| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > isubgr3stgrlem2 | Structured version Visualization version GIF version | ||
| Description: Lemma 2 for isubgr3stgr 47978. (Contributed by AV, 16-Sep-2025.) |
| Ref | Expression |
|---|---|
| isubgr3stgr.v | ⊢ 𝑉 = (Vtx‘𝐺) |
| isubgr3stgr.u | ⊢ 𝑈 = (𝐺 NeighbVtx 𝑋) |
| isubgr3stgr.c | ⊢ 𝐶 = (𝐺 ClNeighbVtx 𝑋) |
| isubgr3stgr.n | ⊢ 𝑁 ∈ ℕ0 |
| isubgr3stgr.s | ⊢ 𝑆 = (StarGr‘𝑁) |
| isubgr3stgr.w | ⊢ 𝑊 = (Vtx‘𝑆) |
| Ref | Expression |
|---|---|
| isubgr3stgrlem2 | ⊢ ((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ (♯‘𝑈) = 𝑁) → ∃𝑓 𝑓:𝑈–1-1-onto→(𝑊 ∖ {0})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isubgr3stgr.n | . . 3 ⊢ 𝑁 ∈ ℕ0 | |
| 2 | isubgr3stgr.s | . . . 4 ⊢ 𝑆 = (StarGr‘𝑁) | |
| 3 | isubgr3stgr.w | . . . 4 ⊢ 𝑊 = (Vtx‘𝑆) | |
| 4 | 2, 3 | stgrorder 47966 | . . 3 ⊢ (𝑁 ∈ ℕ0 → (♯‘𝑊) = (𝑁 + 1)) |
| 5 | 1, 4 | ax-mp 5 | . 2 ⊢ (♯‘𝑊) = (𝑁 + 1) |
| 6 | oveq1 7397 | . . . . . 6 ⊢ ((♯‘𝑊) = (𝑁 + 1) → ((♯‘𝑊) − 1) = ((𝑁 + 1) − 1)) | |
| 7 | nn0cn 12459 | . . . . . . . 8 ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ ℂ) | |
| 8 | pncan1 11609 | . . . . . . . 8 ⊢ (𝑁 ∈ ℂ → ((𝑁 + 1) − 1) = 𝑁) | |
| 9 | 7, 8 | syl 17 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ0 → ((𝑁 + 1) − 1) = 𝑁) |
| 10 | 1, 9 | mp1i 13 | . . . . . 6 ⊢ ((♯‘𝑊) = (𝑁 + 1) → ((𝑁 + 1) − 1) = 𝑁) |
| 11 | 6, 10 | eqtrd 2765 | . . . . 5 ⊢ ((♯‘𝑊) = (𝑁 + 1) → ((♯‘𝑊) − 1) = 𝑁) |
| 12 | 11 | adantr 480 | . . . 4 ⊢ (((♯‘𝑊) = (𝑁 + 1) ∧ (𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ (♯‘𝑈) = 𝑁)) → ((♯‘𝑊) − 1) = 𝑁) |
| 13 | peano2nn0 12489 | . . . . . . . . 9 ⊢ (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ0) | |
| 14 | 1, 13 | ax-mp 5 | . . . . . . . 8 ⊢ (𝑁 + 1) ∈ ℕ0 |
| 15 | eleq1 2817 | . . . . . . . 8 ⊢ ((♯‘𝑊) = (𝑁 + 1) → ((♯‘𝑊) ∈ ℕ0 ↔ (𝑁 + 1) ∈ ℕ0)) | |
| 16 | 14, 15 | mpbiri 258 | . . . . . . 7 ⊢ ((♯‘𝑊) = (𝑁 + 1) → (♯‘𝑊) ∈ ℕ0) |
| 17 | 16 | adantr 480 | . . . . . 6 ⊢ (((♯‘𝑊) = (𝑁 + 1) ∧ (𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ (♯‘𝑈) = 𝑁)) → (♯‘𝑊) ∈ ℕ0) |
| 18 | 3 | fvexi 6875 | . . . . . . 7 ⊢ 𝑊 ∈ V |
| 19 | hashclb 14330 | . . . . . . 7 ⊢ (𝑊 ∈ V → (𝑊 ∈ Fin ↔ (♯‘𝑊) ∈ ℕ0)) | |
| 20 | 18, 19 | mp1i 13 | . . . . . 6 ⊢ (((♯‘𝑊) = (𝑁 + 1) ∧ (𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ (♯‘𝑈) = 𝑁)) → (𝑊 ∈ Fin ↔ (♯‘𝑊) ∈ ℕ0)) |
| 21 | 17, 20 | mpbird 257 | . . . . 5 ⊢ (((♯‘𝑊) = (𝑁 + 1) ∧ (𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ (♯‘𝑈) = 𝑁)) → 𝑊 ∈ Fin) |
| 22 | 2, 3 | stgrvtx0 47965 | . . . . . 6 ⊢ (𝑁 ∈ ℕ0 → 0 ∈ 𝑊) |
| 23 | 1, 22 | ax-mp 5 | . . . . 5 ⊢ 0 ∈ 𝑊 |
| 24 | hashdifsn 14386 | . . . . 5 ⊢ ((𝑊 ∈ Fin ∧ 0 ∈ 𝑊) → (♯‘(𝑊 ∖ {0})) = ((♯‘𝑊) − 1)) | |
| 25 | 21, 23, 24 | sylancl 586 | . . . 4 ⊢ (((♯‘𝑊) = (𝑁 + 1) ∧ (𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ (♯‘𝑈) = 𝑁)) → (♯‘(𝑊 ∖ {0})) = ((♯‘𝑊) − 1)) |
