MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ressust Structured version   Visualization version   GIF version

Theorem ressust 24178
Description: The uniform structure of a restricted space. (Contributed by Thierry Arnoux, 22-Jan-2018.)
Hypotheses
Ref Expression
ressust.x 𝑋 = (Base‘𝑊)
ressust.t 𝑇 = (UnifSt‘(𝑊s 𝐴))
Assertion
Ref Expression
ressust ((𝑊 ∈ UnifSp ∧ 𝐴𝑋) → 𝑇 ∈ (UnifOn‘𝐴))

Proof of Theorem ressust
StepHypRef Expression
1 ressust.t . . 3 𝑇 = (UnifSt‘(𝑊s 𝐴))
2 ressust.x . . . . . . 7 𝑋 = (Base‘𝑊)
32fvexi 6836 . . . . . 6 𝑋 ∈ V
43ssex 5257 . . . . 5 (𝐴𝑋𝐴 ∈ V)
54adantl 481 . . . 4 ((𝑊 ∈ UnifSp ∧ 𝐴𝑋) → 𝐴 ∈ V)
6 ressuss 24177 . . . 4 (𝐴 ∈ V → (UnifSt‘(𝑊s 𝐴)) = ((UnifSt‘𝑊) ↾t (𝐴 × 𝐴)))
75, 6syl 17 . . 3 ((𝑊 ∈ UnifSp ∧ 𝐴𝑋) → (UnifSt‘(𝑊s 𝐴)) = ((UnifSt‘𝑊) ↾t (𝐴 × 𝐴)))
81, 7eqtrid 2778 . 2 ((𝑊 ∈ UnifSp ∧ 𝐴𝑋) → 𝑇 = ((UnifSt‘𝑊) ↾t (𝐴 × 𝐴)))
9 eqid 2731 . . . . 5 (UnifSt‘𝑊) = (UnifSt‘𝑊)
10 eqid 2731 . . . . 5 (TopOpen‘𝑊) = (TopOpen‘𝑊)
112, 9, 10isusp 24176 . . . 4 (𝑊 ∈ UnifSp ↔ ((UnifSt‘𝑊) ∈ (UnifOn‘𝑋) ∧ (TopOpen‘𝑊) = (unifTop‘(UnifSt‘𝑊))))
1211simplbi 497 . . 3 (𝑊 ∈ UnifSp → (UnifSt‘𝑊) ∈ (UnifOn‘𝑋))
13 trust 24144 . . 3 (((UnifSt‘𝑊) ∈ (UnifOn‘𝑋) ∧ 𝐴𝑋) → ((UnifSt‘𝑊) ↾t (𝐴 × 𝐴)) ∈ (UnifOn‘𝐴))
1412, 13sylan 580 . 2 ((𝑊 ∈ UnifSp ∧ 𝐴𝑋) → ((UnifSt‘𝑊) ↾t (𝐴 × 𝐴)) ∈ (UnifOn‘𝐴))
158, 14eqeltrd 2831 1 ((𝑊 ∈ UnifSp ∧ 𝐴𝑋) → 𝑇 ∈ (UnifOn‘𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  Vcvv 3436  wss 3897   × cxp 5612  cfv 6481  (class class class)co 7346  Basecbs 17120  s cress 17141  t crest 17324  TopOpenctopn 17325  UnifOncust 24115  unifTopcutop 24145  UnifStcuss 24168  UnifSpcusp 24169
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-2 12188  df-3 12189  df-4 12190  df-5 12191  df-6 12192  df-7 12193  df-8 12194  df-9 12195  df-n0 12382  df-z 12469  df-dec 12589  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-unif 17184  df-rest 17326  df-ust 24116  df-uss 24171  df-usp 24172
This theorem is referenced by:  ucnextcn  24218
  Copyright terms: Public domain W3C validator