| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > xle2addd | Structured version Visualization version GIF version | ||
| Description: Adding both side of two inequalities. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| Ref | Expression |
|---|---|
| xle2addd.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ*) |
| xle2addd.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ*) |
| xle2addd.3 | ⊢ (𝜑 → 𝐶 ∈ ℝ*) |
| xle2addd.4 | ⊢ (𝜑 → 𝐷 ∈ ℝ*) |
| xle2addd.5 | ⊢ (𝜑 → 𝐴 ≤ 𝐶) |
| xrle2addd.6 | ⊢ (𝜑 → 𝐵 ≤ 𝐷) |
| Ref | Expression |
|---|---|
| xle2addd | ⊢ (𝜑 → (𝐴 +𝑒 𝐵) ≤ (𝐶 +𝑒 𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xle2addd.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ*) | |
| 2 | xle2addd.2 | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℝ*) | |
| 3 | 1, 2 | xaddcld 13309 | . 2 ⊢ (𝜑 → (𝐴 +𝑒 𝐵) ∈ ℝ*) |
| 4 | xle2addd.4 | . . 3 ⊢ (𝜑 → 𝐷 ∈ ℝ*) | |
| 5 | 1, 4 | xaddcld 13309 | . 2 ⊢ (𝜑 → (𝐴 +𝑒 𝐷) ∈ ℝ*) |
| 6 | xle2addd.3 | . . 3 ⊢ (𝜑 → 𝐶 ∈ ℝ*) | |
| 7 | 6, 4 | xaddcld 13309 | . 2 ⊢ (𝜑 → (𝐶 +𝑒 𝐷) ∈ ℝ*) |
| 8 | xrle2addd.6 | . . 3 ⊢ (𝜑 → 𝐵 ≤ 𝐷) | |
| 9 | 2, 4, 1, 8 | xleadd2d 45282 | . 2 ⊢ (𝜑 → (𝐴 +𝑒 𝐵) ≤ (𝐴 +𝑒 𝐷)) |
| 10 | xle2addd.5 | . . 3 ⊢ (𝜑 → 𝐴 ≤ 𝐶) | |
| 11 | 1, 6, 4, 10 | xleadd1d 45284 | . 2 ⊢ (𝜑 → (𝐴 +𝑒 𝐷) ≤ (𝐶 +𝑒 𝐷)) |
| 12 | 3, 5, 7, 9, 11 | xrletrd 13170 | 1 ⊢ (𝜑 → (𝐴 +𝑒 𝐵) ≤ (𝐶 +𝑒 𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2107 class class class wbr 5116 (class class class)co 7399 ℝ*cxr 11260 ≤ cle 11262 +𝑒 cxad 13118 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5263 ax-nul 5273 ax-pow 5332 ax-pr 5399 ax-un 7723 ax-cnex 11177 ax-resscn 11178 ax-1cn 11179 ax-icn 11180 ax-addcl 11181 ax-addrcl 11182 ax-mulcl 11183 ax-mulrcl 11184 ax-mulcom 11185 ax-addass 11186 ax-mulass 11187 ax-distr 11188 ax-i2m1 11189 ax-1ne0 11190 ax-1rid 11191 ax-rnegex 11192 ax-rrecex 11193 ax-cnre 11194 ax-pre-lttri 11195 ax-pre-lttrn 11196 ax-pre-ltadd 11197 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rab 3414 df-v 3459 df-sbc 3764 df-csb 3873 df-dif 3927 df-un 3929 df-in 3931 df-ss 3941 df-nul 4307 df-if 4499 df-pw 4575 df-sn 4600 df-pr 4602 df-op 4606 df-uni 4881 df-iun 4966 df-br 5117 df-opab 5179 df-mpt 5199 df-id 5545 df-po 5558 df-so 5559 df-xp 5657 df-rel 5658 df-cnv 5659 df-co 5660 df-dm 5661 df-rn 5662 df-res 5663 df-ima 5664 df-iota 6480 df-fun 6529 df-fn 6530 df-f 6531 df-f1 6532 df-fo 6533 df-f1o 6534 df-fv 6535 df-ov 7402 df-oprab 7403 df-mpo 7404 df-1st 7982 df-2nd 7983 df-er 8713 df-en 8954 df-dom 8955 df-sdom 8956 df-pnf 11263 df-mnf 11264 df-xr 11265 df-ltxr 11266 df-le 11267 df-xadd 13121 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |