![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > uspreg | Structured version Visualization version GIF version |
Description: If a uniform space is Hausdorff, it is regular. Proposition 3 of [BourbakiTop1] p. II.5. (Contributed by Thierry Arnoux, 4-Jan-2018.) |
Ref | Expression |
---|---|
uspreg.1 | ⊢ 𝐽 = (TopOpen‘𝑊) |
Ref | Expression |
---|---|
uspreg | ⊢ ((𝑊 ∈ UnifSp ∧ 𝐽 ∈ Haus) → 𝐽 ∈ Reg) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2740 | . . . . 5 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
2 | eqid 2740 | . . . . 5 ⊢ (UnifSt‘𝑊) = (UnifSt‘𝑊) | |
3 | uspreg.1 | . . . . 5 ⊢ 𝐽 = (TopOpen‘𝑊) | |
4 | 1, 2, 3 | isusp 24291 | . . . 4 ⊢ (𝑊 ∈ UnifSp ↔ ((UnifSt‘𝑊) ∈ (UnifOn‘(Base‘𝑊)) ∧ 𝐽 = (unifTop‘(UnifSt‘𝑊)))) |
5 | 4 | simprbi 496 | . . 3 ⊢ (𝑊 ∈ UnifSp → 𝐽 = (unifTop‘(UnifSt‘𝑊))) |
6 | 5 | adantr 480 | . 2 ⊢ ((𝑊 ∈ UnifSp ∧ 𝐽 ∈ Haus) → 𝐽 = (unifTop‘(UnifSt‘𝑊))) |
7 | 4 | simplbi 497 | . . 3 ⊢ (𝑊 ∈ UnifSp → (UnifSt‘𝑊) ∈ (UnifOn‘(Base‘𝑊))) |
8 | simpr 484 | . . . 4 ⊢ ((𝑊 ∈ UnifSp ∧ 𝐽 ∈ Haus) → 𝐽 ∈ Haus) | |
9 | 6, 8 | eqeltrrd 2845 | . . 3 ⊢ ((𝑊 ∈ UnifSp ∧ 𝐽 ∈ Haus) → (unifTop‘(UnifSt‘𝑊)) ∈ Haus) |
10 | eqid 2740 | . . . 4 ⊢ (unifTop‘(UnifSt‘𝑊)) = (unifTop‘(UnifSt‘𝑊)) | |
11 | 10 | utopreg 24282 | . . 3 ⊢ (((UnifSt‘𝑊) ∈ (UnifOn‘(Base‘𝑊)) ∧ (unifTop‘(UnifSt‘𝑊)) ∈ Haus) → (unifTop‘(UnifSt‘𝑊)) ∈ Reg) |
12 | 7, 9, 11 | syl2an2r 684 | . 2 ⊢ ((𝑊 ∈ UnifSp ∧ 𝐽 ∈ Haus) → (unifTop‘(UnifSt‘𝑊)) ∈ Reg) |
13 | 6, 12 | eqeltrd 2844 | 1 ⊢ ((𝑊 ∈ UnifSp ∧ 𝐽 ∈ Haus) → 𝐽 ∈ Reg) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ‘cfv 6573 Basecbs 17258 TopOpenctopn 17481 Hauscha 23337 Regcreg 23338 UnifOncust 24229 unifTopcutop 24260 UnifStcuss 24283 UnifSpcusp 24284 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-iin 5018 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-1st 8030 df-2nd 8031 df-1o 8522 df-2o 8523 df-map 8886 df-en 9004 df-fin 9007 df-fi 9480 df-topgen 17503 df-top 22921 df-topon 22938 df-bases 22974 df-cld 23048 df-ntr 23049 df-cls 23050 df-nei 23127 df-cn 23256 df-cnp 23257 df-reg 23345 df-tx 23591 df-ust 24230 df-utop 24261 df-usp 24287 |
This theorem is referenced by: cnextucn 24333 rrhre 33967 |
Copyright terms: Public domain | W3C validator |