![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > uspreg | Structured version Visualization version GIF version |
Description: If a uniform space is Hausdorff, it is regular. Proposition 3 of [BourbakiTop1] p. II.5. (Contributed by Thierry Arnoux, 4-Jan-2018.) |
Ref | Expression |
---|---|
uspreg.1 | ⊢ 𝐽 = (TopOpen‘𝑊) |
Ref | Expression |
---|---|
uspreg | ⊢ ((𝑊 ∈ UnifSp ∧ 𝐽 ∈ Haus) → 𝐽 ∈ Reg) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2730 | . . . . 5 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
2 | eqid 2730 | . . . . 5 ⊢ (UnifSt‘𝑊) = (UnifSt‘𝑊) | |
3 | uspreg.1 | . . . . 5 ⊢ 𝐽 = (TopOpen‘𝑊) | |
4 | 1, 2, 3 | isusp 23988 | . . . 4 ⊢ (𝑊 ∈ UnifSp ↔ ((UnifSt‘𝑊) ∈ (UnifOn‘(Base‘𝑊)) ∧ 𝐽 = (unifTop‘(UnifSt‘𝑊)))) |
5 | 4 | simprbi 495 | . . 3 ⊢ (𝑊 ∈ UnifSp → 𝐽 = (unifTop‘(UnifSt‘𝑊))) |
6 | 5 | adantr 479 | . 2 ⊢ ((𝑊 ∈ UnifSp ∧ 𝐽 ∈ Haus) → 𝐽 = (unifTop‘(UnifSt‘𝑊))) |
7 | 4 | simplbi 496 | . . 3 ⊢ (𝑊 ∈ UnifSp → (UnifSt‘𝑊) ∈ (UnifOn‘(Base‘𝑊))) |
8 | simpr 483 | . . . 4 ⊢ ((𝑊 ∈ UnifSp ∧ 𝐽 ∈ Haus) → 𝐽 ∈ Haus) | |
9 | 6, 8 | eqeltrrd 2832 | . . 3 ⊢ ((𝑊 ∈ UnifSp ∧ 𝐽 ∈ Haus) → (unifTop‘(UnifSt‘𝑊)) ∈ Haus) |
10 | eqid 2730 | . . . 4 ⊢ (unifTop‘(UnifSt‘𝑊)) = (unifTop‘(UnifSt‘𝑊)) | |
11 | 10 | utopreg 23979 | . . 3 ⊢ (((UnifSt‘𝑊) ∈ (UnifOn‘(Base‘𝑊)) ∧ (unifTop‘(UnifSt‘𝑊)) ∈ Haus) → (unifTop‘(UnifSt‘𝑊)) ∈ Reg) |
12 | 7, 9, 11 | syl2an2r 681 | . 2 ⊢ ((𝑊 ∈ UnifSp ∧ 𝐽 ∈ Haus) → (unifTop‘(UnifSt‘𝑊)) ∈ Reg) |
13 | 6, 12 | eqeltrd 2831 | 1 ⊢ ((𝑊 ∈ UnifSp ∧ 𝐽 ∈ Haus) → 𝐽 ∈ Reg) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1539 ∈ wcel 2104 ‘cfv 6544 Basecbs 17150 TopOpenctopn 17373 Hauscha 23034 Regcreg 23035 UnifOncust 23926 unifTopcutop 23957 UnifStcuss 23980 UnifSpcusp 23981 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7729 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-ral 3060 df-rex 3069 df-reu 3375 df-rab 3431 df-v 3474 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-int 4952 df-iun 5000 df-iin 5001 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-ov 7416 df-oprab 7417 df-mpo 7418 df-om 7860 df-1st 7979 df-2nd 7980 df-1o 8470 df-er 8707 df-map 8826 df-en 8944 df-fin 8947 df-fi 9410 df-topgen 17395 df-top 22618 df-topon 22635 df-bases 22671 df-cld 22745 df-ntr 22746 df-cls 22747 df-nei 22824 df-cn 22953 df-cnp 22954 df-reg 23042 df-tx 23288 df-ust 23927 df-utop 23958 df-usp 23984 |
This theorem is referenced by: cnextucn 24030 rrhre 33297 |
Copyright terms: Public domain | W3C validator |