MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uspreg Structured version   Visualization version   GIF version

Theorem uspreg 24283
Description: If a uniform space is Hausdorff, it is regular. Proposition 3 of [BourbakiTop1] p. II.5. (Contributed by Thierry Arnoux, 4-Jan-2018.)
Hypothesis
Ref Expression
uspreg.1 𝐽 = (TopOpen‘𝑊)
Assertion
Ref Expression
uspreg ((𝑊 ∈ UnifSp ∧ 𝐽 ∈ Haus) → 𝐽 ∈ Reg)

Proof of Theorem uspreg
StepHypRef Expression
1 eqid 2737 . . . . 5 (Base‘𝑊) = (Base‘𝑊)
2 eqid 2737 . . . . 5 (UnifSt‘𝑊) = (UnifSt‘𝑊)
3 uspreg.1 . . . . 5 𝐽 = (TopOpen‘𝑊)
41, 2, 3isusp 24270 . . . 4 (𝑊 ∈ UnifSp ↔ ((UnifSt‘𝑊) ∈ (UnifOn‘(Base‘𝑊)) ∧ 𝐽 = (unifTop‘(UnifSt‘𝑊))))
54simprbi 496 . . 3 (𝑊 ∈ UnifSp → 𝐽 = (unifTop‘(UnifSt‘𝑊)))
65adantr 480 . 2 ((𝑊 ∈ UnifSp ∧ 𝐽 ∈ Haus) → 𝐽 = (unifTop‘(UnifSt‘𝑊)))
74simplbi 497 . . 3 (𝑊 ∈ UnifSp → (UnifSt‘𝑊) ∈ (UnifOn‘(Base‘𝑊)))
8 simpr 484 . . . 4 ((𝑊 ∈ UnifSp ∧ 𝐽 ∈ Haus) → 𝐽 ∈ Haus)
96, 8eqeltrrd 2842 . . 3 ((𝑊 ∈ UnifSp ∧ 𝐽 ∈ Haus) → (unifTop‘(UnifSt‘𝑊)) ∈ Haus)
10 eqid 2737 . . . 4 (unifTop‘(UnifSt‘𝑊)) = (unifTop‘(UnifSt‘𝑊))
1110utopreg 24261 . . 3 (((UnifSt‘𝑊) ∈ (UnifOn‘(Base‘𝑊)) ∧ (unifTop‘(UnifSt‘𝑊)) ∈ Haus) → (unifTop‘(UnifSt‘𝑊)) ∈ Reg)
127, 9, 11syl2an2r 685 . 2 ((𝑊 ∈ UnifSp ∧ 𝐽 ∈ Haus) → (unifTop‘(UnifSt‘𝑊)) ∈ Reg)
136, 12eqeltrd 2841 1 ((𝑊 ∈ UnifSp ∧ 𝐽 ∈ Haus) → 𝐽 ∈ Reg)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  cfv 6561  Basecbs 17247  TopOpenctopn 17466  Hauscha 23316  Regcreg 23317  UnifOncust 24208  unifTopcutop 24239  UnifStcuss 24262  UnifSpcusp 24263
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-iin 4994  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-1o 8506  df-2o 8507  df-map 8868  df-en 8986  df-fin 8989  df-fi 9451  df-topgen 17488  df-top 22900  df-topon 22917  df-bases 22953  df-cld 23027  df-ntr 23028  df-cls 23029  df-nei 23106  df-cn 23235  df-cnp 23236  df-reg 23324  df-tx 23570  df-ust 24209  df-utop 24240  df-usp 24266
This theorem is referenced by:  cnextucn  24312  rrhre  34022
  Copyright terms: Public domain W3C validator