MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  limsupval2 Structured version   Visualization version   GIF version

Theorem limsupval2 15387
Description: The superior limit, relativized to an unbounded set. (Contributed by Mario Carneiro, 7-Sep-2014.) (Revised by AV, 12-Sep-2020.)
Hypotheses
Ref Expression
limsupval.1 𝐺 = (𝑘 ∈ ℝ ↦ sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < ))
limsupval2.1 (𝜑𝐹𝑉)
limsupval2.2 (𝜑𝐴 ⊆ ℝ)
limsupval2.3 (𝜑 → sup(𝐴, ℝ*, < ) = +∞)
Assertion
Ref Expression
limsupval2 (𝜑 → (lim sup‘𝐹) = inf((𝐺𝐴), ℝ*, < ))
Distinct variable groups:   𝑘,𝐹   𝐴,𝑘
Allowed substitution hints:   𝜑(𝑘)   𝐺(𝑘)   𝑉(𝑘)

Proof of Theorem limsupval2
Dummy variables 𝑥 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 limsupval2.1 . . 3 (𝜑𝐹𝑉)
2 limsupval.1 . . . 4 𝐺 = (𝑘 ∈ ℝ ↦ sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < ))
32limsupval 15381 . . 3 (𝐹𝑉 → (lim sup‘𝐹) = inf(ran 𝐺, ℝ*, < ))
41, 3syl 17 . 2 (𝜑 → (lim sup‘𝐹) = inf(ran 𝐺, ℝ*, < ))
5 imassrn 6020 . . . . 5 (𝐺𝐴) ⊆ ran 𝐺
62limsupgf 15382 . . . . . . 7 𝐺:ℝ⟶ℝ*
7 frn 6658 . . . . . . 7 (𝐺:ℝ⟶ℝ* → ran 𝐺 ⊆ ℝ*)
86, 7ax-mp 5 . . . . . 6 ran 𝐺 ⊆ ℝ*
9 infxrlb 13234 . . . . . . 7 ((ran 𝐺 ⊆ ℝ*𝑥 ∈ ran 𝐺) → inf(ran 𝐺, ℝ*, < ) ≤ 𝑥)
109ralrimiva 3124 . . . . . 6 (ran 𝐺 ⊆ ℝ* → ∀𝑥 ∈ ran 𝐺inf(ran 𝐺, ℝ*, < ) ≤ 𝑥)
118, 10mp1i 13 . . . . 5 (𝜑 → ∀𝑥 ∈ ran 𝐺inf(ran 𝐺, ℝ*, < ) ≤ 𝑥)
12 ssralv 4003 . . . . 5 ((𝐺𝐴) ⊆ ran 𝐺 → (∀𝑥 ∈ ran 𝐺inf(ran 𝐺, ℝ*, < ) ≤ 𝑥 → ∀𝑥 ∈ (𝐺𝐴)inf(ran 𝐺, ℝ*, < ) ≤ 𝑥))
135, 11, 12mpsyl 68 . . . 4 (𝜑 → ∀𝑥 ∈ (𝐺𝐴)inf(ran 𝐺, ℝ*, < ) ≤ 𝑥)
145, 8sstri 3944 . . . . 5 (𝐺𝐴) ⊆ ℝ*
15 infxrcl 13233 . . . . . 6 (ran 𝐺 ⊆ ℝ* → inf(ran 𝐺, ℝ*, < ) ∈ ℝ*)
168, 15ax-mp 5 . . . . 5 inf(ran 𝐺, ℝ*, < ) ∈ ℝ*
