Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  atnlej1 Structured version   Visualization version   GIF version

Theorem atnlej1 39329
Description: If an atom is not less than or equal to the join of two others, it is not equal to either. (This also holds for non-atoms, but in this form it is convenient.) (Contributed by NM, 8-Jan-2012.)
Hypotheses
Ref Expression
atnlej.l = (le‘𝐾)
atnlej.j = (join‘𝐾)
atnlej.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
atnlej1 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ ¬ 𝑃 (𝑄 𝑅)) → 𝑃𝑄)

Proof of Theorem atnlej1
StepHypRef Expression
1 hllat 39312 . . 3 (𝐾 ∈ HL → 𝐾 ∈ Lat)
213ad2ant1 1133 . 2 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ ¬ 𝑃 (𝑄 𝑅)) → 𝐾 ∈ Lat)
3 simp21 1206 . . 3 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ ¬ 𝑃 (𝑄 𝑅)) → 𝑃𝐴)
4 eqid 2740 . . . 4 (Base‘𝐾) = (Base‘𝐾)
5 atnlej.a . . . 4 𝐴 = (Atoms‘𝐾)
64, 5atbase 39238 . . 3 (𝑃𝐴𝑃 ∈ (Base‘𝐾))
73, 6syl 17 . 2 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ ¬ 𝑃 (𝑄 𝑅)) → 𝑃 ∈ (Base‘𝐾))
8 simp22 1207 . . 3 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ ¬ 𝑃 (𝑄 𝑅)) → 𝑄𝐴)
94, 5atbase 39238 . . 3 (𝑄𝐴𝑄 ∈ (Base‘𝐾))
108, 9syl 17 . 2 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ ¬ 𝑃 (𝑄 𝑅)) → 𝑄 ∈ (Base‘𝐾))
11 simp23 1208 . . 3 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ ¬ 𝑃 (𝑄 𝑅)) → 𝑅𝐴)
124, 5atbase 39238 . . 3 (𝑅𝐴𝑅 ∈ (Base‘𝐾))
1311, 12syl 17 . 2 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ ¬ 𝑃 (𝑄 𝑅)) → 𝑅 ∈ (Base‘𝐾))
14 simp3 1138 . 2 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ ¬ 𝑃 (𝑄 𝑅)) → ¬ 𝑃 (𝑄 𝑅))
15 atnlej.l . . 3 = (le‘𝐾)
16 atnlej.j . . 3 = (join‘𝐾)
174, 15, 16latnlej1l 18521 . 2 ((𝐾 ∈ Lat ∧ (𝑃 ∈ (Base‘𝐾) ∧ 𝑄 ∈ (Base‘𝐾) ∧ 𝑅 ∈ (Base‘𝐾)) ∧ ¬ 𝑃 (𝑄 𝑅)) → 𝑃𝑄)
182, 7, 10, 13, 14, 17syl131anc 1383 1 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ ¬ 𝑃 (𝑄 𝑅)) → 𝑃𝑄)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  w3a 1087   = wceq 1537  wcel 2108  wne 2946   class class class wbr 5166  cfv 6568  (class class class)co 7443  Basecbs 17252  lecple 17312  joincjn 18375  Latclat 18495  Atomscatm 39212  HLchlt 39299
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7764
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5701  df-rel 5702  df-cnv 5703  df-co 5704  df-dm 5705  df-rn 5706  df-res 5707  df-ima 5708  df-iota 6520  df-fun 6570  df-fn 6571  df-f 6572  df-f1 6573  df-fo 6574  df-f1o 6575  df-fv 6576  df-riota 7399  df-ov 7446  df-oprab 7447  df-lub 18410  df-join 18412  df-lat 18496  df-ats 39216  df-atl 39247  df-cvlat 39271  df-hlat 39300
This theorem is referenced by:  4atlem0be  39545  dalem5  39617  dalem-cly  39621  4atexlemex6  40024  cdleme00a  40159  cdleme21a  40275  cdleme21b  40276  cdleme21c  40277
  Copyright terms: Public domain W3C validator