![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > iuneqfzuz | Structured version Visualization version GIF version |
Description: If two unions indexed by upper integers are equal if they agree on any partial indexed union. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
Ref | Expression |
---|---|
iuneqfzuz.z | ⊢ 𝑍 = (ℤ≥‘𝑁) |
Ref | Expression |
---|---|
iuneqfzuz | ⊢ (∀𝑚 ∈ 𝑍 ∪ 𝑛 ∈ (𝑁...𝑚)𝐴 = ∪ 𝑛 ∈ (𝑁...𝑚)𝐵 → ∪ 𝑛 ∈ 𝑍 𝐴 = ∪ 𝑛 ∈ 𝑍 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iuneqfzuz.z | . . 3 ⊢ 𝑍 = (ℤ≥‘𝑁) | |
2 | 1 | iuneqfzuzlem 45234 | . 2 ⊢ (∀𝑚 ∈ 𝑍 ∪ 𝑛 ∈ (𝑁...𝑚)𝐴 = ∪ 𝑛 ∈ (𝑁...𝑚)𝐵 → ∪ 𝑛 ∈ 𝑍 𝐴 ⊆ ∪ 𝑛 ∈ 𝑍 𝐵) |
3 | eqcom 2740 | . . . . 5 ⊢ (∪ 𝑛 ∈ (𝑁...𝑚)𝐴 = ∪ 𝑛 ∈ (𝑁...𝑚)𝐵 ↔ ∪ 𝑛 ∈ (𝑁...𝑚)𝐵 = ∪ 𝑛 ∈ (𝑁...𝑚)𝐴) | |
4 | 3 | ralbii 3089 | . . . 4 ⊢ (∀𝑚 ∈ 𝑍 ∪ 𝑛 ∈ (𝑁...𝑚)𝐴 = ∪ 𝑛 ∈ (𝑁...𝑚)𝐵 ↔ ∀𝑚 ∈ 𝑍 ∪ 𝑛 ∈ (𝑁...𝑚)𝐵 = ∪ 𝑛 ∈ (𝑁...𝑚)𝐴) |
5 | 4 | biimpi 216 | . . 3 ⊢ (∀𝑚 ∈ 𝑍 ∪ 𝑛 ∈ (𝑁...𝑚)𝐴 = ∪ 𝑛 ∈ (𝑁...𝑚)𝐵 → ∀𝑚 ∈ 𝑍 ∪ 𝑛 ∈ (𝑁...𝑚)𝐵 = ∪ 𝑛 ∈ (𝑁...𝑚)𝐴) |
6 | 1 | iuneqfzuzlem 45234 | . . 3 ⊢ (∀𝑚 ∈ 𝑍 ∪ 𝑛 ∈ (𝑁...𝑚)𝐵 = ∪ 𝑛 ∈ (𝑁...𝑚)𝐴 → ∪ 𝑛 ∈ 𝑍 𝐵 ⊆ ∪ 𝑛 ∈ 𝑍 𝐴) |
7 | 5, 6 | syl 17 | . 2 ⊢ (∀𝑚 ∈ 𝑍 ∪ 𝑛 ∈ (𝑁...𝑚)𝐴 = ∪ 𝑛 ∈ (𝑁...𝑚)𝐵 → ∪ 𝑛 ∈ 𝑍 𝐵 ⊆ ∪ 𝑛 ∈ 𝑍 𝐴) |
8 | 2, 7 | eqssd 4013 | 1 ⊢ (∀𝑚 ∈ 𝑍 ∪ 𝑛 ∈ (𝑁...𝑚)𝐴 = ∪ 𝑛 ∈ (𝑁...𝑚)𝐵 → ∪ 𝑛 ∈ 𝑍 𝐴 = ∪ 𝑛 ∈ 𝑍 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1535 ∀wral 3057 ⊆ wss 3963 ∪ ciun 4998 ‘cfv 6558 (class class class)co 7425 ℤ≥cuz 12869 ...cfz 13537 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1963 ax-7 2003 ax-8 2106 ax-9 2114 ax-10 2137 ax-11 2153 ax-12 2173 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pow 5366 ax-pr 5430 ax-un 7747 ax-cnex 11202 ax-resscn 11203 ax-pre-lttri 11220 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1538 df-fal 1548 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2536 df-eu 2565 df-clab 2711 df-cleq 2725 df-clel 2812 df-nfc 2888 df-ne 2937 df-nel 3043 df-ral 3058 df-rex 3067 df-rab 3433 df-v 3479 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4915 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5576 df-xp 5689 df-rel 5690 df-cnv 5691 df-co 5692 df-dm 5693 df-rn 5694 df-res 5695 df-ima 5696 df-iota 6510 df-fun 6560 df-fn 6561 df-f 6562 df-f1 6563 df-fo 6564 df-f1o 6565 df-fv 6566 df-ov 7428 df-oprab 7429 df-mpo 7430 df-1st 8007 df-2nd 8008 df-er 8738 df-en 8979 df-dom 8980 df-sdom 8981 df-pnf 11288 df-mnf 11289 df-xr 11290 df-ltxr 11291 df-le 11292 df-neg 11486 df-z 12605 df-uz 12870 df-fz 13538 |
This theorem is referenced by: iundjiun 46366 |
Copyright terms: Public domain | W3C validator |