   GIF version

Theorem isubgr3stgrlem2 47869
Description: Lemma 2 for isubgr3stgr 47877. (Contributed by AV, 16-Sep-2025.)
Hypotheses
Ref Expression
isubgr3stgr.v 𝑉 = (Vtx‘𝐺)
isubgr3stgr.u 𝑈 = (𝐺 NeighbVtx 𝑋)
isubgr3stgr.c 𝐶 = (𝐺 ClNeighbVtx 𝑋)
isubgr3stgr.n 𝑁 ∈ ℕ0
isubgr3stgr.s 𝑆 = (StarGr‘𝑁)
isubgr3stgr.w 𝑊 = (Vtx‘𝑆)
Assertion
Ref Expression
isubgr3stgrlem2 ((𝐺 ∈ USGraph ∧ 𝑋𝑉 ∧ (♯‘𝑈) = 𝑁) → ∃𝑓 𝑓:𝑈1-1-onto→(𝑊 ∖ {0}))
Distinct variable groups:   𝑈,𝑓   𝑓,𝑊
Allowed substitution hints:   𝐶(𝑓)   𝑆(𝑓)   𝐺(𝑓)   𝑁(𝑓)   𝑉(𝑓)   𝑋(𝑓)

Proof of Theorem isubgr3stgrlem2
StepHypRef Expression
1 isubgr3stgr.n . . 3 𝑁 ∈ ℕ0
2 isubgr3stgr.s . . . 4 𝑆 = (StarGr‘𝑁)
3 isubgr3stgr.w . . . 4 𝑊 = (Vtx‘𝑆)
42, 3stgrorder 47865 . . 3 (𝑁 ∈ ℕ0 → (♯‘𝑊) = (𝑁 + 1))
51, 4ax-mp 5 . 2 (♯‘𝑊) = (𝑁 + 1)
6 oveq1 7437 . . . . . 6 ((♯‘𝑊) = (𝑁 + 1) → ((♯‘𝑊) − 1) = ((𝑁 + 1) − 1))
7 nn0cn 12533 . . . . . . . 8 (𝑁 ∈ ℕ0𝑁 ∈ ℂ)
8 pncan1 11684 . . . . . . . 8 (𝑁 ∈ ℂ → ((𝑁 + 1) − 1) = 𝑁)
97, 8syl 17 . . . . . . 7 (𝑁 ∈ ℕ0 → ((𝑁 + 1) − 1) = 𝑁)
101, 9mp1i 13 . . . . . 6 ((♯‘𝑊) = (𝑁 + 1) → ((𝑁 + 1) − 1) = 𝑁)
116, 10eqtrd 2774 . . . . 5 ((♯‘𝑊) = (𝑁 + 1) → ((♯‘𝑊) − 1) = 𝑁)
1211adantr 480 . . . 4 (((♯‘𝑊) = (𝑁 + 1) ∧ (𝐺 ∈ USGraph ∧ 𝑋𝑉 ∧ (♯‘𝑈) = 𝑁)) → ((♯‘𝑊) − 1) = 𝑁)
13 peano2nn0 12563 . . . . . . . . 9 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ0)
141, 13ax-mp 5 . . . . . . . 8 (𝑁 + 1) ∈ ℕ0
15 eleq1 2826 . . . . . . . 8 ((♯‘𝑊) = (𝑁 + 1) → ((♯‘𝑊) ∈ ℕ0 ↔ (𝑁 + 1) ∈ ℕ0))
1614, 15mpbiri 258 . . . . . . 7 ((♯‘𝑊) = (𝑁 + 1) → (♯‘𝑊) ∈ ℕ0)
1716adantr 480 . . . . . 6 (((♯‘𝑊) = (𝑁 + 1) ∧ (𝐺 ∈ USGraph ∧ 𝑋𝑉 ∧ (♯‘𝑈) = 𝑁)) → (♯‘𝑊) ∈ ℕ0)
183fvexi 6920 . . . . . . 7 𝑊 ∈ V
19 hashclb 14393 . . . . . . 7 (𝑊 ∈ V → (𝑊 ∈ Fin ↔ (♯‘𝑊) ∈ ℕ0))
2018, 19mp1i 13 . . . . . 6 (((♯‘𝑊) = (𝑁 + 1) ∧ (𝐺 ∈ USGraph ∧ 𝑋𝑉 ∧ (♯‘𝑈) = 𝑁)) → (𝑊 ∈ Fin ↔ (♯‘𝑊) ∈ ℕ0))
2117, 20mpbird 257 . . . . 5 (((♯‘𝑊) = (𝑁 + 1) ∧ (𝐺 ∈ USGraph ∧ 𝑋𝑉 ∧ (♯‘𝑈) = 𝑁)) → 𝑊 ∈ Fin)
222, 3stgrvtx0 47864 . . . . . 6 (𝑁 ∈ ℕ0 → 0 ∈ 𝑊)
231, 22ax-mp 5 . . . . 5 0 ∈ 𝑊
24 hashdifsn 14449 . . . . 5 ((𝑊 ∈ Fin ∧ 0 ∈ 𝑊) → (♯‘(𝑊 ∖ {0})) = ((♯‘𝑊) − 1))
2521, 23, 24sylancl 586 . . . 4 (((♯‘𝑊) = (𝑁 + 1) ∧ (𝐺 ∈ USGraph ∧ 𝑋𝑉 ∧ (♯‘𝑈) = 𝑁)) → (♯‘(𝑊 ∖ {0})) = ((♯‘𝑊) − 1))
26 simpr3 1195 . . . 4 (((♯‘𝑊) = (𝑁 + 1) ∧ (𝐺 ∈ USGraph ∧ 𝑋𝑉 ∧ (♯‘𝑈) = 𝑁)) → (♯‘𝑈) = 𝑁)
2712, 25, 263eqtr4rd 2785 . . 3 (((♯‘𝑊) = (𝑁 + 1) ∧ (𝐺 ∈ USGraph ∧ 𝑋𝑉 ∧ (♯‘𝑈) = 𝑁)) → (♯‘𝑈) = (♯‘(𝑊 ∖ {0})))
28 eleq1 2826 . . . . . . 7 ((♯‘𝑈) = 𝑁 → ((♯‘𝑈) ∈ ℕ0𝑁 ∈ ℕ0))
291, 28mpbiri 258 . . . . . 6 ((♯‘𝑈) = 𝑁 → (♯‘𝑈) ∈ ℕ0)
30293ad2ant3 1134 . . . . 5 ((𝐺 ∈ USGraph ∧ 𝑋𝑉 ∧ (♯‘𝑈) = 𝑁) → (♯‘𝑈) ∈ ℕ0)
