MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uspreg Structured version   Visualization version   GIF version

Theorem uspreg 22571
Description: If a uniform space is Hausdorff, it is regular. Proposition 3 of [BourbakiTop1] p. II.5. (Contributed by Thierry Arnoux, 4-Jan-2018.)
Hypothesis
Ref Expression
uspreg.1 𝐽 = (TopOpen‘𝑊)
Assertion
Ref Expression
uspreg ((𝑊 ∈ UnifSp ∧ 𝐽 ∈ Haus) → 𝐽 ∈ Reg)

Proof of Theorem uspreg
StepHypRef Expression
1 eqid 2795 . . . . 5 (Base‘𝑊) = (Base‘𝑊)
2 eqid 2795 . . . . 5 (UnifSt‘𝑊) = (UnifSt‘𝑊)
3 uspreg.1 . . . . 5 𝐽 = (TopOpen‘𝑊)
41, 2, 3isusp 22558 . . . 4 (𝑊 ∈ UnifSp ↔ ((UnifSt‘𝑊) ∈ (UnifOn‘(Base‘𝑊)) ∧ 𝐽 = (unifTop‘(UnifSt‘𝑊))))
54simprbi 497 . . 3 (𝑊 ∈ UnifSp → 𝐽 = (unifTop‘(UnifSt‘𝑊)))
65adantr 481 . 2 ((𝑊 ∈ UnifSp ∧ 𝐽 ∈ Haus) → 𝐽 = (unifTop‘(UnifSt‘𝑊)))
74simplbi 498 . . 3 (𝑊 ∈ UnifSp → (UnifSt‘𝑊) ∈ (UnifOn‘(Base‘𝑊)))
8 simpr 485 . . . 4 ((𝑊 ∈ UnifSp ∧ 𝐽 ∈ Haus) → 𝐽 ∈ Haus)
96, 8eqeltrrd 2884 . . 3 ((𝑊 ∈ UnifSp ∧ 𝐽 ∈ Haus) → (unifTop‘(UnifSt‘𝑊)) ∈ Haus)
10 eqid 2795 . . . 4 (unifTop‘(UnifSt‘𝑊)) = (unifTop‘(UnifSt‘𝑊))
1110utopreg 22549 . . 3 (((UnifSt‘𝑊) ∈ (UnifOn‘(Base‘𝑊)) ∧ (unifTop‘(UnifSt‘𝑊)) ∈ Haus) → (unifTop‘(UnifSt‘𝑊)) ∈ Reg)
127, 9, 11syl2an2r 681 . 2 ((𝑊 ∈ UnifSp ∧ 𝐽 ∈ Haus) → (unifTop‘(UnifSt‘𝑊)) ∈ Reg)
136, 12eqeltrd 2883 1 ((𝑊 ∈ UnifSp ∧ 𝐽 ∈ Haus) → 𝐽 ∈ Reg)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1522  wcel 2081  cfv 6230  Basecbs 16317  TopOpenctopn 16529  Hauscha 21605  Regcreg 21606  UnifOncust 22496  unifTopcutop 22527  UnifStcuss 22550  UnifSpcusp 22551
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1777  ax-4 1791  ax-5 1888  ax-6 1947  ax-7 1992  ax-8 2083  ax-9 2091  ax-10 2112  ax-11 2126  ax-12 2141  ax-13 2344  ax-ext 2769  ax-rep 5086  ax-sep 5099  ax-nul 5106  ax-pow 5162  ax-pr 5226  ax-un 7324
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3or 1081  df-3an 1082  df-tru 1525  df-ex 1762  df-nf 1766  df-sb 2043  df-mo 2576  df-eu 2612  df-clab 2776  df-cleq 2788  df-clel 2863  df-nfc 2935  df-ne 2985  df-ral 3110  df-rex 3111  df-reu 3112  df-rab 3114  df-v 3439  df-sbc 3710  df-csb 3816  df-dif 3866  df-un 3868  df-in 3870  df-ss 3878  df-pss 3880  df-nul 4216  df-if 4386  df-pw 4459  df-sn 4477  df-pr 4479  df-tp 4481  df-op 4483  df-uni 4750  df-int 4787  df-iun 4831  df-iin 4832  df-br 4967  df-opab 5029  df-mpt 5046  df-tr 5069  df-id 5353  df-eprel 5358  df-po 5367  df-so 5368  df-fr 5407  df-we 5409  df-xp 5454  df-rel 5455  df-cnv 5456  df-co 5457  df-dm 5458  df-rn 5459  df-res 5460  df-ima 5461  df-pred 6028  df-ord 6074  df-on 6075  df-lim 6076  df-suc 6077  df-iota 6194  df-fun 6232  df-fn 6233  df-f 6234  df-f1 6235  df-fo 6236  df-f1o 6237  df-fv 6238  df-ov 7024  df-oprab 7025  df-mpo 7026  df-om 7442  df-1st 7550  df-2nd 7551  df-wrecs 7803  df-recs 7865  df-rdg 7903  df-1o 7958  df-oadd 7962  df-er 8144  df-map 8263  df-en 8363  df-fin 8366  df-fi 8726  df-topgen 16551  df-top 21191  df-topon 21208  df-bases 21243  df-cld 21316  df-ntr 21317  df-cls 21318  df-nei 21395  df-cn 21524  df-cnp 21525  df-reg 21613  df-tx 21859  df-ust 22497  df-utop 22528  df-usp 22554
This theorem is referenced by:  cnextucn  22600  rrhre  30884
  Copyright terms: Public domain W3C validator