![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > iuneqfzuz | Structured version Visualization version GIF version |
Description: If two unions indexed by upper integers are equal if they agree on any partial indexed union. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
Ref | Expression |
---|---|
iuneqfzuz.z | ⊢ 𝑍 = (ℤ≥‘𝑁) |
Ref | Expression |
---|---|
iuneqfzuz | ⊢ (∀𝑚 ∈ 𝑍 ∪ 𝑛 ∈ (𝑁...𝑚)𝐴 = ∪ 𝑛 ∈ (𝑁...𝑚)𝐵 → ∪ 𝑛 ∈ 𝑍 𝐴 = ∪ 𝑛 ∈ 𝑍 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iuneqfzuz.z | . . 3 ⊢ 𝑍 = (ℤ≥‘𝑁) | |
2 | 1 | iuneqfzuzlem 44495 | . 2 ⊢ (∀𝑚 ∈ 𝑍 ∪ 𝑛 ∈ (𝑁...𝑚)𝐴 = ∪ 𝑛 ∈ (𝑁...𝑚)𝐵 → ∪ 𝑛 ∈ 𝑍 𝐴 ⊆ ∪ 𝑛 ∈ 𝑍 𝐵) |
3 | eqcom 2731 | . . . . 5 ⊢ (∪ 𝑛 ∈ (𝑁...𝑚)𝐴 = ∪ 𝑛 ∈ (𝑁...𝑚)𝐵 ↔ ∪ 𝑛 ∈ (𝑁...𝑚)𝐵 = ∪ 𝑛 ∈ (𝑁...𝑚)𝐴) | |
4 | 3 | ralbii 3085 | . . . 4 ⊢ (∀𝑚 ∈ 𝑍 ∪ 𝑛 ∈ (𝑁...𝑚)𝐴 = ∪ 𝑛 ∈ (𝑁...𝑚)𝐵 ↔ ∀𝑚 ∈ 𝑍 ∪ 𝑛 ∈ (𝑁...𝑚)𝐵 = ∪ 𝑛 ∈ (𝑁...𝑚)𝐴) |
5 | 4 | biimpi 215 | . . 3 ⊢ (∀𝑚 ∈ 𝑍 ∪ 𝑛 ∈ (𝑁...𝑚)𝐴 = ∪ 𝑛 ∈ (𝑁...𝑚)𝐵 → ∀𝑚 ∈ 𝑍 ∪ 𝑛 ∈ (𝑁...𝑚)𝐵 = ∪ 𝑛 ∈ (𝑁...𝑚)𝐴) |
6 | 1 | iuneqfzuzlem 44495 | . . 3 ⊢ (∀𝑚 ∈ 𝑍 ∪ 𝑛 ∈ (𝑁...𝑚)𝐵 = ∪ 𝑛 ∈ (𝑁...𝑚)𝐴 → ∪ 𝑛 ∈ 𝑍 𝐵 ⊆ ∪ 𝑛 ∈ 𝑍 𝐴) |
7 | 5, 6 | syl 17 | . 2 ⊢ (∀𝑚 ∈ 𝑍 ∪ 𝑛 ∈ (𝑁...𝑚)𝐴 = ∪ 𝑛 ∈ (𝑁...𝑚)𝐵 → ∪ 𝑛 ∈ 𝑍 𝐵 ⊆ ∪ 𝑛 ∈ 𝑍 𝐴) |
8 | 2, 7 | eqssd 3991 | 1 ⊢ (∀𝑚 ∈ 𝑍 ∪ 𝑛 ∈ (𝑁...𝑚)𝐴 = ∪ 𝑛 ∈ (𝑁...𝑚)𝐵 → ∪ 𝑛 ∈ 𝑍 𝐴 = ∪ 𝑛 ∈ 𝑍 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1533 ∀wral 3053 ⊆ wss 3940 ∪ ciun 4987 ‘cfv 6533 (class class class)co 7401 ℤ≥cuz 12818 ...cfz 13480 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-sep 5289 ax-nul 5296 ax-pow 5353 ax-pr 5417 ax-un 7718 ax-cnex 11161 ax-resscn 11162 ax-pre-lttri 11179 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-nel 3039 df-ral 3054 df-rex 3063 df-rab 3425 df-v 3468 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-nul 4315 df-if 4521 df-pw 4596 df-sn 4621 df-pr 4623 df-op 4627 df-uni 4900 df-iun 4989 df-br 5139 df-opab 5201 df-mpt 5222 df-id 5564 df-xp 5672 df-rel 5673 df-cnv 5674 df-co 5675 df-dm 5676 df-rn 5677 df-res 5678 df-ima 5679 df-iota 6485 df-fun 6535 df-fn 6536 df-f 6537 df-f1 6538 df-fo 6539 df-f1o 6540 df-fv 6541 df-ov 7404 df-oprab 7405 df-mpo 7406 df-1st 7968 df-2nd 7969 df-er 8698 df-en 8935 df-dom 8936 df-sdom 8937 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-neg 11443 df-z 12555 df-uz 12819 df-fz 13481 |
This theorem is referenced by: iundjiun 45627 |
Copyright terms: Public domain | W3C validator |