31 isubgr3stgr.u . . . . . . 7 𝑈 = (𝐺 NeighbVtx 𝑋)
3231ovexi 7464 . . . . . 6 𝑈 ∈ V
33 hashclb 14393 . . . . . 6 (𝑈 ∈ V → (𝑈 ∈ Fin ↔ (♯‘𝑈) ∈ ℕ0))
3432, 33mp1i 13 . . . . 5 ((𝐺 ∈ USGraph ∧ 𝑋𝑉 ∧ (♯‘𝑈) = 𝑁) → (𝑈 ∈ Fin ↔ (♯‘𝑈) ∈ ℕ0))
3530, 34mpbird 257 . . . 4 ((𝐺 ∈ USGraph ∧ 𝑋𝑉 ∧ (♯‘𝑈) = 𝑁) → 𝑈 ∈ Fin)
36 diffi 9213 . . . . 5 (𝑊 ∈ Fin → (𝑊 ∖ {0}) ∈ Fin)
3721, 36syl 17 . . . 4 (((♯‘𝑊) = (𝑁 + 1) ∧ (𝐺 ∈ USGraph ∧ 𝑋𝑉 ∧ (♯‘𝑈) = 𝑁)) → (𝑊 ∖ {0}) ∈ Fin)
38 hasheqf1o 14384 . . . 4 ((𝑈 ∈ Fin ∧ (𝑊 ∖ {0}) ∈ Fin) → ((♯‘𝑈) = (♯‘(𝑊 ∖ {0})) ↔ ∃𝑓 𝑓:𝑈1-1-onto→(𝑊 ∖ {0})))
3935, 37, 38syl2an2 686 . . 3 (((♯‘𝑊) = (𝑁 + 1) ∧ (𝐺 ∈ USGraph ∧ 𝑋𝑉 ∧ (♯‘𝑈) = 𝑁)) → ((♯‘𝑈) = (♯‘(𝑊 ∖ {0})) ↔ ∃𝑓 𝑓:𝑈1-1-onto→(𝑊 ∖ {0})))
4027, 39mpbid 232 . 2 (((♯‘𝑊) = (𝑁 + 1) ∧ (𝐺 ∈ USGraph ∧ 𝑋𝑉 ∧ (♯‘𝑈) = 𝑁)) → ∃𝑓 𝑓:𝑈1-1-onto→(𝑊 ∖ {0}))
415, 40mpan 690 1 ((𝐺 ∈ USGraph ∧ 𝑋𝑉 ∧ (♯‘𝑈) = 𝑁) → ∃𝑓 𝑓:𝑈1-1-onto→(𝑊 ∖ {0}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1536  wex 1775  wcel 2105  Vcvv 3477  cdif 3959  {csn 4630  1-1-ontowf1o 6561  cfv 6562  (class class class)co 7430  Fincfn 8983  cc 11150  0cc0 11152  1c1 11153   + caddc 11155  cmin 11489  0cn0 12523  chash 14365  Vtxcvtx 29027  USGraphcusgr 29180   NeighbVtx cnbgr 29363   ClNeighbVtx cclnbgr 47742  StarGrcstgr 47853
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-rep 5284  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-cnex 11208  ax-resscn 11209  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-mulcom 11216  ax-addass 11217  ax-mulass 11218  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rnegex 11223  ax-rrecex 11224  ax-cnre 11225  ax-pre-lttri 11226  ax-pre-lttrn 11227  ax-pre-ltadd 11228  ax-pre-mulgt0 11229
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-int 4951  df-iun 4997  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-om 7887  df-1st 8012  df-2nd 8013  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-1o 8504  df-oadd 8508  df-er 8743  df-en 8984  df-dom 8985  df-sdom 8986  df-fin 8987  df-dju 9938  df-card 9976  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-le 11298  df-sub 11491  df-neg 11492  df-nn 12264  df-2 12326  df-3 12327  df-4 12328  df-5 12329  df-6 12330  df-7 12331  df-8 12332  df-9 12333  df-n0 12524  df-xnn0 12597  df-z 12611  df-dec 12731  df-uz 12876  df-fz 13544  df-hash 14366  df-struct 17180  df-slot 17215  df-ndx 17227  df-base 17245  df-edgf 29018  df-vtx 29029  df-stgr 47854
This theorem is referenced by:  isubgr3stgrlem3  47870
  Copyright terms: Public domain W3C validator