![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > latj4 | Structured version Visualization version GIF version |
Description: Rearrangement of lattice join of 4 classes. (chj4 31564 analog.) (Contributed by NM, 14-Jun-2012.) |
Ref | Expression |
---|---|
latjass.b | ⊢ 𝐵 = (Base‘𝐾) |
latjass.j | ⊢ ∨ = (join‘𝐾) |
Ref | Expression |
---|---|
latj4 | ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑍 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵)) → ((𝑋 ∨ 𝑌) ∨ (𝑍 ∨ 𝑊)) = ((𝑋 ∨ 𝑍) ∨ (𝑌 ∨ 𝑊))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1 1135 | . . . 4 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑍 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵)) → 𝐾 ∈ Lat) | |
2 | simp2r 1199 | . . . 4 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑍 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵)) → 𝑌 ∈ 𝐵) | |
3 | simp3l 1200 | . . . 4 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑍 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵)) → 𝑍 ∈ 𝐵) | |
4 | simp3r 1201 | . . . 4 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑍 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵)) → 𝑊 ∈ 𝐵) | |
5 | latjass.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐾) | |
6 | latjass.j | . . . . 5 ⊢ ∨ = (join‘𝐾) | |
7 | 5, 6 | latj12 18542 | . . . 4 ⊢ ((𝐾 ∈ Lat ∧ (𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵)) → (𝑌 ∨ (𝑍 ∨ 𝑊)) = (𝑍 ∨ (𝑌 ∨ 𝑊))) |
8 | 1, 2, 3, 4, 7 | syl13anc 1371 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑍 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵)) → (𝑌 ∨ (𝑍 ∨ 𝑊)) = (𝑍 ∨ (𝑌 ∨ 𝑊))) |
9 | 8 | oveq2d 7447 | . 2 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑍 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵)) → (𝑋 ∨ (𝑌 ∨ (𝑍 ∨ 𝑊))) = (𝑋 ∨ (𝑍 ∨ (𝑌 ∨ 𝑊)))) |
10 | simp2l 1198 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑍 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵)) → 𝑋 ∈ 𝐵) | |
11 | 5, 6 | latjcl 18497 | . . . 4 ⊢ ((𝐾 ∈ Lat ∧ 𝑍 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵) → (𝑍 ∨ 𝑊) ∈ 𝐵) |
12 | 1, 3, 4, 11 | syl3anc 1370 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑍 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵)) → (𝑍 ∨ 𝑊) ∈ 𝐵) |
13 | 5, 6 | latjass 18541 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ (𝑍 ∨ 𝑊) ∈ 𝐵)) → ((𝑋 ∨ 𝑌) ∨ (𝑍 ∨ 𝑊)) = (𝑋 ∨ (𝑌 ∨ (𝑍 ∨ 𝑊)))) |
14 | 1, 10, 2, 12, 13 | syl13anc 1371 | . 2 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑍 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵)) → ((𝑋 ∨ 𝑌) ∨ (𝑍 ∨ 𝑊)) = (𝑋 ∨ (𝑌 ∨ (𝑍 ∨ 𝑊)))) |
15 | 5, 6 | latjcl 18497 | . . . 4 ⊢ ((𝐾 ∈ Lat ∧ 𝑌 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵) → (𝑌 ∨ 𝑊) ∈ 𝐵) |
16 | 1, 2, 4, 15 | syl3anc 1370 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑍 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵)) → (𝑌 ∨ 𝑊) ∈ 𝐵) |
17 | 5, 6 | latjass 18541 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ∧ (𝑌 ∨ 𝑊) ∈ 𝐵)) → ((𝑋 ∨ 𝑍) ∨ (𝑌 ∨ 𝑊)) = (𝑋 ∨ (𝑍 ∨ (𝑌 ∨ 𝑊)))) |
18 | 1, 10, 3, 16, 17 | syl13anc 1371 | . 2 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑍 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵)) → ((𝑋 ∨ 𝑍) ∨ (𝑌 ∨ 𝑊)) = (𝑋 ∨ (𝑍 ∨ (𝑌 ∨ 𝑊)))) |
19 | 9, 14, 18 | 3eqtr4d 2785 | 1 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑍 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵)) → ((𝑋 ∨ 𝑌) ∨ (𝑍 ∨ 𝑊)) = ((𝑋 ∨ 𝑍) ∨ (𝑌 ∨ 𝑊))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1537 ∈ wcel 2106 ‘cfv 6563 (class class class)co 7431 Basecbs 17245 joincjn 18369 Latclat 18489 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-ov 7434 df-oprab 7435 df-proset 18352 df-poset 18371 df-lub 18404 df-glb 18405 df-join 18406 df-meet 18407 df-lat 18490 |
This theorem is referenced by: latj4rot 18548 latjjdi 18549 latjjdir 18550 hlatj4 39356 arglem1N 40173 cdleme11 40253 cdleme20l2 40304 |
Copyright terms: Public domain | W3C validator |