MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  limsupval2 Structured version   Visualization version   GIF version

Theorem limsupval2 15526
Description: The superior limit, relativized to an unbounded set. (Contributed by Mario Carneiro, 7-Sep-2014.) (Revised by AV, 12-Sep-2020.)
Hypotheses
Ref Expression
limsupval.1 𝐺 = (𝑘 ∈ ℝ ↦ sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < ))
limsupval2.1 (𝜑𝐹𝑉)
limsupval2.2 (𝜑𝐴 ⊆ ℝ)
limsupval2.3 (𝜑 → sup(𝐴, ℝ*, < ) = +∞)
Assertion
Ref Expression
limsupval2 (𝜑 → (lim sup‘𝐹) = inf((𝐺𝐴), ℝ*, < ))
Distinct variable groups:   𝑘,𝐹   𝐴,𝑘
Allowed substitution hints:   𝜑(𝑘)   𝐺(𝑘)   𝑉(𝑘)

Proof of Theorem limsupval2
Dummy variables 𝑥 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 limsupval2.1 . . 3 (𝜑𝐹𝑉)
2 limsupval.1 . . . 4 𝐺 = (𝑘 ∈ ℝ ↦ sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < ))
32limsupval 15520 . . 3 (𝐹𝑉 → (lim sup‘𝐹) = inf(ran 𝐺, ℝ*, < ))
41, 3syl 17 . 2 (𝜑 → (lim sup‘𝐹) = inf(ran 𝐺, ℝ*, < ))
5 imassrn 6100 . . . . 5 (𝐺𝐴) ⊆ ran 𝐺
62limsupgf 15521 . . . . . . 7 𝐺:ℝ⟶ℝ*
7 frn 6754 . . . . . . 7 (𝐺:ℝ⟶ℝ* → ran 𝐺 ⊆ ℝ*)
86, 7ax-mp 5 . . . . . 6 ran 𝐺 ⊆ ℝ*
9 infxrlb 13396 . . . . . . 7 ((ran 𝐺 ⊆ ℝ*𝑥 ∈ ran 𝐺) → inf(ran 𝐺, ℝ*, < ) ≤ 𝑥)
109ralrimiva 3152 . . . . . 6 (ran 𝐺 ⊆ ℝ* → ∀𝑥 ∈ ran 𝐺inf(ran 𝐺, ℝ*, < ) ≤ 𝑥)
118, 10mp1i 13 . . . . 5 (𝜑 → ∀𝑥 ∈ ran 𝐺inf(ran 𝐺, ℝ*, < ) ≤ 𝑥)
12 ssralv 4077 . . . . 5 ((𝐺𝐴) ⊆ ran 𝐺 → (∀𝑥 ∈ ran 𝐺inf(ran 𝐺, ℝ*, < ) ≤ 𝑥 → ∀𝑥 ∈ (𝐺𝐴)inf(ran 𝐺, ℝ*, < ) ≤ 𝑥))
135, 11, 12mpsyl 68 . . . 4 (𝜑 → ∀𝑥 ∈ (𝐺𝐴)inf(ran 𝐺, ℝ*, < ) ≤ 𝑥)
145, 8sstri 4018 . . . . 5 (𝐺𝐴) ⊆ ℝ*
15 infxrcl 13395 . . . . . 6 (ran 𝐺 ⊆ ℝ* → inf(ran 𝐺, ℝ*, < ) ∈ ℝ*)
168, 15ax-mp 5 . . . . 5 inf(ran 𝐺, ℝ*, < ) ∈ ℝ*
17 infxrgelb 13397 . . . . 5 (((𝐺𝐴) ⊆ ℝ* ∧ inf(ran 𝐺, ℝ*, < ) ∈ ℝ*) → (inf(ran 𝐺, ℝ*, < ) ≤ inf((𝐺𝐴), ℝ*, < ) ↔ ∀𝑥 ∈ (𝐺𝐴)inf(ran 𝐺, ℝ*, < ) ≤ 𝑥))
