MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  latj4 Structured version   Visualization version   GIF version

Theorem latj4 18383
Description: Rearrangement of lattice join of 4 classes. (chj4 30519 analog.) (Contributed by NM, 14-Jun-2012.)
Hypotheses
Ref Expression
latjass.b 𝐡 = (Baseβ€˜πΎ)
latjass.j ∨ = (joinβ€˜πΎ)
Assertion
Ref Expression
latj4 ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) ∧ (𝑍 ∈ 𝐡 ∧ π‘Š ∈ 𝐡)) β†’ ((𝑋 ∨ π‘Œ) ∨ (𝑍 ∨ π‘Š)) = ((𝑋 ∨ 𝑍) ∨ (π‘Œ ∨ π‘Š)))

Proof of Theorem latj4
StepHypRef Expression
1 simp1 1137 . . . 4 ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) ∧ (𝑍 ∈ 𝐡 ∧ π‘Š ∈ 𝐡)) β†’ 𝐾 ∈ Lat)
2 simp2r 1201 . . . 4 ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) ∧ (𝑍 ∈ 𝐡 ∧ π‘Š ∈ 𝐡)) β†’ π‘Œ ∈ 𝐡)
3 simp3l 1202 . . . 4 ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) ∧ (𝑍 ∈ 𝐡 ∧ π‘Š ∈ 𝐡)) β†’ 𝑍 ∈ 𝐡)
4 simp3r 1203 . . . 4 ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) ∧ (𝑍 ∈ 𝐡 ∧ π‘Š ∈ 𝐡)) β†’ π‘Š ∈ 𝐡)
5 latjass.b . . . . 5 𝐡 = (Baseβ€˜πΎ)
6 latjass.j . . . . 5 ∨ = (joinβ€˜πΎ)
75, 6latj12 18378 . . . 4 ((𝐾 ∈ Lat ∧ (π‘Œ ∈ 𝐡 ∧ 𝑍 ∈ 𝐡 ∧ π‘Š ∈ 𝐡)) β†’ (π‘Œ ∨ (𝑍 ∨ π‘Š)) = (𝑍 ∨ (π‘Œ ∨ π‘Š)))
81, 2, 3, 4, 7syl13anc 1373 . . 3 ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) ∧ (𝑍 ∈ 𝐡 ∧ π‘Š ∈ 𝐡)) β†’ (π‘Œ ∨ (𝑍 ∨ π‘Š)) = (𝑍 ∨ (π‘Œ ∨ π‘Š)))
98oveq2d 7374 . 2 ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) ∧ (𝑍 ∈ 𝐡 ∧ π‘Š ∈ 𝐡)) β†’ (𝑋 ∨ (π‘Œ ∨ (𝑍 ∨ π‘Š))) = (𝑋 ∨ (𝑍 ∨ (π‘Œ ∨ π‘Š))))
10 simp2l 1200 . . 3 ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) ∧ (𝑍 ∈ 𝐡 ∧ π‘Š ∈ 𝐡)) β†’ 𝑋 ∈ 𝐡)
115, 6latjcl 18333 . . . 4 ((𝐾 ∈ Lat ∧ 𝑍 ∈ 𝐡 ∧ π‘Š ∈ 𝐡) β†’ (𝑍 ∨ π‘Š) ∈ 𝐡)
121, 3, 4, 11syl3anc 1372 . . 3 ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) ∧ (𝑍 ∈ 𝐡 ∧ π‘Š ∈ 𝐡)) β†’ (𝑍 ∨ π‘Š) ∈ 𝐡)
135, 6latjass 18377 . . 3 ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡 ∧ (𝑍 ∨ π‘Š) ∈ 𝐡)) β†’ ((𝑋 ∨ π‘Œ) ∨ (𝑍 ∨ π‘Š)) = (𝑋 ∨ (π‘Œ ∨ (𝑍 ∨ π‘Š))))
141, 10, 2, 12, 13syl13anc 1373 . 2 ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) ∧ (𝑍 ∈ 𝐡 ∧ π‘Š ∈ 𝐡)) β†’ ((𝑋 ∨ π‘Œ) ∨ (𝑍 ∨ π‘Š)) = (𝑋 ∨ (π‘Œ ∨ (𝑍 ∨ π‘Š))))
155, 6latjcl 18333 . . . 4 ((𝐾 ∈ Lat ∧ π‘Œ ∈ 𝐡 ∧ π‘Š ∈ 𝐡) β†’ (π‘Œ ∨ π‘Š) ∈ 𝐡)
161, 2, 4, 15syl3anc 1372 . . 3 ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) ∧ (𝑍 ∈ 𝐡 ∧ π‘Š ∈ 𝐡)) β†’ (π‘Œ ∨ π‘Š) ∈ 𝐡)
175, 6latjass 18377 . . 3 ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐡 ∧ 𝑍 ∈ 𝐡 ∧ (π‘Œ ∨ π‘Š) ∈ 𝐡)) β†’ ((𝑋 ∨ 𝑍) ∨ (π‘Œ ∨ π‘Š)) = (𝑋 ∨ (𝑍 ∨ (π‘Œ ∨ π‘Š))))
181, 10, 3, 16, 17syl13anc 1373 . 2 ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) ∧ (𝑍 ∈ 𝐡 ∧ π‘Š ∈ 𝐡)) β†’ ((𝑋 ∨ 𝑍) ∨ (π‘Œ ∨ π‘Š)) = (𝑋 ∨ (𝑍 ∨ (π‘Œ ∨ π‘Š))))
199, 14, 183eqtr4d 2783 1 ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) ∧ (𝑍 ∈ 𝐡 ∧ π‘Š ∈ 𝐡)) β†’ ((𝑋 ∨ π‘Œ) ∨ (𝑍 ∨ π‘Š)) = ((𝑋 ∨ 𝑍) ∨ (π‘Œ ∨ π‘Š)))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 397   ∧ w3a 1088   = wceq 1542   ∈ wcel 2107  β€˜cfv 6497  (class class class)co 7358  Basecbs 17088  joincjn 18205  Latclat 18325
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5243  ax-sep 5257  ax-nul 5264  ax-pow 5321  ax-pr 5385  ax-un 7673
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3353  df-rab 3407  df-v 3446  df-sbc 3741  df-csb 3857  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4284  df-if 4488  df-pw 4563  df-sn 4588  df-pr 4590  df-op 4594  df-uni 4867  df-iun 4957  df-br 5107  df-opab 5169  df-mpt 5190  df-id 5532  df-xp 5640  df-rel 5641  df-cnv 5642  df-co 5643  df-dm 5644  df-rn 5645  df-res 5646  df-ima 5647  df-iota 6449  df-fun 6499  df-fn 6500  df-f 6501  df-f1 6502  df-fo 6503  df-f1o 6504  df-fv 6505  df-riota 7314  df-ov 7361  df-oprab 7362  df-proset 18189  df-poset 18207  df-lub 18240  df-glb 18241  df-join 18242  df-meet 18243  df-lat 18326
This theorem is referenced by:  latj4rot  18384  latjjdi  18385  latjjdir  18386  hlatj4  37882  arglem1N  38699  cdleme11  38779  cdleme20l2  38830
  Copyright terms: Public domain W3C validator