![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > iuneqfzuz | Structured version Visualization version GIF version |
Description: If two unions indexed by upper integers are equal if they agree on any partial indexed union. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
Ref | Expression |
---|---|
iuneqfzuz.z | ⊢ 𝑍 = (ℤ≥‘𝑁) |
Ref | Expression |
---|---|
iuneqfzuz | ⊢ (∀𝑚 ∈ 𝑍 ∪ 𝑛 ∈ (𝑁...𝑚)𝐴 = ∪ 𝑛 ∈ (𝑁...𝑚)𝐵 → ∪ 𝑛 ∈ 𝑍 𝐴 = ∪ 𝑛 ∈ 𝑍 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iuneqfzuz.z | . . 3 ⊢ 𝑍 = (ℤ≥‘𝑁) | |
2 | 1 | iuneqfzuzlem 45318 | . 2 ⊢ (∀𝑚 ∈ 𝑍 ∪ 𝑛 ∈ (𝑁...𝑚)𝐴 = ∪ 𝑛 ∈ (𝑁...𝑚)𝐵 → ∪ 𝑛 ∈ 𝑍 𝐴 ⊆ ∪ 𝑛 ∈ 𝑍 𝐵) |
3 | eqcom 2743 | . . . . 5 ⊢ (∪ 𝑛 ∈ (𝑁...𝑚)𝐴 = ∪ 𝑛 ∈ (𝑁...𝑚)𝐵 ↔ ∪ 𝑛 ∈ (𝑁...𝑚)𝐵 = ∪ 𝑛 ∈ (𝑁...𝑚)𝐴) | |
4 | 3 | ralbii 3092 | . . . 4 ⊢ (∀𝑚 ∈ 𝑍 ∪ 𝑛 ∈ (𝑁...𝑚)𝐴 = ∪ 𝑛 ∈ (𝑁...𝑚)𝐵 ↔ ∀𝑚 ∈ 𝑍 ∪ 𝑛 ∈ (𝑁...𝑚)𝐵 = ∪ 𝑛 ∈ (𝑁...𝑚)𝐴) |
5 | 4 | biimpi 216 | . . 3 ⊢ (∀𝑚 ∈ 𝑍 ∪ 𝑛 ∈ (𝑁...𝑚)𝐴 = ∪ 𝑛 ∈ (𝑁...𝑚)𝐵 → ∀𝑚 ∈ 𝑍 ∪ 𝑛 ∈ (𝑁...𝑚)𝐵 = ∪ 𝑛 ∈ (𝑁...𝑚)𝐴) |
6 | 1 | iuneqfzuzlem 45318 | . . 3 ⊢ (∀𝑚 ∈ 𝑍 ∪ 𝑛 ∈ (𝑁...𝑚)𝐵 = ∪ 𝑛 ∈ (𝑁...𝑚)𝐴 → ∪ 𝑛 ∈ 𝑍 𝐵 ⊆ ∪ 𝑛 ∈ 𝑍 𝐴) |
7 | 5, 6 | syl 17 | . 2 ⊢ (∀𝑚 ∈ 𝑍 ∪ 𝑛 ∈ (𝑁...𝑚)𝐴 = ∪ 𝑛 ∈ (𝑁...𝑚)𝐵 → ∪ 𝑛 ∈ 𝑍 𝐵 ⊆ ∪ 𝑛 ∈ 𝑍 𝐴) |
8 | 2, 7 | eqssd 4000 | 1 ⊢ (∀𝑚 ∈ 𝑍 ∪ 𝑛 ∈ (𝑁...𝑚)𝐴 = ∪ 𝑛 ∈ (𝑁...𝑚)𝐵 → ∪ 𝑛 ∈ 𝑍 𝐴 = ∪ 𝑛 ∈ 𝑍 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1540 ∀wral 3060 ⊆ wss 3950 ∪ ciun 4989 ‘cfv 6559 (class class class)co 7429 ℤ≥cuz 12874 ...cfz 13543 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5294 ax-nul 5304 ax-pow 5363 ax-pr 5430 ax-un 7751 ax-cnex 11207 ax-resscn 11208 ax-pre-lttri 11225 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-nul 4333 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4906 df-iun 4991 df-br 5142 df-opab 5204 df-mpt 5224 df-id 5576 df-xp 5689 df-rel 5690 df-cnv 5691 df-co 5692 df-dm 5693 df-rn 5694 df-res 5695 df-ima 5696 df-iota 6512 df-fun 6561 df-fn 6562 df-f 6563 df-f1 6564 df-fo 6565 df-f1o 6566 df-fv 6567 df-ov 7432 df-oprab 7433 df-mpo 7434 df-1st 8010 df-2nd 8011 df-er 8741 df-en 8982 df-dom 8983 df-sdom 8984 df-pnf 11293 df-mnf 11294 df-xr 11295 df-ltxr 11296 df-le 11297 df-neg 11491 df-z 12610 df-uz 12875 df-fz 13544 |
This theorem is referenced by: iundjiun 46448 |
Copyright terms: Public domain | W3C validator |