MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uspreg Structured version   Visualization version   GIF version

Theorem uspreg 23334
Description: If a uniform space is Hausdorff, it is regular. Proposition 3 of [BourbakiTop1] p. II.5. (Contributed by Thierry Arnoux, 4-Jan-2018.)
Hypothesis
Ref Expression
uspreg.1 𝐽 = (TopOpen‘𝑊)
Assertion
Ref Expression
uspreg ((𝑊 ∈ UnifSp ∧ 𝐽 ∈ Haus) → 𝐽 ∈ Reg)

Proof of Theorem uspreg
StepHypRef Expression
1 eqid 2738 . . . . 5 (Base‘𝑊) = (Base‘𝑊)
2 eqid 2738 . . . . 5 (UnifSt‘𝑊) = (UnifSt‘𝑊)
3 uspreg.1 . . . . 5 𝐽 = (TopOpen‘𝑊)
41, 2, 3isusp 23321 . . . 4 (𝑊 ∈ UnifSp ↔ ((UnifSt‘𝑊) ∈ (UnifOn‘(Base‘𝑊)) ∧ 𝐽 = (unifTop‘(UnifSt‘𝑊))))
54simprbi 496 . . 3 (𝑊 ∈ UnifSp → 𝐽 = (unifTop‘(UnifSt‘𝑊)))
65adantr 480 . 2 ((𝑊 ∈ UnifSp ∧ 𝐽 ∈ Haus) → 𝐽 = (unifTop‘(UnifSt‘𝑊)))
74simplbi 497 . . 3 (𝑊 ∈ UnifSp → (UnifSt‘𝑊) ∈ (UnifOn‘(Base‘𝑊)))
8 simpr 484 . . . 4 ((𝑊 ∈ UnifSp ∧ 𝐽 ∈ Haus) → 𝐽 ∈ Haus)
96, 8eqeltrrd 2840 . . 3 ((𝑊 ∈ UnifSp ∧ 𝐽 ∈ Haus) → (unifTop‘(UnifSt‘𝑊)) ∈ Haus)
10 eqid 2738 . . . 4 (unifTop‘(UnifSt‘𝑊)) = (unifTop‘(UnifSt‘𝑊))
1110utopreg 23312 . . 3 (((UnifSt‘𝑊) ∈ (UnifOn‘(Base‘𝑊)) ∧ (unifTop‘(UnifSt‘𝑊)) ∈ Haus) → (unifTop‘(UnifSt‘𝑊)) ∈ Reg)
127, 9, 11syl2an2r 681 . 2 ((𝑊 ∈ UnifSp ∧ 𝐽 ∈ Haus) → (unifTop‘(UnifSt‘𝑊)) ∈ Reg)
136, 12eqeltrd 2839 1 ((𝑊 ∈ UnifSp ∧ 𝐽 ∈ Haus) → 𝐽 ∈ Reg)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  cfv 6418  Basecbs 16840  TopOpenctopn 17049  Hauscha 22367  Regcreg 22368  UnifOncust 23259  unifTopcutop 23290  UnifStcuss 23313  UnifSpcusp 23314
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-iin 4924  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-1o 8267  df-er 8456  df-map 8575  df-en 8692  df-fin 8695  df-fi 9100  df-topgen 17071  df-top 21951  df-topon 21968  df-bases 22004  df-cld 22078  df-ntr 22079  df-cls 22080  df-nei 22157  df-cn 22286  df-cnp 22287  df-reg 22375  df-tx 22621  df-ust 23260  df-utop 23291  df-usp 23317
This theorem is referenced by:  cnextucn  23363  rrhre  31871
  Copyright terms: Public domain W3C validator