![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > latj4 | Structured version Visualization version GIF version |
Description: Rearrangement of lattice join of 4 classes. (chj4 31417 analog.) (Contributed by NM, 14-Jun-2012.) |
Ref | Expression |
---|---|
latjass.b | ⊢ 𝐵 = (Base‘𝐾) |
latjass.j | ⊢ ∨ = (join‘𝐾) |
Ref | Expression |
---|---|
latj4 | ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑍 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵)) → ((𝑋 ∨ 𝑌) ∨ (𝑍 ∨ 𝑊)) = ((𝑋 ∨ 𝑍) ∨ (𝑌 ∨ 𝑊))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1 1133 | . . . 4 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑍 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵)) → 𝐾 ∈ Lat) | |
2 | simp2r 1197 | . . . 4 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑍 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵)) → 𝑌 ∈ 𝐵) | |
3 | simp3l 1198 | . . . 4 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑍 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵)) → 𝑍 ∈ 𝐵) | |
4 | simp3r 1199 | . . . 4 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑍 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵)) → 𝑊 ∈ 𝐵) | |
5 | latjass.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐾) | |
6 | latjass.j | . . . . 5 ⊢ ∨ = (join‘𝐾) | |
7 | 5, 6 | latj12 18479 | . . . 4 ⊢ ((𝐾 ∈ Lat ∧ (𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵)) → (𝑌 ∨ (𝑍 ∨ 𝑊)) = (𝑍 ∨ (𝑌 ∨ 𝑊))) |
8 | 1, 2, 3, 4, 7 | syl13anc 1369 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑍 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵)) → (𝑌 ∨ (𝑍 ∨ 𝑊)) = (𝑍 ∨ (𝑌 ∨ 𝑊))) |
9 | 8 | oveq2d 7435 | . 2 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑍 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵)) → (𝑋 ∨ (𝑌 ∨ (𝑍 ∨ 𝑊))) = (𝑋 ∨ (𝑍 ∨ (𝑌 ∨ 𝑊)))) |
10 | simp2l 1196 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑍 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵)) → 𝑋 ∈ 𝐵) | |
11 | 5, 6 | latjcl 18434 | . . . 4 ⊢ ((𝐾 ∈ Lat ∧ 𝑍 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵) → (𝑍 ∨ 𝑊) ∈ 𝐵) |
12 | 1, 3, 4, 11 | syl3anc 1368 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑍 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵)) → (𝑍 ∨ 𝑊) ∈ 𝐵) |
13 | 5, 6 | latjass 18478 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ (𝑍 ∨ 𝑊) ∈ 𝐵)) → ((𝑋 ∨ 𝑌) ∨ (𝑍 ∨ 𝑊)) = (𝑋 ∨ (𝑌 ∨ (𝑍 ∨ 𝑊)))) |
14 | 1, 10, 2, 12, 13 | syl13anc 1369 | . 2 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑍 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵)) → ((𝑋 ∨ 𝑌) ∨ (𝑍 ∨ 𝑊)) = (𝑋 ∨ (𝑌 ∨ (𝑍 ∨ 𝑊)))) |
15 | 5, 6 | latjcl 18434 | . . . 4 ⊢ ((𝐾 ∈ Lat ∧ 𝑌 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵) → (𝑌 ∨ 𝑊) ∈ 𝐵) |
16 | 1, 2, 4, 15 | syl3anc 1368 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑍 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵)) → (𝑌 ∨ 𝑊) ∈ 𝐵) |
17 | 5, 6 | latjass 18478 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ∧ (𝑌 ∨ 𝑊) ∈ 𝐵)) → ((𝑋 ∨ 𝑍) ∨ (𝑌 ∨ 𝑊)) = (𝑋 ∨ (𝑍 ∨ (𝑌 ∨ 𝑊)))) |
18 | 1, 10, 3, 16, 17 | syl13anc 1369 | . 2 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑍 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵)) → ((𝑋 ∨ 𝑍) ∨ (𝑌 ∨ 𝑊)) = (𝑋 ∨ (𝑍 ∨ (𝑌 ∨ 𝑊)))) |
19 | 9, 14, 18 | 3eqtr4d 2775 | 1 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑍 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵)) → ((𝑋 ∨ 𝑌) ∨ (𝑍 ∨ 𝑊)) = ((𝑋 ∨ 𝑍) ∨ (𝑌 ∨ 𝑊))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 ∧ w3a 1084 = wceq 1533 ∈ wcel 2098 ‘cfv 6549 (class class class)co 7419 Basecbs 17183 joincjn 18306 Latclat 18426 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5365 ax-pr 5429 ax-un 7741 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3419 df-v 3463 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4323 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4910 df-iun 4999 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5576 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-iota 6501 df-fun 6551 df-fn 6552 df-f 6553 df-f1 6554 df-fo 6555 df-f1o 6556 df-fv 6557 df-riota 7375 df-ov 7422 df-oprab 7423 df-proset 18290 df-poset 18308 df-lub 18341 df-glb 18342 df-join 18343 df-meet 18344 df-lat 18427 |
This theorem is referenced by: latj4rot 18485 latjjdi 18486 latjjdir 18487 hlatj4 38976 arglem1N 39793 cdleme11 39873 cdleme20l2 39924 |
Copyright terms: Public domain | W3C validator |