MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mod1ile Structured version   Visualization version   GIF version

Theorem mod1ile 18403
Description: The weak direction of the modular law (e.g., pmod1i 39970, atmod1i1 39979) that holds in any lattice. (Contributed by NM, 11-May-2012.)
Hypotheses
Ref Expression
modle.b 𝐵 = (Base‘𝐾)
modle.l = (le‘𝐾)
modle.j = (join‘𝐾)
modle.m = (meet‘𝐾)
Assertion
Ref Expression
mod1ile ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋 𝑍 → (𝑋 (𝑌 𝑍)) ((𝑋 𝑌) 𝑍)))

Proof of Theorem mod1ile
StepHypRef Expression
1 simpll 766 . . . . 5 (((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ 𝑋 𝑍) → 𝐾 ∈ Lat)
2 simplr1 1216 . . . . 5 (((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ 𝑋 𝑍) → 𝑋𝐵)
3 simplr2 1217 . . . . 5 (((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ 𝑋 𝑍) → 𝑌𝐵)
4 modle.b . . . . . 6 𝐵 = (Base‘𝐾)
5 modle.l . . . . . 6 = (le‘𝐾)
6 modle.j . . . . . 6 = (join‘𝐾)
74, 5, 6latlej1 18358 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → 𝑋 (𝑋 𝑌))
81, 2, 3, 7syl3anc 1373 . . . 4 (((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ 𝑋 𝑍) → 𝑋 (𝑋 𝑌))
9 simpr 484 . . . 4 (((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ 𝑋 𝑍) → 𝑋 𝑍)
104, 6latjcl 18349 . . . . . 6 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌) ∈ 𝐵)
111, 2, 3, 10syl3anc 1373 . . . . 5 (((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ 𝑋 𝑍) → (𝑋 𝑌) ∈ 𝐵)
12 simplr3 1218 . . . . 5 (((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ 𝑋 𝑍) → 𝑍𝐵)
13 modle.m . . . . . 6 = (meet‘𝐾)
144, 5, 13latlem12 18376 . . . . 5 ((𝐾 ∈ Lat ∧ (𝑋𝐵 ∧ (𝑋 𝑌) ∈ 𝐵𝑍𝐵)) → ((𝑋 (𝑋 𝑌) ∧ 𝑋 𝑍) ↔ 𝑋 ((𝑋 𝑌) 𝑍)))
151, 2, 11, 12, 14syl13anc 1374 . . . 4 (((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ 𝑋 𝑍) → ((𝑋 (𝑋 𝑌) ∧ 𝑋 𝑍) ↔ 𝑋 ((𝑋 𝑌) 𝑍)))
168, 9, 15mpbi2and 712 . . 3 (((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ 𝑋 𝑍) → 𝑋 ((𝑋 𝑌) 𝑍))
174, 5, 6, 13latmlej12 18389 . . . . 5 ((𝐾 ∈ Lat ∧ (𝑌𝐵𝑍𝐵𝑋𝐵)) → (𝑌 𝑍) (𝑋 𝑌))
181, 3, 12, 2, 17syl13anc 1374 . . . 4 (((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ 𝑋 𝑍) → (𝑌 𝑍) (𝑋 𝑌))
194, 5, 13latmle2 18375 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑌𝐵𝑍𝐵) → (𝑌 𝑍) 𝑍)
201, 3, 12, 19syl3anc 1373 . . . 4 (((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ 𝑋 𝑍) → (𝑌 𝑍) 𝑍)
214, 13latmcl 18350 . . . . . 6 ((𝐾 ∈ Lat ∧ 𝑌𝐵𝑍𝐵) → (𝑌 𝑍) ∈ 𝐵)
221, 3, 12, 21syl3anc 1373 . . . . 5 (((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ 𝑋 𝑍) → (𝑌 𝑍) ∈ 𝐵)
234, 5, 13latlem12 18376 . . . . 5 ((𝐾 ∈ Lat ∧ ((𝑌 𝑍) ∈ 𝐵 ∧ (𝑋 𝑌) ∈ 𝐵𝑍𝐵)) → (((𝑌 𝑍) (𝑋 𝑌) ∧ (𝑌 𝑍) 𝑍) ↔ (𝑌 𝑍) ((𝑋 𝑌) 𝑍)))
241, 22, 11, 12, 23syl13anc 1374 . . . 4 (((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ 𝑋 𝑍) → (((𝑌 𝑍) (𝑋 𝑌) ∧ (𝑌 𝑍) 𝑍) ↔ (𝑌 𝑍) ((𝑋 𝑌) 𝑍)))
2518, 20, 24mpbi2and 712 . . 3 (((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ 𝑋 𝑍) → (𝑌 𝑍) ((𝑋 𝑌) 𝑍))
264, 13latmcl 18350 . . . . 5 ((𝐾 ∈ Lat ∧ (𝑋 𝑌) ∈ 𝐵𝑍𝐵) → ((𝑋 𝑌) 𝑍) ∈ 𝐵)
271, 11, 12, 26syl3anc 1373 . . . 4 (((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ 𝑋 𝑍) → ((𝑋 𝑌) 𝑍) ∈ 𝐵)
284, 5, 6latjle12 18360 . . . 4 ((𝐾 ∈ Lat ∧ (𝑋𝐵 ∧ (𝑌 𝑍) ∈ 𝐵 ∧ ((𝑋 𝑌) 𝑍) ∈ 𝐵)) → ((𝑋 ((𝑋 𝑌) 𝑍) ∧ (𝑌 𝑍) ((𝑋 𝑌) 𝑍)) ↔ (𝑋 (𝑌 𝑍)) ((𝑋 𝑌) 𝑍)))
291, 2, 22, 27, 28syl13anc 1374 . . 3 (((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ 𝑋 𝑍) → ((𝑋 ((𝑋 𝑌) 𝑍) ∧ (𝑌 𝑍) ((𝑋 𝑌) 𝑍)) ↔ (𝑋 (𝑌 𝑍)) ((𝑋 𝑌) 𝑍)))
3016, 25, 29mpbi2and 712 . 2 (((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ 𝑋 𝑍) → (𝑋 (𝑌 𝑍)) ((𝑋 𝑌) 𝑍))
3130ex 412 1 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋 𝑍 → (𝑋 (𝑌 𝑍)) ((𝑋 𝑌) 𝑍)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2113   class class class wbr 5095  cfv 6488  (class class class)co 7354  Basecbs 17124  lecple 17172  joincjn 18221  meetcmee 18222  Latclat 18341
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7676
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5516  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-iota 6444  df-fun 6490  df-fn 6491  df-f 6492  df-f1 6493  df-fo 6494  df-f1o 6495  df-fv 6496  df-riota 7311  df-ov 7357  df-oprab 7358  df-poset 18223  df-lub 18254  df-glb 18255  df-join 18256  df-meet 18257  df-lat 18342
This theorem is referenced by:  mod2ile  18404  hlmod1i  39978
  Copyright terms: Public domain W3C validator