MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  latj4 Structured version   Visualization version   GIF version

Theorem latj4 18480
Description: Rearrangement of lattice join of 4 classes. (chj4 31344 analog.) (Contributed by NM, 14-Jun-2012.)
Hypotheses
Ref Expression
latjass.b 𝐡 = (Baseβ€˜πΎ)
latjass.j ∨ = (joinβ€˜πΎ)
Assertion
Ref Expression
latj4 ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) ∧ (𝑍 ∈ 𝐡 ∧ π‘Š ∈ 𝐡)) β†’ ((𝑋 ∨ π‘Œ) ∨ (𝑍 ∨ π‘Š)) = ((𝑋 ∨ 𝑍) ∨ (π‘Œ ∨ π‘Š)))

Proof of Theorem latj4
StepHypRef Expression
1 simp1 1134 . . . 4 ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) ∧ (𝑍 ∈ 𝐡 ∧ π‘Š ∈ 𝐡)) β†’ 𝐾 ∈ Lat)
2 simp2r 1198 . . . 4 ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) ∧ (𝑍 ∈ 𝐡 ∧ π‘Š ∈ 𝐡)) β†’ π‘Œ ∈ 𝐡)
3 simp3l 1199 . . . 4 ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) ∧ (𝑍 ∈ 𝐡 ∧ π‘Š ∈ 𝐡)) β†’ 𝑍 ∈ 𝐡)
4 simp3r 1200 . . . 4 ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) ∧ (𝑍 ∈ 𝐡 ∧ π‘Š ∈ 𝐡)) β†’ π‘Š ∈ 𝐡)
5 latjass.b . . . . 5 𝐡 = (Baseβ€˜πΎ)
6 latjass.j . . . . 5 ∨ = (joinβ€˜πΎ)
75, 6latj12 18475 . . . 4 ((𝐾 ∈ Lat ∧ (π‘Œ ∈ 𝐡 ∧ 𝑍 ∈ 𝐡 ∧ π‘Š ∈ 𝐡)) β†’ (π‘Œ ∨ (𝑍 ∨ π‘Š)) = (𝑍 ∨ (π‘Œ ∨ π‘Š)))
81, 2, 3, 4, 7syl13anc 1370 . . 3 ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) ∧ (𝑍 ∈ 𝐡 ∧ π‘Š ∈ 𝐡)) β†’ (π‘Œ ∨ (𝑍 ∨ π‘Š)) = (𝑍 ∨ (π‘Œ ∨ π‘Š)))
98oveq2d 7436 . 2 ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) ∧ (𝑍 ∈ 𝐡 ∧ π‘Š ∈ 𝐡)) β†’ (𝑋 ∨ (π‘Œ ∨ (𝑍 ∨ π‘Š))) = (𝑋 ∨ (𝑍 ∨ (π‘Œ ∨ π‘Š))))
10 simp2l 1197 . . 3 ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) ∧ (𝑍 ∈ 𝐡 ∧ π‘Š ∈ 𝐡)) β†’ 𝑋 ∈ 𝐡)
115, 6latjcl 18430 . . . 4 ((𝐾 ∈ Lat ∧ 𝑍 ∈ 𝐡 ∧ π‘Š ∈ 𝐡) β†’ (𝑍 ∨ π‘Š) ∈ 𝐡)
121, 3, 4, 11syl3anc 1369 . . 3 ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) ∧ (𝑍 ∈ 𝐡 ∧ π‘Š ∈ 𝐡)) β†’ (𝑍 ∨ π‘Š) ∈ 𝐡)
135, 6latjass 18474 . . 3 ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡 ∧ (𝑍 ∨ π‘Š) ∈ 𝐡)) β†’ ((𝑋 ∨ π‘Œ) ∨ (𝑍 ∨ π‘Š)) = (𝑋 ∨ (π‘Œ ∨ (𝑍 ∨ π‘Š))))
141, 10, 2, 12, 13syl13anc 1370 . 2 ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) ∧ (𝑍 ∈ 𝐡 ∧ π‘Š ∈ 𝐡)) β†’ ((𝑋 ∨ π‘Œ) ∨ (𝑍 ∨ π‘Š)) = (𝑋 ∨ (π‘Œ ∨ (𝑍 ∨ π‘Š))))
155, 6latjcl 18430 . . . 4 ((𝐾 ∈ Lat ∧ π‘Œ ∈ 𝐡 ∧ π‘Š ∈ 𝐡) β†’ (π‘Œ ∨ π‘Š) ∈ 𝐡)
161, 2, 4, 15syl3anc 1369 . . 3 ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) ∧ (𝑍 ∈ 𝐡 ∧ π‘Š ∈ 𝐡)) β†’ (π‘Œ ∨ π‘Š) ∈ 𝐡)
175, 6latjass 18474 . . 3 ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐡 ∧ 𝑍 ∈ 𝐡 ∧ (π‘Œ ∨ π‘Š) ∈ 𝐡)) β†’ ((𝑋 ∨ 𝑍) ∨ (π‘Œ ∨ π‘Š)) = (𝑋 ∨ (𝑍 ∨ (π‘Œ ∨ π‘Š))))
181, 10, 3, 16, 17syl13anc 1370 . 2 ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) ∧ (𝑍 ∈ 𝐡 ∧ π‘Š ∈ 𝐡)) β†’ ((𝑋 ∨ 𝑍) ∨ (π‘Œ ∨ π‘Š)) = (𝑋 ∨ (𝑍 ∨ (π‘Œ ∨ π‘Š))))
199, 14, 183eqtr4d 2778 1 ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) ∧ (𝑍 ∈ 𝐡 ∧ π‘Š ∈ 𝐡)) β†’ ((𝑋 ∨ π‘Œ) ∨ (𝑍 ∨ π‘Š)) = ((𝑋 ∨ 𝑍) ∨ (π‘Œ ∨ π‘Š)))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 395   ∧ w3a 1085   = wceq 1534   ∈ wcel 2099  β€˜cfv 6548  (class class class)co 7420  Basecbs 17179  joincjn 18302  Latclat 18422
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5365  ax-pr 5429  ax-un 7740
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-ral 3059  df-rex 3068  df-rmo 3373  df-reu 3374  df-rab 3430  df-v 3473  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5576  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-iota 6500  df-fun 6550  df-fn 6551  df-f 6552  df-f1 6553  df-fo 6554  df-f1o 6555  df-fv 6556  df-riota 7376  df-ov 7423  df-oprab 7424  df-proset 18286  df-poset 18304  df-lub 18337  df-glb 18338  df-join 18339  df-meet 18340  df-lat 18423
This theorem is referenced by:  latj4rot  18481  latjjdi  18482  latjjdir  18483  hlatj4  38846  arglem1N  39663  cdleme11  39743  cdleme20l2  39794
  Copyright terms: Public domain W3C validator