1814, 16, 17mp2an 691 . . . 4 (inf(ran 𝐺, ℝ*, < ) ≤ inf((𝐺𝐴), ℝ*, < ) ↔ ∀𝑥 ∈ (𝐺𝐴)inf(ran 𝐺, ℝ*, < ) ≤ 𝑥)
1913, 18sylibr 234 . . 3 (𝜑 → inf(ran 𝐺, ℝ*, < ) ≤ inf((𝐺𝐴), ℝ*, < ))
20 limsupval2.3 . . . . . . 7 (𝜑 → sup(𝐴, ℝ*, < ) = +∞)
21 limsupval2.2 . . . . . . . . 9 (𝜑𝐴 ⊆ ℝ)
22 ressxr 11334 . . . . . . . . 9 ℝ ⊆ ℝ*
2321, 22sstrdi 4021 . . . . . . . 8 (𝜑𝐴 ⊆ ℝ*)
24 supxrunb1 13381 . . . . . . . 8 (𝐴 ⊆ ℝ* → (∀𝑛 ∈ ℝ ∃𝑥𝐴 𝑛𝑥 ↔ sup(𝐴, ℝ*, < ) = +∞))
2523, 24syl 17 . . . . . . 7 (𝜑 → (∀𝑛 ∈ ℝ ∃𝑥𝐴 𝑛𝑥 ↔ sup(𝐴, ℝ*, < ) = +∞))
2620, 25mpbird 257 . . . . . 6 (𝜑 → ∀𝑛 ∈ ℝ ∃𝑥𝐴 𝑛𝑥)
27 infxrcl 13395 . . . . . . . . . 10 ((𝐺𝐴) ⊆ ℝ* → inf((𝐺𝐴), ℝ*, < ) ∈ ℝ*)
2814, 27mp1i 13 . . . . . . . . 9 (((𝜑𝑛 ∈ ℝ) ∧ (𝑥𝐴𝑛𝑥)) → inf((𝐺𝐴), ℝ*, < ) ∈ ℝ*)
2921sselda 4008 . . . . . . . . . . 11 ((𝜑𝑥𝐴) → 𝑥 ∈ ℝ)
3029ad2ant2r 746 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℝ) ∧ (𝑥𝐴𝑛𝑥)) → 𝑥 ∈ ℝ)
316ffvelcdmi 7117 . . . . . . . . . 10 (𝑥 ∈ ℝ → (𝐺𝑥) ∈ ℝ*)
3230, 31syl 17 . . . . . . . . 9 (((𝜑𝑛 ∈ ℝ) ∧ (𝑥𝐴𝑛𝑥)) → (𝐺𝑥) ∈ ℝ*)
336ffvelcdmi 7117 . . . . . . . . . 10 (𝑛 ∈ ℝ → (𝐺𝑛) ∈ ℝ*)
3433ad2antlr 726 . . . . . . . . 9 (((𝜑𝑛 ∈ ℝ) ∧ (𝑥𝐴𝑛𝑥)) → (𝐺𝑛) ∈ ℝ*)
35 ffn 6747 . . . . . . . . . . . 12 (𝐺:ℝ⟶ℝ*𝐺 Fn ℝ)
366, 35mp1i 13 . . . . . . . . . . 11 (((𝜑𝑛 ∈ ℝ) ∧ (𝑥𝐴𝑛𝑥)) → 𝐺 Fn ℝ)
3721ad2antrr 725 . . . . . . . . . . 11 (((𝜑𝑛 ∈ ℝ) ∧ (𝑥𝐴𝑛𝑥)) → 𝐴 ⊆ ℝ)
38 simprl 770 . . . . . . . . . . 11 (((𝜑𝑛 ∈ ℝ) ∧ (𝑥𝐴𝑛𝑥)) → 𝑥𝐴)
39 fnfvima 7270 . . . . . . . . . . 11 ((𝐺 Fn ℝ ∧ 𝐴 ⊆ ℝ ∧ 𝑥𝐴) → (𝐺𝑥) ∈ (𝐺𝐴))
4036, 37, 38, 39syl3anc 1371 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℝ) ∧ (𝑥𝐴𝑛𝑥)) → (𝐺𝑥) ∈ (𝐺𝐴))
41 infxrlb 13396 . . . . . . . . . 10 (((𝐺𝐴) ⊆ ℝ* ∧ (𝐺𝑥) ∈ (𝐺𝐴)) → inf((𝐺𝐴), ℝ*, < ) ≤ (𝐺𝑥))
4214, 40, 41sylancr 586 . . . . . . . . 9 (((𝜑𝑛 ∈ ℝ) ∧ (𝑥𝐴𝑛𝑥)) → inf((𝐺𝐴), ℝ*, < ) ≤ (𝐺𝑥))
43 simplr 768 . . . . . . . . . . 11 (((𝜑𝑛 ∈ ℝ) ∧ (𝑥𝐴𝑛𝑥)) → 𝑛 ∈ ℝ)
44 simprr 772 . . . . . . . . . . 11 (((𝜑𝑛 ∈ ℝ) ∧ (𝑥𝐴𝑛𝑥)) → 𝑛𝑥)