17 infxrgelb 13235 . . . . 5 (((𝐺𝐴) ⊆ ℝ* ∧ inf(ran 𝐺, ℝ*, < ) ∈ ℝ*) → (inf(ran 𝐺, ℝ*, < ) ≤ inf((𝐺𝐴), ℝ*, < ) ↔ ∀𝑥 ∈ (𝐺𝐴)inf(ran 𝐺, ℝ*, < ) ≤ 𝑥))
1814, 16, 17mp2an 692 . . . 4 (inf(ran 𝐺, ℝ*, < ) ≤ inf((𝐺𝐴), ℝ*, < ) ↔ ∀𝑥 ∈ (𝐺𝐴)inf(ran 𝐺, ℝ*, < ) ≤ 𝑥)
1913, 18sylibr 234 . . 3 (𝜑 → inf(ran 𝐺, ℝ*, < ) ≤ inf((𝐺𝐴), ℝ*, < ))
20 limsupval2.3 . . . . . . 7 (𝜑 → sup(𝐴, ℝ*, < ) = +∞)
21 limsupval2.2 . . . . . . . . 9 (𝜑𝐴 ⊆ ℝ)
22 ressxr 11156 . . . . . . . . 9 ℝ ⊆ ℝ*
2321, 22sstrdi 3947 . . . . . . . 8 (𝜑𝐴 ⊆ ℝ*)
24 supxrunb1 13218 . . . . . . . 8 (𝐴 ⊆ ℝ* → (∀𝑛 ∈ ℝ ∃𝑥𝐴 𝑛𝑥 ↔ sup(𝐴, ℝ*, < ) = +∞))
2523, 24syl 17 . . . . . . 7 (𝜑 → (∀𝑛 ∈ ℝ ∃𝑥𝐴 𝑛𝑥 ↔ sup(𝐴, ℝ*, < ) = +∞))
2620, 25mpbird 257 . . . . . 6 (𝜑 → ∀𝑛 ∈ ℝ ∃𝑥𝐴 𝑛𝑥)
27 infxrcl 13233 . . . . . . . . . 10 ((𝐺𝐴) ⊆ ℝ* → inf((𝐺𝐴), ℝ*, < ) ∈ ℝ*)
2814, 27mp1i 13 . . . . . . . . 9 (((𝜑𝑛 ∈ ℝ) ∧ (𝑥𝐴𝑛𝑥)) → inf((𝐺𝐴), ℝ*, < ) ∈ ℝ*)
2921sselda 3934 . . . . . . . . . . 11 ((𝜑𝑥𝐴) → 𝑥 ∈ ℝ)
3029ad2ant2r 747 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℝ) ∧ (𝑥𝐴𝑛𝑥)) → 𝑥 ∈ ℝ)
316ffvelcdmi 7016 . . . . . . . . . 10 (𝑥 ∈ ℝ → (𝐺𝑥) ∈ ℝ*)
3230, 31syl 17 . . . . . . . . 9 (((𝜑𝑛 ∈ ℝ) ∧ (𝑥𝐴𝑛𝑥)) → (𝐺𝑥) ∈ ℝ*)
336ffvelcdmi 7016 . . . . . . . . . 10 (𝑛 ∈ ℝ → (𝐺𝑛) ∈ ℝ*)
3433ad2antlr 727 . . . . . . . . 9 (((𝜑𝑛 ∈ ℝ) ∧ (𝑥𝐴𝑛𝑥)) → (𝐺𝑛) ∈ ℝ*)
35 ffn 6651 . . . . . . . . . . . 12 (𝐺:ℝ⟶ℝ*𝐺 Fn ℝ)
366, 35mp1i 13 . . . . . . . . . . 11 (((𝜑𝑛 ∈ ℝ) ∧ (𝑥𝐴𝑛𝑥)) → 𝐺 Fn ℝ)
3721ad2antrr 726 . . . . . . . . . . 11 (((𝜑𝑛 ∈ ℝ) ∧ (𝑥𝐴𝑛𝑥)) → 𝐴 ⊆ ℝ)
38 simprl 770 . . . . . . . . . . 11 (((𝜑𝑛 ∈ ℝ) ∧ (𝑥𝐴𝑛𝑥)) → 𝑥𝐴)
39 fnfvima 7167 . . . . . . . . . . 11 ((𝐺 Fn ℝ ∧ 𝐴 ⊆ ℝ ∧ 𝑥𝐴) → (𝐺𝑥) ∈ (𝐺𝐴))
4036, 37, 38, 39syl3anc 1373 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℝ) ∧ (𝑥𝐴𝑛𝑥)) → (𝐺𝑥) ∈ (𝐺𝐴))
41 infxrlb 13234 . . . . . . . . . 10 (((𝐺𝐴) ⊆ ℝ* ∧ (𝐺𝑥) ∈ (𝐺𝐴)) → inf((𝐺𝐴), ℝ*, < ) ≤ (𝐺𝑥))