| 26 | simpr3 1197 | . . . 4 ⊢ (((♯‘𝑊) = (𝑁 + 1) ∧ (𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ (♯‘𝑈) = 𝑁)) → (♯‘𝑈) = 𝑁) | |
| 27 | 12, 25, 26 | 3eqtr4rd 2776 | . . 3 ⊢ (((♯‘𝑊) = (𝑁 + 1) ∧ (𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ (♯‘𝑈) = 𝑁)) → (♯‘𝑈) = (♯‘(𝑊 ∖ {0}))) |
| 28 | eleq1 2817 | . . . . . . 7 ⊢ ((♯‘𝑈) = 𝑁 → ((♯‘𝑈) ∈ ℕ0 ↔ 𝑁 ∈ ℕ0)) | |
| 29 | 1, 28 | mpbiri 258 | . . . . . 6 ⊢ ((♯‘𝑈) = 𝑁 → (♯‘𝑈) ∈ ℕ0) |
| 30 | 29 | 3ad2ant3 1135 | . . . . 5 ⊢ ((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ (♯‘𝑈) = 𝑁) → (♯‘𝑈) ∈ ℕ0) |
| 31 | isubgr3stgr.u | . . . . . . 7 ⊢ 𝑈 = (𝐺 NeighbVtx 𝑋) | |
| 32 | 31 | ovexi 7424 | . . . . . 6 ⊢ 𝑈 ∈ V |
| 33 | hashclb 14330 | . . . . . 6 ⊢ (𝑈 ∈ V → (𝑈 ∈ Fin ↔ (♯‘𝑈) ∈ ℕ0)) | |
| 34 | 32, 33 | mp1i 13 | . . . . 5 ⊢ ((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ (♯‘𝑈) = 𝑁) → (𝑈 ∈ Fin ↔ (♯‘𝑈) ∈ ℕ0)) |
| 35 | 30, 34 | mpbird 257 | . . . 4 ⊢ ((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ (♯‘𝑈) = 𝑁) → 𝑈 ∈ Fin) |
| 36 | diffi 9145 | . . . . 5 ⊢ (𝑊 ∈ Fin → (𝑊 ∖ {0}) ∈ Fin) | |
| 37 | 21, 36 | syl 17 | . . . 4 ⊢ (((♯‘𝑊) = (𝑁 + 1) ∧ (𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ (♯‘𝑈) = 𝑁)) → (𝑊 ∖ {0}) ∈ Fin) |
| 38 | hasheqf1o 14321 | . . . 4 ⊢ ((𝑈 ∈ Fin ∧ (𝑊 ∖ {0}) ∈ Fin) → ((♯‘𝑈) = (♯‘(𝑊 ∖ {0})) ↔ ∃𝑓 𝑓:𝑈–1-1-onto→(𝑊 ∖ {0}))) | |
| 39 | 35, 37, 38 | syl2an2 686 | . . 3 ⊢ (((♯‘𝑊) = (𝑁 + 1) ∧ (𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ (♯‘𝑈) = 𝑁)) → ((♯‘𝑈) = (♯‘(𝑊 ∖ {0})) ↔ ∃𝑓 𝑓:𝑈–1-1-onto→(𝑊 ∖ {0}))) |
| 40 | 27, 39 | mpbid 232 | . 2 ⊢ (((♯‘𝑊) = (𝑁 + 1) ∧ (𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ (♯‘𝑈) = 𝑁)) → ∃𝑓 𝑓:𝑈–1-1-onto→(𝑊 ∖ {0})) |
| 41 | 5, 40 | mpan 690 | 1 ⊢ ((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ (♯‘𝑈) = 𝑁) → ∃𝑓 𝑓:𝑈–1-1-onto→(𝑊 ∖ {0})) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∃wex 1779 ∈ wcel 2109 Vcvv 3450 ∖ cdif 3914 {csn 4592 –1-1-onto→wf1o 6513 ‘cfv 6514 (class class class)co 7390 Fincfn 8921 ℂcc 11073 0cc0 11075 1c1 11076 + caddc 11078 − cmin 11412 ℕ0cn0 12449 ♯chash 14302 Vtxcvtx 28930 USGraphcusgr 29083 NeighbVtx cnbgr 29266 ClNeighbVtx cclnbgr 47823 StarGrcstgr 47954 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-int 4914 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-oadd 8441 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-dju 9861 df-card 9899 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-nn 12194 df-2 12256 df-3 12257 df-4 12258 df-5 12259 df-6 12260 df-7 12261 df-8 12262 df-9 12263 df-n0 12450 df-xnn0 12523 df-z 12537 df-dec 12657 df-uz 12801 df-fz 13476 df-hash 14303 df-struct 17124 df-slot 17159 df-ndx 17171 df-base 17187 df-edgf 28923 df-vtx 28932 df-stgr 47955 |
| This theorem is referenced by: isubgr3stgrlem3 47971 |
| Copyright terms: Public domain | W3C validator |