MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  limsupgval Structured version   Visualization version   GIF version

Theorem limsupgval 15442
Description: Value of the superior limit function. (Contributed by Mario Carneiro, 7-Sep-2014.) (Revised by Mario Carneiro, 7-May-2016.)
Hypothesis
Ref Expression
limsupval.1 𝐺 = (𝑘 ∈ ℝ ↦ sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < ))
Assertion
Ref Expression
limsupgval (𝑀 ∈ ℝ → (𝐺𝑀) = sup(((𝐹 “ (𝑀[,)+∞)) ∩ ℝ*), ℝ*, < ))
Distinct variable groups:   𝑘,𝐹   𝑘,𝑀
Allowed substitution hint:   𝐺(𝑘)

Proof of Theorem limsupgval
StepHypRef Expression
1 oveq1 7394 . . . . 5 (𝑘 = 𝑀 → (𝑘[,)+∞) = (𝑀[,)+∞))
21imaeq2d 6031 . . . 4 (𝑘 = 𝑀 → (𝐹 “ (𝑘[,)+∞)) = (𝐹 “ (𝑀[,)+∞)))
32ineq1d 4182 . . 3 (𝑘 = 𝑀 → ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*) = ((𝐹 “ (𝑀[,)+∞)) ∩ ℝ*))
43supeq1d 9397 . 2 (𝑘 = 𝑀 → sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < ) = sup(((𝐹 “ (𝑀[,)+∞)) ∩ ℝ*), ℝ*, < ))
5 limsupval.1 . 2 𝐺 = (𝑘 ∈ ℝ ↦ sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < ))
6 xrltso 13101 . . 3 < Or ℝ*
76supex 9415 . 2 sup(((𝐹 “ (𝑀[,)+∞)) ∩ ℝ*), ℝ*, < ) ∈ V
84, 5, 7fvmpt 6968 1 (𝑀 ∈ ℝ → (𝐺𝑀) = sup(((𝐹 “ (𝑀[,)+∞)) ∩ ℝ*), ℝ*, < ))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  cin 3913  cmpt 5188  cima 5641  cfv 6511  (class class class)co 7387  supcsup 9391  cr 11067  +∞cpnf 11205  *cxr 11207   < clt 11208  [,)cico 13308
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-pre-lttri 11142  ax-pre-lttrn 11143
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-po 5546  df-so 5547  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-sup 9393  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213
This theorem is referenced by:  limsupgle  15443  limsupval2  15446  limsupgre  15447
  Copyright terms: Public domain W3C validator