MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  latj4 Structured version   Visualization version   GIF version

Theorem latj4 18448
Description: Rearrangement of lattice join of 4 classes. (chj4 31464 analog.) (Contributed by NM, 14-Jun-2012.)
Hypotheses
Ref Expression
latjass.b 𝐵 = (Base‘𝐾)
latjass.j = (join‘𝐾)
Assertion
Ref Expression
latj4 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵)) → ((𝑋 𝑌) (𝑍 𝑊)) = ((𝑋 𝑍) (𝑌 𝑊)))

Proof of Theorem latj4
StepHypRef Expression
1 simp1 1136 . . . 4 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵)) → 𝐾 ∈ Lat)
2 simp2r 1201 . . . 4 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵)) → 𝑌𝐵)
3 simp3l 1202 . . . 4 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵)) → 𝑍𝐵)
4 simp3r 1203 . . . 4 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵)) → 𝑊𝐵)
5 latjass.b . . . . 5 𝐵 = (Base‘𝐾)
6 latjass.j . . . . 5 = (join‘𝐾)
75, 6latj12 18443 . . . 4 ((𝐾 ∈ Lat ∧ (𝑌𝐵𝑍𝐵𝑊𝐵)) → (𝑌 (𝑍 𝑊)) = (𝑍 (𝑌 𝑊)))
81, 2, 3, 4, 7syl13anc 1374 . . 3 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵)) → (𝑌 (𝑍 𝑊)) = (𝑍 (𝑌 𝑊)))
98oveq2d 7403 . 2 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵)) → (𝑋 (𝑌 (𝑍 𝑊))) = (𝑋 (𝑍 (𝑌 𝑊))))
10 simp2l 1200 . . 3 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵)) → 𝑋𝐵)
115, 6latjcl 18398 . . . 4 ((𝐾 ∈ Lat ∧ 𝑍𝐵𝑊𝐵) → (𝑍 𝑊) ∈ 𝐵)
121, 3, 4, 11syl3anc 1373 . . 3 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵)) → (𝑍 𝑊) ∈ 𝐵)
135, 6latjass 18442 . . 3 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵 ∧ (𝑍 𝑊) ∈ 𝐵)) → ((𝑋 𝑌) (𝑍 𝑊)) = (𝑋 (𝑌 (𝑍 𝑊))))
141, 10, 2, 12, 13syl13anc 1374 . 2 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵)) → ((𝑋 𝑌) (𝑍 𝑊)) = (𝑋 (𝑌 (𝑍 𝑊))))
155, 6latjcl 18398 . . . 4 ((𝐾 ∈ Lat ∧ 𝑌𝐵𝑊𝐵) → (𝑌 𝑊) ∈ 𝐵)
161, 2, 4, 15syl3anc 1373 . . 3 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵)) → (𝑌 𝑊) ∈ 𝐵)
175, 6latjass 18442 . . 3 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑍𝐵 ∧ (𝑌 𝑊) ∈ 𝐵)) → ((𝑋 𝑍) (𝑌 𝑊)) = (𝑋 (𝑍 (𝑌 𝑊))))
181, 10, 3, 16, 17syl13anc 1374 . 2 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵)) → ((𝑋 𝑍) (𝑌 𝑊)) = (𝑋 (𝑍 (𝑌 𝑊))))
199, 14, 183eqtr4d 2774 1 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵)) → ((𝑋 𝑌) (𝑍 𝑊)) = ((𝑋 𝑍) (𝑌 𝑊)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  cfv 6511  (class class class)co 7387  Basecbs 17179  joincjn 18272  Latclat 18390
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-proset 18255  df-poset 18274  df-lub 18305  df-glb 18306  df-join 18307  df-meet 18308  df-lat 18391
This theorem is referenced by:  latj4rot  18449  latjjdi  18450  latjjdir  18451  hlatj4  39367  arglem1N  40184  cdleme11  40264  cdleme20l2  40315
  Copyright terms: Public domain W3C validator