Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > limsupge | Structured version Visualization version GIF version |
Description: The defining property of the superior limit. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
Ref | Expression |
---|---|
limsupge.b | ⊢ (𝜑 → 𝐵 ⊆ ℝ) |
limsupge.f | ⊢ (𝜑 → 𝐹:𝐵⟶ℝ*) |
limsupge.a | ⊢ (𝜑 → 𝐴 ∈ ℝ*) |
Ref | Expression |
---|---|
limsupge | ⊢ (𝜑 → (𝐴 ≤ (lim sup‘𝐹) ↔ ∀𝑘 ∈ ℝ 𝐴 ≤ sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | limsupge.b | . . . 4 ⊢ (𝜑 → 𝐵 ⊆ ℝ) | |
2 | limsupge.f | . . . 4 ⊢ (𝜑 → 𝐹:𝐵⟶ℝ*) | |
3 | limsupge.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ ℝ*) | |
4 | eqid 2738 | . . . . 5 ⊢ (𝑗 ∈ ℝ ↦ sup(((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*), ℝ*, < )) = (𝑗 ∈ ℝ ↦ sup(((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*), ℝ*, < )) | |
5 | 4 | limsuple 15115 | . . . 4 ⊢ ((𝐵 ⊆ ℝ ∧ 𝐹:𝐵⟶ℝ* ∧ 𝐴 ∈ ℝ*) → (𝐴 ≤ (lim sup‘𝐹) ↔ ∀𝑖 ∈ ℝ 𝐴 ≤ ((𝑗 ∈ ℝ ↦ sup(((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*), ℝ*, < ))‘𝑖))) |
6 | 1, 2, 3, 5 | syl3anc 1369 | . . 3 ⊢ (𝜑 → (𝐴 ≤ (lim sup‘𝐹) ↔ ∀𝑖 ∈ ℝ 𝐴 ≤ ((𝑗 ∈ ℝ ↦ sup(((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*), ℝ*, < ))‘𝑖))) |
7 | oveq1 7262 | . . . . . . . . 9 ⊢ (𝑗 = 𝑖 → (𝑗[,)+∞) = (𝑖[,)+∞)) | |
8 | 7 | imaeq2d 5958 | . . . . . . . 8 ⊢ (𝑗 = 𝑖 → (𝐹 “ (𝑗[,)+∞)) = (𝐹 “ (𝑖[,)+∞))) |
9 | 8 | ineq1d 4142 | . . . . . . 7 ⊢ (𝑗 = 𝑖 → ((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*) = ((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*)) |
10 | 9 | supeq1d 9135 | . . . . . 6 ⊢ (𝑗 = 𝑖 → sup(((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*), ℝ*, < ) = sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < )) |
11 | simpr 484 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑖 ∈ ℝ) → 𝑖 ∈ ℝ) | |
12 | xrltso 12804 | . . . . . . . 8 ⊢ < Or ℝ* | |
13 | 12 | supex 9152 | . . . . . . 7 ⊢ sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < ) ∈ V |
14 | 13 | a1i 11 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑖 ∈ ℝ) → sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < ) ∈ V) |
15 | 4, 10, 11, 14 | fvmptd3 6880 | . . . . 5 ⊢ ((𝜑 ∧ 𝑖 ∈ ℝ) → ((𝑗 ∈ ℝ ↦ sup(((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*), ℝ*, < ))‘𝑖) = sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < )) |
16 | 15 | breq2d 5082 | . . . 4 ⊢ ((𝜑 ∧ 𝑖 ∈ ℝ) → (𝐴 ≤ ((𝑗 ∈ ℝ ↦ sup(((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*), ℝ*, < ))‘𝑖) ↔ 𝐴 ≤ sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < ))) |
17 | 16 | ralbidva 3119 | . . 3 ⊢ (𝜑 → (∀𝑖 ∈ ℝ 𝐴 ≤ ((𝑗 ∈ ℝ ↦ sup(((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*), ℝ*, < ))‘𝑖) ↔ ∀𝑖 ∈ ℝ 𝐴 ≤ sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < ))) |
18 | 6, 17 | bitrd 278 | . 2 ⊢ (𝜑 → (𝐴 ≤ (lim sup‘𝐹) ↔ ∀𝑖 ∈ ℝ 𝐴 ≤ sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < ))) |
19 | oveq1 7262 | . . . . . . . 8 ⊢ (𝑖 = 𝑘 → (𝑖[,)+∞) = (𝑘[,)+∞)) | |
20 | 19 | imaeq2d 5958 | . . . . . . 7 ⊢ (𝑖 = 𝑘 → (𝐹 “ (𝑖[,)+∞)) = (𝐹 “ (𝑘[,)+∞))) |
21 | 20 | ineq1d 4142 | . . . . . 6 ⊢ (𝑖 = 𝑘 → ((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*) = ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*)) |
22 | 21 | supeq1d 9135 | . . . . 5 ⊢ (𝑖 = 𝑘 → sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < ) = sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )) |
23 | 22 | breq2d 5082 | . . . 4 ⊢ (𝑖 = 𝑘 → (𝐴 ≤ sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < ) ↔ 𝐴 ≤ sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < ))) |
24 | 23 | cbvralvw 3372 | . . 3 ⊢ (∀𝑖 ∈ ℝ 𝐴 ≤ sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < ) ↔ ∀𝑘 ∈ ℝ 𝐴 ≤ sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )) |
25 | 24 | a1i 11 | . 2 ⊢ (𝜑 → (∀𝑖 ∈ ℝ 𝐴 ≤ sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < ) ↔ ∀𝑘 ∈ ℝ 𝐴 ≤ sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < ))) |
26 | 18, 25 | bitrd 278 | 1 ⊢ (𝜑 → (𝐴 ≤ (lim sup‘𝐹) ↔ ∀𝑘 ∈ ℝ 𝐴 ≤ sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < ))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∀wral 3063 Vcvv 3422 ∩ cin 3882 ⊆ wss 3883 class class class wbr 5070 ↦ cmpt 5153 “ cima 5583 ⟶wf 6414 ‘cfv 6418 (class class class)co 7255 supcsup 9129 ℝcr 10801 +∞cpnf 10937 ℝ*cxr 10939 < clt 10940 ≤ cle 10941 [,)cico 13010 lim supclsp 15107 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-pre-sup 10880 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-po 5494 df-so 5495 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-sup 9131 df-inf 9132 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-limsup 15108 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |