![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ressust | Structured version Visualization version GIF version |
Description: The uniform structure of a restricted space. (Contributed by Thierry Arnoux, 22-Jan-2018.) |
Ref | Expression |
---|---|
ressust.x | β’ π = (Baseβπ) |
ressust.t | β’ π = (UnifStβ(π βΎs π΄)) |
Ref | Expression |
---|---|
ressust | β’ ((π β UnifSp β§ π΄ β π) β π β (UnifOnβπ΄)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ressust.t | . . 3 β’ π = (UnifStβ(π βΎs π΄)) | |
2 | ressust.x | . . . . . . 7 β’ π = (Baseβπ) | |
3 | 2 | fvexi 6905 | . . . . . 6 β’ π β V |
4 | 3 | ssex 5315 | . . . . 5 β’ (π΄ β π β π΄ β V) |
5 | 4 | adantl 481 | . . . 4 β’ ((π β UnifSp β§ π΄ β π) β π΄ β V) |
6 | ressuss 24160 | . . . 4 β’ (π΄ β V β (UnifStβ(π βΎs π΄)) = ((UnifStβπ) βΎt (π΄ Γ π΄))) | |
7 | 5, 6 | syl 17 | . . 3 β’ ((π β UnifSp β§ π΄ β π) β (UnifStβ(π βΎs π΄)) = ((UnifStβπ) βΎt (π΄ Γ π΄))) |
8 | 1, 7 | eqtrid 2780 | . 2 β’ ((π β UnifSp β§ π΄ β π) β π = ((UnifStβπ) βΎt (π΄ Γ π΄))) |
9 | eqid 2728 | . . . . 5 β’ (UnifStβπ) = (UnifStβπ) | |
10 | eqid 2728 | . . . . 5 β’ (TopOpenβπ) = (TopOpenβπ) | |
11 | 2, 9, 10 | isusp 24159 | . . . 4 β’ (π β UnifSp β ((UnifStβπ) β (UnifOnβπ) β§ (TopOpenβπ) = (unifTopβ(UnifStβπ)))) |
12 | 11 | simplbi 497 | . . 3 β’ (π β UnifSp β (UnifStβπ) β (UnifOnβπ)) |
13 | trust 24127 | . . 3 β’ (((UnifStβπ) β (UnifOnβπ) β§ π΄ β π) β ((UnifStβπ) βΎt (π΄ Γ π΄)) β (UnifOnβπ΄)) | |
14 | 12, 13 | sylan 579 | . 2 β’ ((π β UnifSp β§ π΄ β π) β ((UnifStβπ) βΎt (π΄ Γ π΄)) β (UnifOnβπ΄)) |
15 | 8, 14 | eqeltrd 2829 | 1 β’ ((π β UnifSp β§ π΄ β π) β π β (UnifOnβπ΄)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 395 = wceq 1534 β wcel 2099 Vcvv 3470 β wss 3945 Γ cxp 5670 βcfv 6542 (class class class)co 7414 Basecbs 17173 βΎs cress 17202 βΎt crest 17395 TopOpenctopn 17396 UnifOncust 24097 unifTopcutop 24128 UnifStcuss 24151 UnifSpcusp 24152 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-rep 5279 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7734 ax-cnex 11188 ax-resscn 11189 ax-1cn 11190 ax-icn 11191 ax-addcl 11192 ax-addrcl 11193 ax-mulcl 11194 ax-mulrcl 11195 ax-mulcom 11196 ax-addass 11197 ax-mulass 11198 ax-distr 11199 ax-i2m1 11200 ax-1ne0 11201 ax-1rid 11202 ax-rnegex 11203 ax-rrecex 11204 ax-cnre 11205 ax-pre-lttri 11206 ax-pre-lttrn 11207 ax-pre-ltadd 11208 ax-pre-mulgt0 11209 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2937 df-nel 3043 df-ral 3058 df-rex 3067 df-reu 3373 df-rab 3429 df-v 3472 df-sbc 3776 df-csb 3891 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-pss 3964 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-iun 4993 df-br 5143 df-opab 5205 df-mpt 5226 df-tr 5260 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-om 7865 df-1st 7987 df-2nd 7988 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-er 8718 df-en 8958 df-dom 8959 df-sdom 8960 df-pnf 11274 df-mnf 11275 df-xr 11276 df-ltxr 11277 df-le 11278 df-sub 11470 df-neg 11471 df-nn 12237 df-2 12299 df-3 12300 df-4 12301 df-5 12302 df-6 12303 df-7 12304 df-8 12305 df-9 12306 df-n0 12497 df-z 12583 df-dec 12702 df-sets 17126 df-slot 17144 df-ndx 17156 df-base 17174 df-ress 17203 df-unif 17249 df-rest 17397 df-ust 24098 df-uss 24154 df-usp 24155 |
This theorem is referenced by: ucnextcn 24202 |
Copyright terms: Public domain | W3C validator |