| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ressust | Structured version Visualization version GIF version | ||
| Description: The uniform structure of a restricted space. (Contributed by Thierry Arnoux, 22-Jan-2018.) |
| Ref | Expression |
|---|---|
| ressust.x | ⊢ 𝑋 = (Base‘𝑊) |
| ressust.t | ⊢ 𝑇 = (UnifSt‘(𝑊 ↾s 𝐴)) |
| Ref | Expression |
|---|---|
| ressust | ⊢ ((𝑊 ∈ UnifSp ∧ 𝐴 ⊆ 𝑋) → 𝑇 ∈ (UnifOn‘𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ressust.t | . . 3 ⊢ 𝑇 = (UnifSt‘(𝑊 ↾s 𝐴)) | |
| 2 | ressust.x | . . . . . . 7 ⊢ 𝑋 = (Base‘𝑊) | |
| 3 | 2 | fvexi 6836 | . . . . . 6 ⊢ 𝑋 ∈ V |
| 4 | 3 | ssex 5257 | . . . . 5 ⊢ (𝐴 ⊆ 𝑋 → 𝐴 ∈ V) |
| 5 | 4 | adantl 481 | . . . 4 ⊢ ((𝑊 ∈ UnifSp ∧ 𝐴 ⊆ 𝑋) → 𝐴 ∈ V) |
| 6 | ressuss 24177 | . . . 4 ⊢ (𝐴 ∈ V → (UnifSt‘(𝑊 ↾s 𝐴)) = ((UnifSt‘𝑊) ↾t (𝐴 × 𝐴))) | |
| 7 | 5, 6 | syl 17 | . . 3 ⊢ ((𝑊 ∈ UnifSp ∧ 𝐴 ⊆ 𝑋) → (UnifSt‘(𝑊 ↾s 𝐴)) = ((UnifSt‘𝑊) ↾t (𝐴 × 𝐴))) |
| 8 | 1, 7 | eqtrid 2778 | . 2 ⊢ ((𝑊 ∈ UnifSp ∧ 𝐴 ⊆ 𝑋) → 𝑇 = ((UnifSt‘𝑊) ↾t (𝐴 × 𝐴))) |
| 9 | eqid 2731 | . . . . 5 ⊢ (UnifSt‘𝑊) = (UnifSt‘𝑊) | |
| 10 | eqid 2731 | . . . . 5 ⊢ (TopOpen‘𝑊) = (TopOpen‘𝑊) | |
| 11 | 2, 9, 10 | isusp 24176 | . . . 4 ⊢ (𝑊 ∈ UnifSp ↔ ((UnifSt‘𝑊) ∈ (UnifOn‘𝑋) ∧ (TopOpen‘𝑊) = (unifTop‘(UnifSt‘𝑊)))) |
| 12 | 11 | simplbi 497 | . . 3 ⊢ (𝑊 ∈ UnifSp → (UnifSt‘𝑊) ∈ (UnifOn‘𝑋)) |
| 13 | trust 24144 | . . 3 ⊢ (((UnifSt‘𝑊) ∈ (UnifOn‘𝑋) ∧ 𝐴 ⊆ 𝑋) → ((UnifSt‘𝑊) ↾t (𝐴 × 𝐴)) ∈ (UnifOn‘𝐴)) | |
| 14 | 12, 13 | sylan 580 | . 2 ⊢ ((𝑊 ∈ UnifSp ∧ 𝐴 ⊆ 𝑋) → ((UnifSt‘𝑊) ↾t (𝐴 × 𝐴)) ∈ (UnifOn‘𝐴)) |
| 15 | 8, 14 | eqeltrd 2831 | 1 ⊢ ((𝑊 ∈ UnifSp ∧ 𝐴 ⊆ 𝑋) → 𝑇 ∈ (UnifOn‘𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 Vcvv 3436 ⊆ wss 3897 × cxp 5612 ‘cfv 6481 (class class class)co 7346 Basecbs 17120 ↾s cress 17141 ↾t crest 17324 TopOpenctopn 17325 UnifOncust 24115 unifTopcutop 24145 UnifStcuss 24168 UnifSpcusp 24169 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-nn 12126 df-2 12188 df-3 12189 df-4 12190 df-5 12191 df-6 12192 df-7 12193 df-8 12194 df-9 12195 df-n0 12382 df-z 12469 df-dec 12589 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-ress 17142 df-unif 17184 df-rest 17326 df-ust 24116 df-uss 24171 df-usp 24172 |
| This theorem is referenced by: ucnextcn 24218 |
| Copyright terms: Public domain | W3C validator |