4214, 40, 41sylancr 587 . . . . . . . . 9 (((𝜑𝑛 ∈ ℝ) ∧ (𝑥𝐴𝑛𝑥)) → inf((𝐺𝐴), ℝ*, < ) ≤ (𝐺𝑥))
43 simplr 768 . . . . . . . . . . 11 (((𝜑𝑛 ∈ ℝ) ∧ (𝑥𝐴𝑛𝑥)) → 𝑛 ∈ ℝ)
44 simprr 772 . . . . . . . . . . 11 (((𝜑𝑛 ∈ ℝ) ∧ (𝑥𝐴𝑛𝑥)) → 𝑛𝑥)
45 limsupgord 15379 . . . . . . . . . . 11 ((𝑛 ∈ ℝ ∧ 𝑥 ∈ ℝ ∧ 𝑛𝑥) → sup(((𝐹 “ (𝑥[,)+∞)) ∩ ℝ*), ℝ*, < ) ≤ sup(((𝐹 “ (𝑛[,)+∞)) ∩ ℝ*), ℝ*, < ))
4643, 30, 44, 45syl3anc 1373 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℝ) ∧ (𝑥𝐴𝑛𝑥)) → sup(((𝐹 “ (𝑥[,)+∞)) ∩ ℝ*), ℝ*, < ) ≤ sup(((𝐹 “ (𝑛[,)+∞)) ∩ ℝ*), ℝ*, < ))
472limsupgval 15383 . . . . . . . . . . 11 (𝑥 ∈ ℝ → (𝐺𝑥) = sup(((𝐹 “ (𝑥[,)+∞)) ∩ ℝ*), ℝ*, < ))
4830, 47syl 17 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℝ) ∧ (𝑥𝐴𝑛𝑥)) → (𝐺𝑥) = sup(((𝐹 “ (𝑥[,)+∞)) ∩ ℝ*), ℝ*, < ))
492limsupgval 15383 . . . . . . . . . . 11 (𝑛 ∈ ℝ → (𝐺𝑛) = sup(((𝐹 “ (𝑛[,)+∞)) ∩ ℝ*), ℝ*, < ))
5049ad2antlr 727 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℝ) ∧ (𝑥𝐴𝑛𝑥)) → (𝐺𝑛) = sup(((𝐹 “ (𝑛[,)+∞)) ∩ ℝ*), ℝ*, < ))
5146, 48, 503brtr4d 5123 . . . . . . . . 9 (((𝜑𝑛 ∈ ℝ) ∧ (𝑥𝐴𝑛𝑥)) → (𝐺𝑥) ≤ (𝐺𝑛))
5228, 32, 34, 42, 51xrletrd 13061 . . . . . . . 8 (((𝜑𝑛 ∈ ℝ) ∧ (𝑥𝐴𝑛𝑥)) → inf((𝐺𝐴), ℝ*, < ) ≤ (𝐺𝑛))
5352rexlimdvaa 3134 . . . . . . 7 ((𝜑𝑛 ∈ ℝ) → (∃𝑥𝐴 𝑛𝑥 → inf((𝐺𝐴), ℝ*, < ) ≤ (𝐺𝑛)))
5453ralimdva 3144 . . . . . 6 (𝜑 → (∀𝑛 ∈ ℝ ∃𝑥𝐴 𝑛𝑥 → ∀𝑛 ∈ ℝ inf((𝐺𝐴), ℝ*, < ) ≤ (𝐺𝑛)))
5526, 54mpd 15 . . . . 5 (𝜑 → ∀𝑛 ∈ ℝ inf((𝐺𝐴), ℝ*, < ) ≤ (𝐺𝑛))
566, 35ax-mp 5 . . . . . 6 𝐺 Fn ℝ
57 breq2 5095 . . . . . . 7 (𝑥 = (𝐺𝑛) → (inf((𝐺𝐴), ℝ*, < ) ≤ 𝑥 ↔ inf((𝐺𝐴), ℝ*, < ) ≤ (𝐺𝑛)))
5857ralrn 7021 . . . . . 6 (𝐺 Fn ℝ → (∀𝑥 ∈ ran 𝐺inf((𝐺𝐴), ℝ*, < ) ≤ 𝑥 ↔ ∀𝑛 ∈ ℝ inf((𝐺𝐴), ℝ*, < ) ≤ (𝐺𝑛)))
5956, 58ax-mp 5 . . . . 5 (∀𝑥 ∈ ran 𝐺inf((𝐺𝐴), ℝ*, < ) ≤ 𝑥 ↔ ∀𝑛 ∈ ℝ inf((𝐺𝐴), ℝ*, < ) ≤ (𝐺𝑛))
6055, 59sylibr 234 . . . 4 (𝜑 → ∀𝑥 ∈ ran 𝐺inf((𝐺𝐴), ℝ*, < ) ≤ 𝑥)
6114, 27ax-mp 5 . . . . 5 inf((𝐺𝐴), ℝ*, < ) ∈ ℝ*
62 infxrgelb 13235 . . . . 5 ((ran 𝐺 ⊆ ℝ* ∧ inf((𝐺𝐴), ℝ*, < ) ∈ ℝ*) → (inf((𝐺𝐴), ℝ*, < ) ≤ inf(ran 𝐺, ℝ*, < ) ↔ ∀𝑥 ∈ ran 𝐺inf((𝐺𝐴), ℝ*, < ) ≤ 𝑥))
638, 61, 62mp2an 692 . . . 4 (inf((𝐺𝐴), ℝ*, < ) ≤ inf(ran 𝐺, ℝ*, < ) ↔ ∀𝑥 ∈ ran 𝐺inf((𝐺𝐴), ℝ*, < ) ≤ 𝑥)
6460, 63sylibr 234 . . 3 (𝜑 → inf((𝐺𝐴), ℝ*, < ) ≤ inf(ran 𝐺, ℝ*, < ))
65 xrletri3 13053 . . . 4 ((inf(ran 𝐺, ℝ*, < ) ∈ ℝ* ∧ inf((𝐺𝐴), ℝ*, < ) ∈ ℝ*) → (inf(ran 𝐺, ℝ*, < ) = inf((𝐺𝐴), ℝ*, < ) ↔ (inf(ran 𝐺, ℝ*, < ) ≤ inf((𝐺𝐴), ℝ*, < ) ∧ inf((𝐺𝐴), ℝ*, < ) ≤ inf(ran 𝐺, ℝ*, < ))))
6616, 61, 65mp2an 692 . . 3 (inf(ran 𝐺, ℝ*, < ) = inf((𝐺𝐴), ℝ*, < ) ↔ (inf(ran 𝐺, ℝ*, < ) ≤ inf((𝐺𝐴), ℝ*, < ) ∧ inf((𝐺𝐴), ℝ*, < ) ≤ inf(ran 𝐺, ℝ*, < )))
6719, 64, 66sylanbrc 583 . 2 (𝜑 → inf(ran 𝐺, ℝ*, < ) = inf((𝐺𝐴), ℝ*, < ))
684, 67eqtrd 2766 1 (𝜑 → (lim sup‘𝐹) = inf((𝐺𝐴), ℝ*, < ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  wral 3047  wrex 3056  cin 3901  wss 3902   class class class wbr 5091  cmpt 5172  ran crn 5617  cima 5619   Fn wfn 6476  wf 6477  cfv 6481  (class class class)co 7346  supcsup 9324  infcinf 9325  cr 11005  +∞cpnf 11143  *cxr 11145   < clt 11146  cle 11147  [,)cico 13247  lim supclsp 15377
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-pre-sup 11084
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-po 5524  df-so 5525  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-1st 7921  df-2nd 7922  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-sup 9326  df-inf 9327  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-ico 13251  df-limsup 15378
This theorem is referenced by:  mbflimsup  25595  limsupresico  45744  limsupvaluz  45752
  Copyright terms: Public domain W3C validator