Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > latjjdi | Structured version Visualization version GIF version |
Description: Lattice join distributes over itself. (Contributed by NM, 30-Jul-2012.) |
Ref | Expression |
---|---|
latjass.b | ⊢ 𝐵 = (Base‘𝐾) |
latjass.j | ⊢ ∨ = (join‘𝐾) |
Ref | Expression |
---|---|
latjjdi | ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝑋 ∨ (𝑌 ∨ 𝑍)) = ((𝑋 ∨ 𝑌) ∨ (𝑋 ∨ 𝑍))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr1 1192 | . . . 4 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → 𝑋 ∈ 𝐵) | |
2 | latjass.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐾) | |
3 | latjass.j | . . . . 5 ⊢ ∨ = (join‘𝐾) | |
4 | 2, 3 | latjidm 17740 | . . . 4 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵) → (𝑋 ∨ 𝑋) = 𝑋) |
5 | 1, 4 | syldan 595 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝑋 ∨ 𝑋) = 𝑋) |
6 | 5 | oveq1d 7163 | . 2 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 ∨ 𝑋) ∨ (𝑌 ∨ 𝑍)) = (𝑋 ∨ (𝑌 ∨ 𝑍))) |
7 | simpl 487 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → 𝐾 ∈ Lat) | |
8 | simpr2 1193 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → 𝑌 ∈ 𝐵) | |
9 | simpr3 1194 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → 𝑍 ∈ 𝐵) | |
10 | 2, 3 | latj4 17767 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) ∧ (𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 ∨ 𝑋) ∨ (𝑌 ∨ 𝑍)) = ((𝑋 ∨ 𝑌) ∨ (𝑋 ∨ 𝑍))) |
11 | 7, 1, 1, 8, 9, 10 | syl122anc 1377 | . 2 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 ∨ 𝑋) ∨ (𝑌 ∨ 𝑍)) = ((𝑋 ∨ 𝑌) ∨ (𝑋 ∨ 𝑍))) |
12 | 6, 11 | eqtr3d 2796 | 1 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝑋 ∨ (𝑌 ∨ 𝑍)) = ((𝑋 ∨ 𝑌) ∨ (𝑋 ∨ 𝑍))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 400 ∧ w3a 1085 = wceq 1539 ∈ wcel 2112 ‘cfv 6333 (class class class)co 7148 Basecbs 16531 joincjn 17610 Latclat 17711 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2159 ax-12 2176 ax-ext 2730 ax-rep 5154 ax-sep 5167 ax-nul 5174 ax-pow 5232 ax-pr 5296 ax-un 7457 |
This theorem depends on definitions: df-bi 210 df-an 401 df-or 846 df-3an 1087 df-tru 1542 df-ex 1783 df-nf 1787 df-sb 2071 df-mo 2558 df-eu 2589 df-clab 2737 df-cleq 2751 df-clel 2831 df-nfc 2902 df-ne 2953 df-ral 3076 df-rex 3077 df-reu 3078 df-rab 3080 df-v 3412 df-sbc 3698 df-csb 3807 df-dif 3862 df-un 3864 df-in 3866 df-ss 3876 df-nul 4227 df-if 4419 df-pw 4494 df-sn 4521 df-pr 4523 df-op 4527 df-uni 4797 df-iun 4883 df-br 5031 df-opab 5093 df-mpt 5111 df-id 5428 df-xp 5528 df-rel 5529 df-cnv 5530 df-co 5531 df-dm 5532 df-rn 5533 df-res 5534 df-ima 5535 df-iota 6292 df-fun 6335 df-fn 6336 df-f 6337 df-f1 6338 df-fo 6339 df-f1o 6340 df-fv 6341 df-riota 7106 df-ov 7151 df-oprab 7152 df-proset 17594 df-poset 17612 df-lub 17640 df-glb 17641 df-join 17642 df-meet 17643 df-lat 17712 |
This theorem is referenced by: dalem-cly 37237 dalem44 37282 4atexlemc 37635 |
Copyright terms: Public domain | W3C validator |