![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > limsupgval | Structured version Visualization version GIF version |
Description: Value of the superior limit function. (Contributed by Mario Carneiro, 7-Sep-2014.) (Revised by Mario Carneiro, 7-May-2016.) |
Ref | Expression |
---|---|
limsupval.1 | ⊢ 𝐺 = (𝑘 ∈ ℝ ↦ sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )) |
Ref | Expression |
---|---|
limsupgval | ⊢ (𝑀 ∈ ℝ → (𝐺‘𝑀) = sup(((𝐹 “ (𝑀[,)+∞)) ∩ ℝ*), ℝ*, < )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq1 7422 | . . . . 5 ⊢ (𝑘 = 𝑀 → (𝑘[,)+∞) = (𝑀[,)+∞)) | |
2 | 1 | imaeq2d 6058 | . . . 4 ⊢ (𝑘 = 𝑀 → (𝐹 “ (𝑘[,)+∞)) = (𝐹 “ (𝑀[,)+∞))) |
3 | 2 | ineq1d 4205 | . . 3 ⊢ (𝑘 = 𝑀 → ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*) = ((𝐹 “ (𝑀[,)+∞)) ∩ ℝ*)) |
4 | 3 | supeq1d 9467 | . 2 ⊢ (𝑘 = 𝑀 → sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < ) = sup(((𝐹 “ (𝑀[,)+∞)) ∩ ℝ*), ℝ*, < )) |
5 | limsupval.1 | . 2 ⊢ 𝐺 = (𝑘 ∈ ℝ ↦ sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )) | |
6 | xrltso 13150 | . . 3 ⊢ < Or ℝ* | |
7 | 6 | supex 9484 | . 2 ⊢ sup(((𝐹 “ (𝑀[,)+∞)) ∩ ℝ*), ℝ*, < ) ∈ V |
8 | 4, 5, 7 | fvmpt 6999 | 1 ⊢ (𝑀 ∈ ℝ → (𝐺‘𝑀) = sup(((𝐹 “ (𝑀[,)+∞)) ∩ ℝ*), ℝ*, < )) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1533 ∈ wcel 2098 ∩ cin 3939 ↦ cmpt 5226 “ cima 5675 ‘cfv 6542 (class class class)co 7415 supcsup 9461 ℝcr 11135 +∞cpnf 11273 ℝ*cxr 11275 < clt 11276 [,)cico 13356 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5294 ax-nul 5301 ax-pow 5359 ax-pr 5423 ax-un 7737 ax-cnex 11192 ax-resscn 11193 ax-pre-lttri 11210 ax-pre-lttrn 11211 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3364 df-rab 3420 df-v 3465 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-br 5144 df-opab 5206 df-mpt 5227 df-id 5570 df-po 5584 df-so 5585 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-ov 7418 df-er 8721 df-en 8961 df-dom 8962 df-sdom 8963 df-sup 9463 df-pnf 11278 df-mnf 11279 df-xr 11280 df-ltxr 11281 |
This theorem is referenced by: limsupgle 15451 limsupval2 15454 limsupgre 15455 |
Copyright terms: Public domain | W3C validator |