Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > limsupgval | Structured version Visualization version GIF version |
Description: Value of the superior limit function. (Contributed by Mario Carneiro, 7-Sep-2014.) (Revised by Mario Carneiro, 7-May-2016.) |
Ref | Expression |
---|---|
limsupval.1 | ⊢ 𝐺 = (𝑘 ∈ ℝ ↦ sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )) |
Ref | Expression |
---|---|
limsupgval | ⊢ (𝑀 ∈ ℝ → (𝐺‘𝑀) = sup(((𝐹 “ (𝑀[,)+∞)) ∩ ℝ*), ℝ*, < )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq1 7157 | . . . . 5 ⊢ (𝑘 = 𝑀 → (𝑘[,)+∞) = (𝑀[,)+∞)) | |
2 | 1 | imaeq2d 5901 | . . . 4 ⊢ (𝑘 = 𝑀 → (𝐹 “ (𝑘[,)+∞)) = (𝐹 “ (𝑀[,)+∞))) |
3 | 2 | ineq1d 4116 | . . 3 ⊢ (𝑘 = 𝑀 → ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*) = ((𝐹 “ (𝑀[,)+∞)) ∩ ℝ*)) |
4 | 3 | supeq1d 8943 | . 2 ⊢ (𝑘 = 𝑀 → sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < ) = sup(((𝐹 “ (𝑀[,)+∞)) ∩ ℝ*), ℝ*, < )) |
5 | limsupval.1 | . 2 ⊢ 𝐺 = (𝑘 ∈ ℝ ↦ sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )) | |
6 | xrltso 12575 | . . 3 ⊢ < Or ℝ* | |
7 | 6 | supex 8960 | . 2 ⊢ sup(((𝐹 “ (𝑀[,)+∞)) ∩ ℝ*), ℝ*, < ) ∈ V |
8 | 4, 5, 7 | fvmpt 6759 | 1 ⊢ (𝑀 ∈ ℝ → (𝐺‘𝑀) = sup(((𝐹 “ (𝑀[,)+∞)) ∩ ℝ*), ℝ*, < )) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1538 ∈ wcel 2111 ∩ cin 3857 ↦ cmpt 5112 “ cima 5527 ‘cfv 6335 (class class class)co 7150 supcsup 8937 ℝcr 10574 +∞cpnf 10710 ℝ*cxr 10712 < clt 10713 [,)cico 12781 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-sep 5169 ax-nul 5176 ax-pow 5234 ax-pr 5298 ax-un 7459 ax-cnex 10631 ax-resscn 10632 ax-pre-lttri 10649 ax-pre-lttrn 10650 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-nel 3056 df-ral 3075 df-rex 3076 df-rmo 3078 df-rab 3079 df-v 3411 df-sbc 3697 df-csb 3806 df-dif 3861 df-un 3863 df-in 3865 df-ss 3875 df-nul 4226 df-if 4421 df-pw 4496 df-sn 4523 df-pr 4525 df-op 4529 df-uni 4799 df-br 5033 df-opab 5095 df-mpt 5113 df-id 5430 df-po 5443 df-so 5444 df-xp 5530 df-rel 5531 df-cnv 5532 df-co 5533 df-dm 5534 df-rn 5535 df-res 5536 df-ima 5537 df-iota 6294 df-fun 6337 df-fn 6338 df-f 6339 df-f1 6340 df-fo 6341 df-f1o 6342 df-fv 6343 df-ov 7153 df-er 8299 df-en 8528 df-dom 8529 df-sdom 8530 df-sup 8939 df-pnf 10715 df-mnf 10716 df-xr 10717 df-ltxr 10718 |
This theorem is referenced by: limsupgle 14882 limsupval2 14885 limsupgre 14886 |
Copyright terms: Public domain | W3C validator |