| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > isubgr3stgrlem2 | Structured version Visualization version GIF version | ||
| Description: Lemma 2 for isubgr3stgr 47967. (Contributed by AV, 16-Sep-2025.) |
| Ref | Expression |
|---|---|
| isubgr3stgr.v | ⊢ 𝑉 = (Vtx‘𝐺) |
| isubgr3stgr.u | ⊢ 𝑈 = (𝐺 NeighbVtx 𝑋) |
| isubgr3stgr.c | ⊢ 𝐶 = (𝐺 ClNeighbVtx 𝑋) |
| isubgr3stgr.n | ⊢ 𝑁 ∈ ℕ0 |
| isubgr3stgr.s | ⊢ 𝑆 = (StarGr‘𝑁) |
| isubgr3stgr.w | ⊢ 𝑊 = (Vtx‘𝑆) |
| Ref | Expression |
|---|---|
| isubgr3stgrlem2 | ⊢ ((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ (♯‘𝑈) = 𝑁) → ∃𝑓 𝑓:𝑈–1-1-onto→(𝑊 ∖ {0})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isubgr3stgr.n | . . 3 ⊢ 𝑁 ∈ ℕ0 | |
| 2 | isubgr3stgr.s | . . . 4 ⊢ 𝑆 = (StarGr‘𝑁) | |
| 3 | isubgr3stgr.w | . . . 4 ⊢ 𝑊 = (Vtx‘𝑆) | |
| 4 | 2, 3 | stgrorder 47955 | . . 3 ⊢ (𝑁 ∈ ℕ0 → (♯‘𝑊) = (𝑁 + 1)) |
| 5 | 1, 4 | ax-mp 5 | . 2 ⊢ (♯‘𝑊) = (𝑁 + 1) |
| 6 | oveq1 7376 | . . . . . 6 ⊢ ((♯‘𝑊) = (𝑁 + 1) → ((♯‘𝑊) − 1) = ((𝑁 + 1) − 1)) | |
| 7 | nn0cn 12428 | . . . . . . . 8 ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ ℂ) | |
| 8 | pncan1 11578 | . . . . . . . 8 ⊢ (𝑁 ∈ ℂ → ((𝑁 + 1) − 1) = 𝑁) | |
| 9 | 7, 8 | syl 17 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ0 → ((𝑁 + 1) − 1) = 𝑁) |
| 10 | 1, 9 | mp1i 13 | . . . . . 6 ⊢ ((♯‘𝑊) = (𝑁 + 1) → ((𝑁 + 1) − 1) = 𝑁) |
| 11 | 6, 10 | eqtrd 2764 | . . . . 5 ⊢ ((♯‘𝑊) = (𝑁 + 1) → ((♯‘𝑊) − 1) = 𝑁) |
| 12 | 11 | adantr 480 | . . . 4 ⊢ (((♯‘𝑊) = (𝑁 + 1) ∧ (𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ (♯‘𝑈) = 𝑁)) → ((♯‘𝑊) − 1) = 𝑁) |
| 13 | peano2nn0 12458 | . . . . . . . . 9 ⊢ (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ0) | |
| 14 | 1, 13 | ax-mp 5 | . . . . . . . 8 ⊢ (𝑁 + 1) ∈ ℕ0 |
| 15 | eleq1 2816 | . . . . . . . 8 ⊢ ((♯‘𝑊) = (𝑁 + 1) → ((♯‘𝑊) ∈ ℕ0 ↔ (𝑁 + 1) ∈ ℕ0)) | |
| 16 | 14, 15 | mpbiri 258 | . . . . . . 7 ⊢ ((♯‘𝑊) = (𝑁 + 1) → (♯‘𝑊) ∈ ℕ0) |
| 17 | 16 | adantr 480 | . . . . . 6 ⊢ (((♯‘𝑊) = (𝑁 + 1) ∧ (𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ (♯‘𝑈) = 𝑁)) → (♯‘𝑊) ∈ ℕ0) |
| 18 | 3 | fvexi 6854 | . . . . . . 7 ⊢ 𝑊 ∈ V |
| 19 | hashclb 14299 | . . . . . . 7 ⊢ (𝑊 ∈ V → (𝑊 ∈ Fin ↔ (♯‘𝑊) ∈ ℕ0)) | |
| 20 | 18, 19 | mp1i 13 | . . . . . 6 ⊢ (((♯‘𝑊) = (𝑁 + 1) ∧ (𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ (♯‘𝑈) = 𝑁)) → (𝑊 ∈ Fin ↔ (♯‘𝑊) ∈ ℕ0)) |
| 21 | 17, 20 | mpbird 257 | . . . . 5 ⊢ (((♯‘𝑊) = (𝑁 + 1) ∧ (𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ (♯‘𝑈) = 𝑁)) → 𝑊 ∈ Fin) |
| 22 | 2, 3 | stgrvtx0 47954 | . . . . . 6 ⊢ (𝑁 ∈ ℕ0 → 0 ∈ 𝑊) |
| 23 | 1, 22 | ax-mp 5 | . . . . 5 ⊢ 0 ∈ 𝑊 |
| 24 | hashdifsn 14355 | . . . . 5 ⊢ ((𝑊 ∈ Fin ∧ 0 ∈ 𝑊) → (♯‘(𝑊 ∖ {0})) = ((♯‘𝑊) − 1)) | |
| 25 | 21, 23, 24 | sylancl 586 | . . . 4 ⊢ (((♯‘𝑊) = (𝑁 + 1) ∧ (𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ (♯‘𝑈) = 𝑁)) → (♯‘(𝑊 ∖ {0})) = ((♯‘𝑊) − 1)) |
