MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mod1ile Structured version   Visualization version   GIF version

Theorem mod1ile 17710
Description: The weak direction of the modular law (e.g., pmod1i 36870, atmod1i1 36879) that holds in any lattice. (Contributed by NM, 11-May-2012.)
Hypotheses
Ref Expression
modle.b 𝐵 = (Base‘𝐾)
modle.l = (le‘𝐾)
modle.j = (join‘𝐾)
modle.m = (meet‘𝐾)
Assertion
Ref Expression
mod1ile ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋 𝑍 → (𝑋 (𝑌 𝑍)) ((𝑋 𝑌) 𝑍)))

Proof of Theorem mod1ile
StepHypRef Expression
1 simpll 763 . . . . 5 (((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ 𝑋 𝑍) → 𝐾 ∈ Lat)
2 simplr1 1209 . . . . 5 (((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ 𝑋 𝑍) → 𝑋𝐵)
3 simplr2 1210 . . . . 5 (((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ 𝑋 𝑍) → 𝑌𝐵)
4 modle.b . . . . . 6 𝐵 = (Base‘𝐾)
5 modle.l . . . . . 6 = (le‘𝐾)
6 modle.j . . . . . 6 = (join‘𝐾)
74, 5, 6latlej1 17665 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → 𝑋 (𝑋 𝑌))
81, 2, 3, 7syl3anc 1365 . . . 4 (((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ 𝑋 𝑍) → 𝑋 (𝑋 𝑌))
9 simpr 485 . . . 4 (((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ 𝑋 𝑍) → 𝑋 𝑍)
104, 6latjcl 17656 . . . . . 6 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌) ∈ 𝐵)
111, 2, 3, 10syl3anc 1365 . . . . 5 (((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ 𝑋 𝑍) → (𝑋 𝑌) ∈ 𝐵)
12 simplr3 1211 . . . . 5 (((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ 𝑋 𝑍) → 𝑍𝐵)
13 modle.m . . . . . 6 = (meet‘𝐾)
144, 5, 13latlem12 17683 . . . . 5 ((𝐾 ∈ Lat ∧ (𝑋𝐵 ∧ (𝑋 𝑌) ∈ 𝐵𝑍𝐵)) → ((𝑋 (𝑋 𝑌) ∧ 𝑋 𝑍) ↔ 𝑋 ((𝑋 𝑌) 𝑍)))
151, 2, 11, 12, 14syl13anc 1366 . . . 4 (((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ 𝑋 𝑍) → ((𝑋 (𝑋 𝑌) ∧ 𝑋 𝑍) ↔ 𝑋 ((𝑋 𝑌) 𝑍)))
168, 9, 15mpbi2and 708 . . 3 (((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ 𝑋 𝑍) → 𝑋 ((𝑋 𝑌) 𝑍))
174, 5, 6, 13latmlej12 17696 . . . . 5 ((𝐾 ∈ Lat ∧ (𝑌𝐵𝑍𝐵𝑋𝐵)) → (𝑌 𝑍) (𝑋 𝑌))
181, 3, 12, 2, 17syl13anc 1366 . . . 4 (((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ 𝑋 𝑍) → (𝑌 𝑍) (𝑋 𝑌))
194, 5, 13latmle2 17682 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑌𝐵𝑍𝐵) → (𝑌 𝑍) 𝑍)
201, 3, 12, 19syl3anc 1365 . . . 4 (((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ 𝑋 𝑍) → (𝑌 𝑍) 𝑍)
214, 13latmcl 17657 . . . . . 6 ((𝐾 ∈ Lat ∧ 𝑌𝐵𝑍𝐵) → (𝑌 𝑍) ∈ 𝐵)
221, 3, 12, 21syl3anc 1365 . . . . 5 (((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ 𝑋 𝑍) → (𝑌 𝑍) ∈ 𝐵)
234, 5, 13latlem12 17683 . . . . 5 ((𝐾 ∈ Lat ∧ ((𝑌 𝑍) ∈ 𝐵 ∧ (𝑋 𝑌) ∈ 𝐵𝑍𝐵)) → (((𝑌 𝑍) (𝑋 𝑌) ∧ (𝑌 𝑍) 𝑍) ↔ (𝑌 𝑍) ((𝑋 𝑌) 𝑍)))
241, 22, 11, 12, 23syl13anc 1366 . . . 4 (((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ 𝑋 𝑍) → (((𝑌 𝑍) (𝑋 𝑌) ∧ (𝑌 𝑍) 𝑍) ↔ (𝑌 𝑍) ((𝑋 𝑌) 𝑍)))
2518, 20, 24mpbi2and 708 . . 3 (((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ 𝑋 𝑍) → (𝑌 𝑍) ((𝑋 𝑌) 𝑍))
264, 13latmcl 17657 . . . . 5 ((𝐾 ∈ Lat ∧ (𝑋 𝑌) ∈ 𝐵𝑍𝐵) → ((𝑋 𝑌) 𝑍) ∈ 𝐵)
271, 11, 12, 26syl3anc 1365 . . . 4 (((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ 𝑋 𝑍) → ((𝑋 𝑌) 𝑍) ∈ 𝐵)
284, 5, 6latjle12 17667 . . . 4 ((𝐾 ∈ Lat ∧ (𝑋𝐵 ∧ (𝑌 𝑍) ∈ 𝐵 ∧ ((𝑋 𝑌) 𝑍) ∈ 𝐵)) → ((𝑋 ((𝑋 𝑌) 𝑍) ∧ (𝑌 𝑍) ((𝑋 𝑌) 𝑍)) ↔ (𝑋 (𝑌 𝑍)) ((𝑋 𝑌) 𝑍)))
291, 2, 22, 27, 28syl13anc 1366 . . 3 (((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ 𝑋 𝑍) → ((𝑋 ((𝑋 𝑌) 𝑍) ∧ (𝑌 𝑍) ((𝑋 𝑌) 𝑍)) ↔ (𝑋 (𝑌 𝑍)) ((𝑋 𝑌) 𝑍)))
3016, 25, 29mpbi2and 708 . 2 (((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ 𝑋 𝑍) → (𝑋 (𝑌 𝑍)) ((𝑋 𝑌) 𝑍))
3130ex 413 1 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋 𝑍 → (𝑋 (𝑌 𝑍)) ((𝑋 𝑌) 𝑍)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396  w3a 1081   = wceq 1530  wcel 2107   class class class wbr 5063  cfv 6354  (class class class)co 7150  Basecbs 16478  lecple 16567  joincjn 17549  meetcmee 17550  Latclat 17650
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2798  ax-rep 5187  ax-sep 5200  ax-nul 5207  ax-pow 5263  ax-pr 5326  ax-un 7455
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2620  df-eu 2652  df-clab 2805  df-cleq 2819  df-clel 2898  df-nfc 2968  df-ne 3022  df-ral 3148  df-rex 3149  df-reu 3150  df-rab 3152  df-v 3502  df-sbc 3777  df-csb 3888  df-dif 3943  df-un 3945  df-in 3947  df-ss 3956  df-nul 4296  df-if 4471  df-pw 4544  df-sn 4565  df-pr 4567  df-op 4571  df-uni 4838  df-iun 4919  df-br 5064  df-opab 5126  df-mpt 5144  df-id 5459  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-riota 7108  df-ov 7153  df-oprab 7154  df-poset 17551  df-lub 17579  df-glb 17580  df-join 17581  df-meet 17582  df-lat 17651
This theorem is referenced by:  mod2ile  17711  hlmod1i  36878
  Copyright terms: Public domain W3C validator