MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  latjjdi Structured version   Visualization version   GIF version

Theorem latjjdi 18457
Description: Lattice join distributes over itself. (Contributed by NM, 30-Jul-2012.)
Hypotheses
Ref Expression
latjass.b 𝐵 = (Base‘𝐾)
latjass.j = (join‘𝐾)
Assertion
Ref Expression
latjjdi ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋 (𝑌 𝑍)) = ((𝑋 𝑌) (𝑋 𝑍)))

Proof of Theorem latjjdi
StepHypRef Expression
1 simpr1 1195 . . . 4 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝑋𝐵)
2 latjass.b . . . . 5 𝐵 = (Base‘𝐾)
3 latjass.j . . . . 5 = (join‘𝐾)
42, 3latjidm 18428 . . . 4 ((𝐾 ∈ Lat ∧ 𝑋𝐵) → (𝑋 𝑋) = 𝑋)
51, 4syldan 591 . . 3 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋 𝑋) = 𝑋)
65oveq1d 7405 . 2 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 𝑋) (𝑌 𝑍)) = (𝑋 (𝑌 𝑍)))
7 simpl 482 . . 3 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝐾 ∈ Lat)
8 simpr2 1196 . . 3 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝑌𝐵)
9 simpr3 1197 . . 3 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝑍𝐵)
102, 3latj4 18455 . . 3 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑋𝐵) ∧ (𝑌𝐵𝑍𝐵)) → ((𝑋 𝑋) (𝑌 𝑍)) = ((𝑋 𝑌) (𝑋 𝑍)))
117, 1, 1, 8, 9, 10syl122anc 1381 . 2 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 𝑋) (𝑌 𝑍)) = ((𝑋 𝑌) (𝑋 𝑍)))
126, 11eqtr3d 2767 1 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋 (𝑌 𝑍)) = ((𝑋 𝑌) (𝑋 𝑍)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  cfv 6514  (class class class)co 7390  Basecbs 17186  joincjn 18279  Latclat 18397
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-proset 18262  df-poset 18281  df-lub 18312  df-glb 18313  df-join 18314  df-meet 18315  df-lat 18398
This theorem is referenced by:  dalem-cly  39672  dalem44  39717  4atexlemc  40070
  Copyright terms: Public domain W3C validator