Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iuneqfzuz Structured version   Visualization version   GIF version

Theorem iuneqfzuz 44496
Description: If two unions indexed by upper integers are equal if they agree on any partial indexed union. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypothesis
Ref Expression
iuneqfzuz.z 𝑍 = (ℤ𝑁)
Assertion
Ref Expression
iuneqfzuz (∀𝑚𝑍 𝑛 ∈ (𝑁...𝑚)𝐴 = 𝑛 ∈ (𝑁...𝑚)𝐵 𝑛𝑍 𝐴 = 𝑛𝑍 𝐵)
Distinct variable groups:   𝐴,𝑚   𝐵,𝑚   𝑛,𝑁   𝑚,𝑍,𝑛
Allowed substitution hints:   𝐴(𝑛)   𝐵(𝑛)   𝑁(𝑚)

Proof of Theorem iuneqfzuz
StepHypRef Expression
1 iuneqfzuz.z . . 3 𝑍 = (ℤ𝑁)
21iuneqfzuzlem 44495 . 2 (∀𝑚𝑍 𝑛 ∈ (𝑁...𝑚)𝐴 = 𝑛 ∈ (𝑁...𝑚)𝐵 𝑛𝑍 𝐴 𝑛𝑍 𝐵)
3 eqcom 2731 . . . . 5 ( 𝑛 ∈ (𝑁...𝑚)𝐴 = 𝑛 ∈ (𝑁...𝑚)𝐵 𝑛 ∈ (𝑁...𝑚)𝐵 = 𝑛 ∈ (𝑁...𝑚)𝐴)
43ralbii 3085 . . . 4 (∀𝑚𝑍 𝑛 ∈ (𝑁...𝑚)𝐴 = 𝑛 ∈ (𝑁...𝑚)𝐵 ↔ ∀𝑚𝑍 𝑛 ∈ (𝑁...𝑚)𝐵 = 𝑛 ∈ (𝑁...𝑚)𝐴)
54biimpi 215 . . 3 (∀𝑚𝑍 𝑛 ∈ (𝑁...𝑚)𝐴 = 𝑛 ∈ (𝑁...𝑚)𝐵 → ∀𝑚𝑍 𝑛 ∈ (𝑁...𝑚)𝐵 = 𝑛 ∈ (𝑁...𝑚)𝐴)
61iuneqfzuzlem 44495 . . 3 (∀𝑚𝑍 𝑛 ∈ (𝑁...𝑚)𝐵 = 𝑛 ∈ (𝑁...𝑚)𝐴 𝑛𝑍 𝐵 𝑛𝑍 𝐴)
75, 6syl 17 . 2 (∀𝑚𝑍 𝑛 ∈ (𝑁...𝑚)𝐴 = 𝑛 ∈ (𝑁...𝑚)𝐵 𝑛𝑍 𝐵 𝑛𝑍 𝐴)
82, 7eqssd 3991 1 (∀𝑚𝑍 𝑛 ∈ (𝑁...𝑚)𝐴 = 𝑛 ∈ (𝑁...𝑚)𝐵 𝑛𝑍 𝐴 = 𝑛𝑍 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1533  wral 3053  wss 3940   ciun 4987  cfv 6533  (class class class)co 7401  cuz 12818  ...cfz 13480
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-sep 5289  ax-nul 5296  ax-pow 5353  ax-pr 5417  ax-un 7718  ax-cnex 11161  ax-resscn 11162  ax-pre-lttri 11179
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-nel 3039  df-ral 3054  df-rex 3063  df-rab 3425  df-v 3468  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-nul 4315  df-if 4521  df-pw 4596  df-sn 4621  df-pr 4623  df-op 4627  df-uni 4900  df-iun 4989  df-br 5139  df-opab 5201  df-mpt 5222  df-id 5564  df-xp 5672  df-rel 5673  df-cnv 5674  df-co 5675  df-dm 5676  df-rn 5677  df-res 5678  df-ima 5679  df-iota 6485  df-fun 6535  df-fn 6536  df-f 6537  df-f1 6538  df-fo 6539  df-f1o 6540  df-fv 6541  df-ov 7404  df-oprab 7405  df-mpo 7406  df-1st 7968  df-2nd 7969  df-er 8698  df-en 8935  df-dom 8936  df-sdom 8937  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-neg 11443  df-z 12555  df-uz 12819  df-fz 13481
This theorem is referenced by:  iundjiun  45627
  Copyright terms: Public domain W3C validator