![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > latjjdi | Structured version Visualization version GIF version |
Description: Lattice join distributes over itself. (Contributed by NM, 30-Jul-2012.) |
Ref | Expression |
---|---|
latjass.b | β’ π΅ = (BaseβπΎ) |
latjass.j | β’ β¨ = (joinβπΎ) |
Ref | Expression |
---|---|
latjjdi | β’ ((πΎ β Lat β§ (π β π΅ β§ π β π΅ β§ π β π΅)) β (π β¨ (π β¨ π)) = ((π β¨ π) β¨ (π β¨ π))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr1 1194 | . . . 4 β’ ((πΎ β Lat β§ (π β π΅ β§ π β π΅ β§ π β π΅)) β π β π΅) | |
2 | latjass.b | . . . . 5 β’ π΅ = (BaseβπΎ) | |
3 | latjass.j | . . . . 5 β’ β¨ = (joinβπΎ) | |
4 | 2, 3 | latjidm 18419 | . . . 4 β’ ((πΎ β Lat β§ π β π΅) β (π β¨ π) = π) |
5 | 1, 4 | syldan 591 | . . 3 β’ ((πΎ β Lat β§ (π β π΅ β§ π β π΅ β§ π β π΅)) β (π β¨ π) = π) |
6 | 5 | oveq1d 7426 | . 2 β’ ((πΎ β Lat β§ (π β π΅ β§ π β π΅ β§ π β π΅)) β ((π β¨ π) β¨ (π β¨ π)) = (π β¨ (π β¨ π))) |
7 | simpl 483 | . . 3 β’ ((πΎ β Lat β§ (π β π΅ β§ π β π΅ β§ π β π΅)) β πΎ β Lat) | |
8 | simpr2 1195 | . . 3 β’ ((πΎ β Lat β§ (π β π΅ β§ π β π΅ β§ π β π΅)) β π β π΅) | |
9 | simpr3 1196 | . . 3 β’ ((πΎ β Lat β§ (π β π΅ β§ π β π΅ β§ π β π΅)) β π β π΅) | |
10 | 2, 3 | latj4 18446 | . . 3 β’ ((πΎ β Lat β§ (π β π΅ β§ π β π΅) β§ (π β π΅ β§ π β π΅)) β ((π β¨ π) β¨ (π β¨ π)) = ((π β¨ π) β¨ (π β¨ π))) |
11 | 7, 1, 1, 8, 9, 10 | syl122anc 1379 | . 2 β’ ((πΎ β Lat β§ (π β π΅ β§ π β π΅ β§ π β π΅)) β ((π β¨ π) β¨ (π β¨ π)) = ((π β¨ π) β¨ (π β¨ π))) |
12 | 6, 11 | eqtr3d 2774 | 1 β’ ((πΎ β Lat β§ (π β π΅ β§ π β π΅ β§ π β π΅)) β (π β¨ (π β¨ π)) = ((π β¨ π) β¨ (π β¨ π))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 396 β§ w3a 1087 = wceq 1541 β wcel 2106 βcfv 6543 (class class class)co 7411 Basecbs 17148 joincjn 18268 Latclat 18388 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7727 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7367 df-ov 7414 df-oprab 7415 df-proset 18252 df-poset 18270 df-lub 18303 df-glb 18304 df-join 18305 df-meet 18306 df-lat 18389 |
This theorem is referenced by: dalem-cly 38845 dalem44 38890 4atexlemc 39243 |
Copyright terms: Public domain | W3C validator |