| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > limsupge | Structured version Visualization version GIF version | ||
| Description: The defining property of the superior limit. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
| Ref | Expression |
|---|---|
| limsupge.b | ⊢ (𝜑 → 𝐵 ⊆ ℝ) |
| limsupge.f | ⊢ (𝜑 → 𝐹:𝐵⟶ℝ*) |
| limsupge.a | ⊢ (𝜑 → 𝐴 ∈ ℝ*) |
| Ref | Expression |
|---|---|
| limsupge | ⊢ (𝜑 → (𝐴 ≤ (lim sup‘𝐹) ↔ ∀𝑘 ∈ ℝ 𝐴 ≤ sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < ))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | limsupge.b | . . . 4 ⊢ (𝜑 → 𝐵 ⊆ ℝ) | |
| 2 | limsupge.f | . . . 4 ⊢ (𝜑 → 𝐹:𝐵⟶ℝ*) | |
| 3 | limsupge.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ ℝ*) | |
| 4 | eqid 2731 | . . . . 5 ⊢ (𝑗 ∈ ℝ ↦ sup(((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*), ℝ*, < )) = (𝑗 ∈ ℝ ↦ sup(((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*), ℝ*, < )) | |
| 5 | 4 | limsuple 15385 | . . . 4 ⊢ ((𝐵 ⊆ ℝ ∧ 𝐹:𝐵⟶ℝ* ∧ 𝐴 ∈ ℝ*) → (𝐴 ≤ (lim sup‘𝐹) ↔ ∀𝑖 ∈ ℝ 𝐴 ≤ ((𝑗 ∈ ℝ ↦ sup(((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*), ℝ*, < ))‘𝑖))) |
| 6 | 1, 2, 3, 5 | syl3anc 1373 | . . 3 ⊢ (𝜑 → (𝐴 ≤ (lim sup‘𝐹) ↔ ∀𝑖 ∈ ℝ 𝐴 ≤ ((𝑗 ∈ ℝ ↦ sup(((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*), ℝ*, < ))‘𝑖))) |
| 7 | oveq1 7353 | . . . . . . . . 9 ⊢ (𝑗 = 𝑖 → (𝑗[,)+∞) = (𝑖[,)+∞)) | |
| 8 | 7 | imaeq2d 6008 | . . . . . . . 8 ⊢ (𝑗 = 𝑖 → (𝐹 “ (𝑗[,)+∞)) = (𝐹 “ (𝑖[,)+∞))) |
| 9 | 8 | ineq1d 4166 | . . . . . . 7 ⊢ (𝑗 = 𝑖 → ((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*) = ((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*)) |
| 10 | 9 | supeq1d 9330 | . . . . . 6 ⊢ (𝑗 = 𝑖 → sup(((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*), ℝ*, < ) = sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < )) |
| 11 | simpr 484 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑖 ∈ ℝ) → 𝑖 ∈ ℝ) | |
| 12 | xrltso 13040 | . . . . . . . 8 ⊢ < Or ℝ* | |
| 13 | 12 | supex 9348 | . . . . . . 7 ⊢ sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < ) ∈ V |
| 14 | 13 | a1i 11 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑖 ∈ ℝ) → sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < ) ∈ V) |
| 15 | 4, 10, 11, 14 | fvmptd3 6952 | . . . . 5 ⊢ ((𝜑 ∧ 𝑖 ∈ ℝ) → ((𝑗 ∈ ℝ ↦ sup(((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*), ℝ*, < ))‘𝑖) = sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < )) |
| 16 | 15 | breq2d 5101 | . . . 4 ⊢ ((𝜑 ∧ 𝑖 ∈ ℝ) → (𝐴 ≤ ((𝑗 ∈ ℝ ↦ sup(((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*), ℝ*, < ))‘𝑖) ↔ 𝐴 ≤ sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < ))) |
| 17 | 16 | ralbidva 3153 | . . 3 ⊢ (𝜑 → (∀𝑖 ∈ ℝ 𝐴 ≤ ((𝑗 ∈ ℝ ↦ sup(((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*), ℝ*, < ))‘𝑖) ↔ ∀𝑖 ∈ ℝ 𝐴 ≤ sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < ))) |
| 18 | 6, 17 | bitrd 279 | . 2 ⊢ (𝜑 → (𝐴 ≤ (lim sup‘𝐹) ↔ ∀𝑖 ∈ ℝ 𝐴 ≤ sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < ))) |
| 19 | oveq1 7353 | . . . . . . . 8 ⊢ (𝑖 = 𝑘 → (𝑖[,)+∞) = (𝑘[,)+∞)) | |
| 20 | 19 | imaeq2d 6008 | . . . . . . 7 ⊢ (𝑖 = 𝑘 → (𝐹 “ (𝑖[,)+∞)) = (𝐹 “ (𝑘[,)+∞))) |
| 21 | 20 | ineq1d 4166 | . . . . . 6 ⊢ (𝑖 = 𝑘 → ((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*) = ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*)) |
| 22 | 21 | supeq1d 9330 | . . . . 5 ⊢ (𝑖 = 𝑘 → sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < ) = sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )) |
| 23 | 22 | breq2d 5101 | . . . 4 ⊢ (𝑖 = 𝑘 → (𝐴 ≤ sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < ) ↔ 𝐴 ≤ sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < ))) |
| 24 | 23 | cbvralvw 3210 | . . 3 ⊢ (∀𝑖 ∈ ℝ 𝐴 ≤ sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < ) ↔ ∀𝑘 ∈ ℝ 𝐴 ≤ sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )) |
| 25 | 24 | a1i 11 | . 2 ⊢ (𝜑 → (∀𝑖 ∈ ℝ 𝐴 ≤ sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < ) ↔ ∀𝑘 ∈ ℝ 𝐴 ≤ sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < ))) |
| 26 | 18, 25 | bitrd 279 | 1 ⊢ (𝜑 → (𝐴 ≤ (lim sup‘𝐹) ↔ ∀𝑘 ∈ ℝ 𝐴 ≤ sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < ))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∀wral 3047 Vcvv 3436 ∩ cin 3896 ⊆ wss 3897 class class class wbr 5089 ↦ cmpt 5170 “ cima 5617 ⟶wf 6477 ‘cfv 6481 (class class class)co 7346 supcsup 9324 ℝcr 11005 +∞cpnf 11143 ℝ*cxr 11145 < clt 11146 ≤ cle 11147 [,)cico 13247 lim supclsp 15377 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 ax-pre-sup 11084 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-po 5522 df-so 5523 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-sup 9326 df-inf 9327 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-limsup 15378 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |