Step | Hyp | Ref
| Expression |
1 | | limsupval2.1 |
. . 3
⊢ (𝜑 → 𝐹 ∈ 𝑉) |
2 | | limsupval.1 |
. . . 4
⊢ 𝐺 = (𝑘 ∈ ℝ ↦ sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*),
ℝ*, < )) |
3 | 2 | limsupval 15111 |
. . 3
⊢ (𝐹 ∈ 𝑉 → (lim sup‘𝐹) = inf(ran 𝐺, ℝ*, <
)) |
4 | 1, 3 | syl 17 |
. 2
⊢ (𝜑 → (lim sup‘𝐹) = inf(ran 𝐺, ℝ*, <
)) |
5 | | imassrn 5969 |
. . . . 5
⊢ (𝐺 “ 𝐴) ⊆ ran 𝐺 |
6 | 2 | limsupgf 15112 |
. . . . . . 7
⊢ 𝐺:ℝ⟶ℝ* |
7 | | frn 6591 |
. . . . . . 7
⊢ (𝐺:ℝ⟶ℝ* →
ran 𝐺 ⊆
ℝ*) |
8 | 6, 7 | ax-mp 5 |
. . . . . 6
⊢ ran 𝐺 ⊆
ℝ* |
9 | | infxrlb 12997 |
. . . . . . 7
⊢ ((ran
𝐺 ⊆
ℝ* ∧ 𝑥
∈ ran 𝐺) →
inf(ran 𝐺,
ℝ*, < ) ≤ 𝑥) |
10 | 9 | ralrimiva 3107 |
. . . . . 6
⊢ (ran
𝐺 ⊆
ℝ* → ∀𝑥 ∈ ran 𝐺inf(ran 𝐺, ℝ*, < ) ≤ 𝑥) |
11 | 8, 10 | mp1i 13 |
. . . . 5
⊢ (𝜑 → ∀𝑥 ∈ ran 𝐺inf(ran 𝐺, ℝ*, < ) ≤ 𝑥) |
12 | | ssralv 3983 |
. . . . 5
⊢ ((𝐺 “ 𝐴) ⊆ ran 𝐺 → (∀𝑥 ∈ ran 𝐺inf(ran 𝐺, ℝ*, < ) ≤ 𝑥 → ∀𝑥 ∈ (𝐺 “ 𝐴)inf(ran 𝐺, ℝ*, < ) ≤ 𝑥)) |
13 | 5, 11, 12 | mpsyl 68 |
. . . 4
⊢ (𝜑 → ∀𝑥 ∈ (𝐺 “ 𝐴)inf(ran 𝐺, ℝ*, < ) ≤ 𝑥) |
14 | 5, 8 | sstri 3926 |
. . . . 5
⊢ (𝐺 “ 𝐴) ⊆
ℝ* |
15 | | infxrcl 12996 |
. . . . . 6
⊢ (ran
𝐺 ⊆
ℝ* → inf(ran 𝐺, ℝ*, < ) ∈
ℝ*) |
16 | 8, 15 | ax-mp 5 |
. . . . 5
⊢ inf(ran
𝐺, ℝ*,
< ) ∈ ℝ* |
17 | | infxrgelb 12998 |
. . . . 5
⊢ (((𝐺 “ 𝐴) ⊆ ℝ* ∧ inf(ran
𝐺, ℝ*,
< ) ∈ ℝ*) → (inf(ran 𝐺, ℝ*, < ) ≤
inf((𝐺 “ 𝐴), ℝ*, < )
↔ ∀𝑥 ∈
(𝐺 “ 𝐴)inf(ran 𝐺, ℝ*, < ) ≤ 𝑥)) |
18 | 14, 16, 17 | mp2an 688 |
. . . 4
⊢ (inf(ran
𝐺, ℝ*,
< ) ≤ inf((𝐺 “
𝐴), ℝ*,
< ) ↔ ∀𝑥
∈ (𝐺 “ 𝐴)inf(ran 𝐺, ℝ*, < ) ≤ 𝑥) |
19 | 13, 18 | sylibr 233 |
. . 3
⊢ (𝜑 → inf(ran 𝐺, ℝ*, < ) ≤
inf((𝐺 “ 𝐴), ℝ*, <
)) |
20 | | limsupval2.3 |
. . . . . . 7
⊢ (𝜑 → sup(𝐴, ℝ*, < ) =
+∞) |
21 | | limsupval2.2 |
. . . . . . . . 9
⊢ (𝜑 → 𝐴 ⊆ ℝ) |
22 | | ressxr 10950 |
. . . . . . . . 9
⊢ ℝ
⊆ ℝ* |
23 | 21, 22 | sstrdi 3929 |
. . . . . . . 8
⊢ (𝜑 → 𝐴 ⊆
ℝ*) |
24 | | supxrunb1 12982 |
. . . . . . . 8
⊢ (𝐴 ⊆ ℝ*
→ (∀𝑛 ∈
ℝ ∃𝑥 ∈
𝐴 𝑛 ≤ 𝑥 ↔ sup(𝐴, ℝ*, < ) =
+∞)) |
25 | 23, 24 | syl 17 |
. . . . . . 7
⊢ (𝜑 → (∀𝑛 ∈ ℝ ∃𝑥 ∈ 𝐴 𝑛 ≤ 𝑥 ↔ sup(𝐴, ℝ*, < ) =
+∞)) |
26 | 20, 25 | mpbird 256 |
. . . . . 6
⊢ (𝜑 → ∀𝑛 ∈ ℝ ∃𝑥 ∈ 𝐴 𝑛 ≤ 𝑥) |
27 | | infxrcl 12996 |
. . . . . . . . . 10
⊢ ((𝐺 “ 𝐴) ⊆ ℝ* →
inf((𝐺 “ 𝐴), ℝ*, < )
∈ ℝ*) |
28 | 14, 27 | mp1i 13 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑛 ∈ ℝ) ∧ (𝑥 ∈ 𝐴 ∧ 𝑛 ≤ 𝑥)) → inf((𝐺 “ 𝐴), ℝ*, < ) ∈
ℝ*) |
29 | 21 | sselda 3917 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ ℝ) |
30 | 29 | ad2ant2r 743 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑛 ∈ ℝ) ∧ (𝑥 ∈ 𝐴 ∧ 𝑛 ≤ 𝑥)) → 𝑥 ∈ ℝ) |
31 | 6 | ffvelrni 6942 |
. . . . . . . . . 10
⊢ (𝑥 ∈ ℝ → (𝐺‘𝑥) ∈
ℝ*) |
32 | 30, 31 | syl 17 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑛 ∈ ℝ) ∧ (𝑥 ∈ 𝐴 ∧ 𝑛 ≤ 𝑥)) → (𝐺‘𝑥) ∈
ℝ*) |
33 | 6 | ffvelrni 6942 |
. . . . . . . . . 10
⊢ (𝑛 ∈ ℝ → (𝐺‘𝑛) ∈
ℝ*) |
34 | 33 | ad2antlr 723 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑛 ∈ ℝ) ∧ (𝑥 ∈ 𝐴 ∧ 𝑛 ≤ 𝑥)) → (𝐺‘𝑛) ∈
ℝ*) |
35 | | ffn 6584 |
. . . . . . . . . . . 12
⊢ (𝐺:ℝ⟶ℝ* →
𝐺 Fn
ℝ) |
36 | 6, 35 | mp1i 13 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑛 ∈ ℝ) ∧ (𝑥 ∈ 𝐴 ∧ 𝑛 ≤ 𝑥)) → 𝐺 Fn ℝ) |
37 | 21 | ad2antrr 722 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑛 ∈ ℝ) ∧ (𝑥 ∈ 𝐴 ∧ 𝑛 ≤ 𝑥)) → 𝐴 ⊆ ℝ) |
38 | | simprl 767 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑛 ∈ ℝ) ∧ (𝑥 ∈ 𝐴 ∧ 𝑛 ≤ 𝑥)) → 𝑥 ∈ 𝐴) |
39 | | fnfvima 7091 |
. . . . . . . . . . 11
⊢ ((𝐺 Fn ℝ ∧ 𝐴 ⊆ ℝ ∧ 𝑥 ∈ 𝐴) → (𝐺‘𝑥) ∈ (𝐺 “ 𝐴)) |
40 | 36, 37, 38, 39 | syl3anc 1369 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑛 ∈ ℝ) ∧ (𝑥 ∈ 𝐴 ∧ 𝑛 ≤ 𝑥)) → (𝐺‘𝑥) ∈ (𝐺 “ 𝐴)) |
41 | | infxrlb 12997 |
. . . . . . . . . 10
⊢ (((𝐺 “ 𝐴) ⊆ ℝ* ∧ (𝐺‘𝑥) ∈ (𝐺 “ 𝐴)) → inf((𝐺 “ 𝐴), ℝ*, < ) ≤ (𝐺‘𝑥)) |
42 | 14, 40, 41 | sylancr 586 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑛 ∈ ℝ) ∧ (𝑥 ∈ 𝐴 ∧ 𝑛 ≤ 𝑥)) → inf((𝐺 “ 𝐴), ℝ*, < ) ≤ (𝐺‘𝑥)) |
43 | | simplr 765 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑛 ∈ ℝ) ∧ (𝑥 ∈ 𝐴 ∧ 𝑛 ≤ 𝑥)) → 𝑛 ∈ ℝ) |
44 | | simprr 769 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑛 ∈ ℝ) ∧ (𝑥 ∈ 𝐴 ∧ 𝑛 ≤ 𝑥)) → 𝑛 ≤ 𝑥) |
45 | | limsupgord 15109 |
. . . . . . . . . . 11
⊢ ((𝑛 ∈ ℝ ∧ 𝑥 ∈ ℝ ∧ 𝑛 ≤ 𝑥) → sup(((𝐹 “ (𝑥[,)+∞)) ∩ ℝ*),
ℝ*, < ) ≤ sup(((𝐹 “ (𝑛[,)+∞)) ∩ ℝ*),
ℝ*, < )) |
46 | 43, 30, 44, 45 | syl3anc 1369 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑛 ∈ ℝ) ∧ (𝑥 ∈ 𝐴 ∧ 𝑛 ≤ 𝑥)) → sup(((𝐹 “ (𝑥[,)+∞)) ∩ ℝ*),
ℝ*, < ) ≤ sup(((𝐹 “ (𝑛[,)+∞)) ∩ ℝ*),
ℝ*, < )) |
47 | 2 | limsupgval 15113 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ ℝ → (𝐺‘𝑥) = sup(((𝐹 “ (𝑥[,)+∞)) ∩ ℝ*),
ℝ*, < )) |
48 | 30, 47 | syl 17 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑛 ∈ ℝ) ∧ (𝑥 ∈ 𝐴 ∧ 𝑛 ≤ 𝑥)) → (𝐺‘𝑥) = sup(((𝐹 “ (𝑥[,)+∞)) ∩ ℝ*),
ℝ*, < )) |
49 | 2 | limsupgval 15113 |
. . . . . . . . . . 11
⊢ (𝑛 ∈ ℝ → (𝐺‘𝑛) = sup(((𝐹 “ (𝑛[,)+∞)) ∩ ℝ*),
ℝ*, < )) |
50 | 49 | ad2antlr 723 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑛 ∈ ℝ) ∧ (𝑥 ∈ 𝐴 ∧ 𝑛 ≤ 𝑥)) → (𝐺‘𝑛) = sup(((𝐹 “ (𝑛[,)+∞)) ∩ ℝ*),
ℝ*, < )) |
51 | 46, 48, 50 | 3brtr4d 5102 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑛 ∈ ℝ) ∧ (𝑥 ∈ 𝐴 ∧ 𝑛 ≤ 𝑥)) → (𝐺‘𝑥) ≤ (𝐺‘𝑛)) |
52 | 28, 32, 34, 42, 51 | xrletrd 12825 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑛 ∈ ℝ) ∧ (𝑥 ∈ 𝐴 ∧ 𝑛 ≤ 𝑥)) → inf((𝐺 “ 𝐴), ℝ*, < ) ≤ (𝐺‘𝑛)) |
53 | 52 | rexlimdvaa 3213 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ ℝ) → (∃𝑥 ∈ 𝐴 𝑛 ≤ 𝑥 → inf((𝐺 “ 𝐴), ℝ*, < ) ≤ (𝐺‘𝑛))) |
54 | 53 | ralimdva 3102 |
. . . . . 6
⊢ (𝜑 → (∀𝑛 ∈ ℝ ∃𝑥 ∈ 𝐴 𝑛 ≤ 𝑥 → ∀𝑛 ∈ ℝ inf((𝐺 “ 𝐴), ℝ*, < ) ≤ (𝐺‘𝑛))) |
55 | 26, 54 | mpd 15 |
. . . . 5
⊢ (𝜑 → ∀𝑛 ∈ ℝ inf((𝐺 “ 𝐴), ℝ*, < ) ≤ (𝐺‘𝑛)) |
56 | 6, 35 | ax-mp 5 |
. . . . . 6
⊢ 𝐺 Fn ℝ |
57 | | breq2 5074 |
. . . . . . 7
⊢ (𝑥 = (𝐺‘𝑛) → (inf((𝐺 “ 𝐴), ℝ*, < ) ≤ 𝑥 ↔ inf((𝐺 “ 𝐴), ℝ*, < ) ≤ (𝐺‘𝑛))) |
58 | 57 | ralrn 6946 |
. . . . . 6
⊢ (𝐺 Fn ℝ →
(∀𝑥 ∈ ran 𝐺inf((𝐺 “ 𝐴), ℝ*, < ) ≤ 𝑥 ↔ ∀𝑛 ∈ ℝ inf((𝐺 “ 𝐴), ℝ*, < ) ≤ (𝐺‘𝑛))) |
59 | 56, 58 | ax-mp 5 |
. . . . 5
⊢
(∀𝑥 ∈
ran 𝐺inf((𝐺 “ 𝐴), ℝ*, < ) ≤ 𝑥 ↔ ∀𝑛 ∈ ℝ inf((𝐺 “ 𝐴), ℝ*, < ) ≤ (𝐺‘𝑛)) |
60 | 55, 59 | sylibr 233 |
. . . 4
⊢ (𝜑 → ∀𝑥 ∈ ran 𝐺inf((𝐺 “ 𝐴), ℝ*, < ) ≤ 𝑥) |
61 | 14, 27 | ax-mp 5 |
. . . . 5
⊢
inf((𝐺 “ 𝐴), ℝ*, < )
∈ ℝ* |
62 | | infxrgelb 12998 |
. . . . 5
⊢ ((ran
𝐺 ⊆
ℝ* ∧ inf((𝐺 “ 𝐴), ℝ*, < ) ∈
ℝ*) → (inf((𝐺 “ 𝐴), ℝ*, < ) ≤ inf(ran
𝐺, ℝ*,
< ) ↔ ∀𝑥
∈ ran 𝐺inf((𝐺 “ 𝐴), ℝ*, < ) ≤ 𝑥)) |
63 | 8, 61, 62 | mp2an 688 |
. . . 4
⊢
(inf((𝐺 “
𝐴), ℝ*,
< ) ≤ inf(ran 𝐺,
ℝ*, < ) ↔ ∀𝑥 ∈ ran 𝐺inf((𝐺 “ 𝐴), ℝ*, < ) ≤ 𝑥) |
64 | 60, 63 | sylibr 233 |
. . 3
⊢ (𝜑 → inf((𝐺 “ 𝐴), ℝ*, < ) ≤ inf(ran
𝐺, ℝ*,
< )) |
65 | | xrletri3 12817 |
. . . 4
⊢ ((inf(ran
𝐺, ℝ*,
< ) ∈ ℝ* ∧ inf((𝐺 “ 𝐴), ℝ*, < ) ∈
ℝ*) → (inf(ran 𝐺, ℝ*, < ) = inf((𝐺 “ 𝐴), ℝ*, < ) ↔
(inf(ran 𝐺,
ℝ*, < ) ≤ inf((𝐺 “ 𝐴), ℝ*, < ) ∧
inf((𝐺 “ 𝐴), ℝ*, < )
≤ inf(ran 𝐺,
ℝ*, < )))) |
66 | 16, 61, 65 | mp2an 688 |
. . 3
⊢ (inf(ran
𝐺, ℝ*,
< ) = inf((𝐺 “
𝐴), ℝ*,
< ) ↔ (inf(ran 𝐺,
ℝ*, < ) ≤ inf((𝐺 “ 𝐴), ℝ*, < ) ∧
inf((𝐺 “ 𝐴), ℝ*, < )
≤ inf(ran 𝐺,
ℝ*, < ))) |
67 | 19, 64, 66 | sylanbrc 582 |
. 2
⊢ (𝜑 → inf(ran 𝐺, ℝ*, < ) = inf((𝐺 “ 𝐴), ℝ*, <
)) |
68 | 4, 67 | eqtrd 2778 |
1
⊢ (𝜑 → (lim sup‘𝐹) = inf((𝐺 “ 𝐴), ℝ*, <
)) |