|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > uspreg | Structured version Visualization version GIF version | ||
| Description: If a uniform space is Hausdorff, it is regular. Proposition 3 of [BourbakiTop1] p. II.5. (Contributed by Thierry Arnoux, 4-Jan-2018.) | 
| Ref | Expression | 
|---|---|
| uspreg.1 | ⊢ 𝐽 = (TopOpen‘𝑊) | 
| Ref | Expression | 
|---|---|
| uspreg | ⊢ ((𝑊 ∈ UnifSp ∧ 𝐽 ∈ Haus) → 𝐽 ∈ Reg) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | eqid 2737 | . . . . 5 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
| 2 | eqid 2737 | . . . . 5 ⊢ (UnifSt‘𝑊) = (UnifSt‘𝑊) | |
| 3 | uspreg.1 | . . . . 5 ⊢ 𝐽 = (TopOpen‘𝑊) | |
| 4 | 1, 2, 3 | isusp 24270 | . . . 4 ⊢ (𝑊 ∈ UnifSp ↔ ((UnifSt‘𝑊) ∈ (UnifOn‘(Base‘𝑊)) ∧ 𝐽 = (unifTop‘(UnifSt‘𝑊)))) | 
| 5 | 4 | simprbi 496 | . . 3 ⊢ (𝑊 ∈ UnifSp → 𝐽 = (unifTop‘(UnifSt‘𝑊))) | 
| 6 | 5 | adantr 480 | . 2 ⊢ ((𝑊 ∈ UnifSp ∧ 𝐽 ∈ Haus) → 𝐽 = (unifTop‘(UnifSt‘𝑊))) | 
| 7 | 4 | simplbi 497 | . . 3 ⊢ (𝑊 ∈ UnifSp → (UnifSt‘𝑊) ∈ (UnifOn‘(Base‘𝑊))) | 
| 8 | simpr 484 | . . . 4 ⊢ ((𝑊 ∈ UnifSp ∧ 𝐽 ∈ Haus) → 𝐽 ∈ Haus) | |
| 9 | 6, 8 | eqeltrrd 2842 | . . 3 ⊢ ((𝑊 ∈ UnifSp ∧ 𝐽 ∈ Haus) → (unifTop‘(UnifSt‘𝑊)) ∈ Haus) | 
| 10 | eqid 2737 | . . . 4 ⊢ (unifTop‘(UnifSt‘𝑊)) = (unifTop‘(UnifSt‘𝑊)) | |
| 11 | 10 | utopreg 24261 | . . 3 ⊢ (((UnifSt‘𝑊) ∈ (UnifOn‘(Base‘𝑊)) ∧ (unifTop‘(UnifSt‘𝑊)) ∈ Haus) → (unifTop‘(UnifSt‘𝑊)) ∈ Reg) | 
| 12 | 7, 9, 11 | syl2an2r 685 | . 2 ⊢ ((𝑊 ∈ UnifSp ∧ 𝐽 ∈ Haus) → (unifTop‘(UnifSt‘𝑊)) ∈ Reg) | 
| 13 | 6, 12 | eqeltrd 2841 | 1 ⊢ ((𝑊 ∈ UnifSp ∧ 𝐽 ∈ Haus) → 𝐽 ∈ Reg) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ‘cfv 6561 Basecbs 17247 TopOpenctopn 17466 Hauscha 23316 Regcreg 23317 UnifOncust 24208 unifTopcutop 24239 UnifStcuss 24262 UnifSpcusp 24263 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5279 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-int 4947 df-iun 4993 df-iin 4994 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8014 df-2nd 8015 df-1o 8506 df-2o 8507 df-map 8868 df-en 8986 df-fin 8989 df-fi 9451 df-topgen 17488 df-top 22900 df-topon 22917 df-bases 22953 df-cld 23027 df-ntr 23028 df-cls 23029 df-nei 23106 df-cn 23235 df-cnp 23236 df-reg 23324 df-tx 23570 df-ust 24209 df-utop 24240 df-usp 24266 | 
| This theorem is referenced by: cnextucn 24312 rrhre 34022 | 
| Copyright terms: Public domain | W3C validator |