Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  atnlej1 Structured version   Visualization version   GIF version

Theorem atnlej1 37393
Description: If an atom is not less than or equal to the join of two others, it is not equal to either. (This also holds for non-atoms, but in this form it is convenient.) (Contributed by NM, 8-Jan-2012.)
Hypotheses
Ref Expression
atnlej.l = (le‘𝐾)
atnlej.j = (join‘𝐾)
atnlej.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
atnlej1 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ ¬ 𝑃 (𝑄 𝑅)) → 𝑃𝑄)

Proof of Theorem atnlej1
StepHypRef Expression
1 hllat 37377 . . 3 (𝐾 ∈ HL → 𝐾 ∈ Lat)
213ad2ant1 1132 . 2 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ ¬ 𝑃 (𝑄 𝑅)) → 𝐾 ∈ Lat)
3 simp21 1205 . . 3 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ ¬ 𝑃 (𝑄 𝑅)) → 𝑃𝐴)
4 eqid 2738 . . . 4 (Base‘𝐾) = (Base‘𝐾)
5 atnlej.a . . . 4 𝐴 = (Atoms‘𝐾)
64, 5atbase 37303 . . 3 (𝑃𝐴𝑃 ∈ (Base‘𝐾))
73, 6syl 17 . 2 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ ¬ 𝑃 (𝑄 𝑅)) → 𝑃 ∈ (Base‘𝐾))
8 simp22 1206 . . 3 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ ¬ 𝑃 (𝑄 𝑅)) → 𝑄𝐴)
94, 5atbase 37303 . . 3 (𝑄𝐴𝑄 ∈ (Base‘𝐾))
108, 9syl 17 . 2 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ ¬ 𝑃 (𝑄 𝑅)) → 𝑄 ∈ (Base‘𝐾))
11 simp23 1207 . . 3 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ ¬ 𝑃 (𝑄 𝑅)) → 𝑅𝐴)
124, 5atbase 37303 . . 3 (𝑅𝐴𝑅 ∈ (Base‘𝐾))
1311, 12syl 17 . 2 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ ¬ 𝑃 (𝑄 𝑅)) → 𝑅 ∈ (Base‘𝐾))
14 simp3 1137 . 2 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ ¬ 𝑃 (𝑄 𝑅)) → ¬ 𝑃 (𝑄 𝑅))
15 atnlej.l . . 3 = (le‘𝐾)
16 atnlej.j . . 3 = (join‘𝐾)
174, 15, 16latnlej1l 18175 . 2 ((𝐾 ∈ Lat ∧ (𝑃 ∈ (Base‘𝐾) ∧ 𝑄 ∈ (Base‘𝐾) ∧ 𝑅 ∈ (Base‘𝐾)) ∧ ¬ 𝑃 (𝑄 𝑅)) → 𝑃𝑄)
182, 7, 10, 13, 14, 17syl131anc 1382 1 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ ¬ 𝑃 (𝑄 𝑅)) → 𝑃𝑄)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  w3a 1086   = wceq 1539  wcel 2106  wne 2943   class class class wbr 5074  cfv 6433  (class class class)co 7275  Basecbs 16912  lecple 16969  joincjn 18029  Latclat 18149  Atomscatm 37277  HLchlt 37364
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-lub 18064  df-join 18066  df-lat 18150  df-ats 37281  df-atl 37312  df-cvlat 37336  df-hlat 37365
This theorem is referenced by:  4atlem0be  37609  dalem5  37681  dalem-cly  37685  4atexlemex6  38088  cdleme00a  38223  cdleme21a  38339  cdleme21b  38340  cdleme21c  38341
  Copyright terms: Public domain W3C validator