| 26 | simpr3 1197 | . . . 4 ⊢ (((♯‘𝑊) = (𝑁 + 1) ∧ (𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ (♯‘𝑈) = 𝑁)) → (♯‘𝑈) = 𝑁) | |
| 27 | 12, 25, 26 | 3eqtr4rd 2775 | . . 3 ⊢ (((♯‘𝑊) = (𝑁 + 1) ∧ (𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ (♯‘𝑈) = 𝑁)) → (♯‘𝑈) = (♯‘(𝑊 ∖ {0}))) |
| 28 | eleq1 2816 | . . . . . . 7 ⊢ ((♯‘𝑈) = 𝑁 → ((♯‘𝑈) ∈ ℕ0 ↔ 𝑁 ∈ ℕ0)) | |
| 29 | 1, 28 | mpbiri 258 | . . . . . 6 ⊢ ((♯‘𝑈) = 𝑁 → (♯‘𝑈) ∈ ℕ0) |
| 30 | 29 | 3ad2ant3 1135 | . . . . 5 ⊢ ((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ (♯‘𝑈) = 𝑁) → (♯‘𝑈) ∈ ℕ0) |
| 31 | isubgr3stgr.u | . . . . . . 7 ⊢ 𝑈 = (𝐺 NeighbVtx 𝑋) | |
| 32 | 31 | ovexi 7403 | . . . . . 6 ⊢ 𝑈 ∈ V |
| 33 | hashclb 14299 | . . . . . 6 ⊢ (𝑈 ∈ V → (𝑈 ∈ Fin ↔ (♯‘𝑈) ∈ ℕ0)) | |
| 34 | 32, 33 | mp1i 13 | . . . . 5 ⊢ ((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ (♯‘𝑈) = 𝑁) → (𝑈 ∈ Fin ↔ (♯‘𝑈) ∈ ℕ0)) |
| 35 | 30, 34 | mpbird 257 | . . . 4 ⊢ ((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ (♯‘𝑈) = 𝑁) → 𝑈 ∈ Fin) |
| 36 | diffi 9116 | . . . . 5 ⊢ (𝑊 ∈ Fin → (𝑊 ∖ {0}) ∈ Fin) | |
| 37 | 21, 36 | syl 17 | . . . 4 ⊢ (((♯‘𝑊) = (𝑁 + 1) ∧ (𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ (♯‘𝑈) = 𝑁)) → (𝑊 ∖ {0}) ∈ Fin) |
| 38 | hasheqf1o 14290 | . . . 4 ⊢ ((𝑈 ∈ Fin ∧ (𝑊 ∖ {0}) ∈ Fin) → ((♯‘𝑈) = (♯‘(𝑊 ∖ {0})) ↔ ∃𝑓 𝑓:𝑈–1-1-onto→(𝑊 ∖ {0}))) | |
| 39 | 35, 37, 38 | syl2an2 686 | . . 3 ⊢ (((♯‘𝑊) = (𝑁 + 1) ∧ (𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ (♯‘𝑈) = 𝑁)) → ((♯‘𝑈) = (♯‘(𝑊 ∖ {0})) ↔ ∃𝑓 𝑓:𝑈–1-1-onto→(𝑊 ∖ {0}))) |
| 40 | 27, 39 | mpbid 232 | . 2 ⊢ (((♯‘𝑊) = (𝑁 + 1) ∧ (𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ (♯‘𝑈) = 𝑁)) → ∃𝑓 𝑓:𝑈–1-1-onto→(𝑊 ∖ {0})) |
| 41 | 5, 40 | mpan 690 | 1 ⊢ ((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ (♯‘𝑈) = 𝑁) → ∃𝑓 𝑓:𝑈–1-1-onto→(𝑊 ∖ {0})) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∃wex 1779 ∈ wcel 2109 Vcvv 3444 ∖ cdif 3908 {csn 4585 –1-1-onto→wf1o 6498 ‘cfv 6499 (class class class)co 7369 Fincfn 8895 ℂcc 11042 0cc0 11044 1c1 11045 + caddc 11047 − cmin 11381 ℕ0cn0 12418 ♯chash 14271 Vtxcvtx 28976 USGraphcusgr 29129 NeighbVtx cnbgr 29312 ClNeighbVtx cclnbgr 47812 StarGrcstgr 47943 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-int 4907 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-oadd 8415 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-dju 9830 df-card 9868 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-nn 12163 df-2 12225 df-3 12226 df-4 12227 df-5 12228 df-6 12229 df-7 12230 df-8 12231 df-9 12232 df-n0 12419 df-xnn0 12492 df-z 12506 df-dec 12626 df-uz 12770 df-fz 13445 df-hash 14272 df-struct 17093 df-slot 17128 df-ndx 17140 df-base 17156 df-edgf 28969 df-vtx 28978 df-stgr 47944 |
| This theorem is referenced by: isubgr3stgrlem3 47960 |
| Copyright terms: Public domain | W3C validator |