45 limsupgord 15518 . . . . . . . . . . 11 ((𝑛 ∈ ℝ ∧ 𝑥 ∈ ℝ ∧ 𝑛𝑥) → sup(((𝐹 “ (𝑥[,)+∞)) ∩ ℝ*), ℝ*, < ) ≤ sup(((𝐹 “ (𝑛[,)+∞)) ∩ ℝ*), ℝ*, < ))
4643, 30, 44, 45syl3anc 1371 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℝ) ∧ (𝑥𝐴𝑛𝑥)) → sup(((𝐹 “ (𝑥[,)+∞)) ∩ ℝ*), ℝ*, < ) ≤ sup(((𝐹 “ (𝑛[,)+∞)) ∩ ℝ*), ℝ*, < ))
472limsupgval 15522 . . . . . . . . . . 11 (𝑥 ∈ ℝ → (𝐺𝑥) = sup(((𝐹 “ (𝑥[,)+∞)) ∩ ℝ*), ℝ*, < ))
4830, 47syl 17 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℝ) ∧ (𝑥𝐴𝑛𝑥)) → (𝐺𝑥) = sup(((𝐹 “ (𝑥[,)+∞)) ∩ ℝ*), ℝ*, < ))
492limsupgval 15522 . . . . . . . . . . 11 (𝑛 ∈ ℝ → (𝐺𝑛) = sup(((𝐹 “ (𝑛[,)+∞)) ∩ ℝ*), ℝ*, < ))
5049ad2antlr 726 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℝ) ∧ (𝑥𝐴𝑛𝑥)) → (𝐺𝑛) = sup(((𝐹 “ (𝑛[,)+∞)) ∩ ℝ*), ℝ*, < ))
5146, 48, 503brtr4d 5198 . . . . . . . . 9 (((𝜑𝑛 ∈ ℝ) ∧ (𝑥𝐴𝑛𝑥)) → (𝐺𝑥) ≤ (𝐺𝑛))
5228, 32, 34, 42, 51xrletrd 13224 . . . . . . . 8 (((𝜑𝑛 ∈ ℝ) ∧ (𝑥𝐴𝑛𝑥)) → inf((𝐺𝐴), ℝ*, < ) ≤ (𝐺𝑛))
5352rexlimdvaa 3162 . . . . . . 7 ((𝜑𝑛 ∈ ℝ) → (∃𝑥𝐴 𝑛𝑥 → inf((𝐺𝐴), ℝ*, < ) ≤ (𝐺𝑛)))
5453ralimdva 3173 . . . . . 6 (𝜑 → (∀𝑛 ∈ ℝ ∃𝑥𝐴 𝑛𝑥 → ∀𝑛 ∈ ℝ inf((𝐺𝐴), ℝ*, < ) ≤ (𝐺𝑛)))
5526, 54mpd 15 . . . . 5 (𝜑 → ∀𝑛 ∈ ℝ inf((𝐺𝐴), ℝ*, < ) ≤ (𝐺𝑛))
566, 35ax-mp 5 . . . . . 6 𝐺 Fn ℝ
57 breq2 5170 . . . . . . 7 (𝑥 = (𝐺𝑛) → (inf((𝐺𝐴), ℝ*, < ) ≤ 𝑥 ↔ inf((𝐺𝐴), ℝ*, < ) ≤ (𝐺𝑛)))
5857ralrn 7122 . . . . . 6 (𝐺 Fn ℝ → (∀𝑥 ∈ ran 𝐺inf((𝐺𝐴), ℝ*, < ) ≤ 𝑥 ↔ ∀𝑛 ∈ ℝ inf((𝐺𝐴), ℝ*, < ) ≤ (𝐺𝑛)))
5956, 58ax-mp 5 . . . . 5 (∀𝑥 ∈ ran 𝐺inf((𝐺𝐴), ℝ*, < ) ≤ 𝑥 ↔ ∀𝑛 ∈ ℝ inf((𝐺𝐴), ℝ*, < ) ≤ (𝐺𝑛))
6055, 59sylibr 234 . . . 4 (𝜑 → ∀𝑥 ∈ ran 𝐺inf((𝐺𝐴), ℝ*, < ) ≤ 𝑥)
6114, 27ax-mp 5 . . . . 5 inf((𝐺𝐴), ℝ*, < ) ∈ ℝ*
62 infxrgelb 13397 . . . . 5 ((ran 𝐺 ⊆ ℝ* ∧ inf((𝐺𝐴), ℝ*, < ) ∈ ℝ*) → (inf((𝐺𝐴), ℝ*, < ) ≤ inf(ran 𝐺, ℝ*, < ) ↔ ∀𝑥 ∈ ran 𝐺inf((𝐺𝐴), ℝ*, < ) ≤ 𝑥))
638, 61, 62mp2an 691 . . . 4 (inf((𝐺𝐴), ℝ*, < ) ≤ inf(ran 𝐺, ℝ*, < ) ↔ ∀𝑥 ∈ ran 𝐺inf((𝐺𝐴), ℝ*, < ) ≤ 𝑥)
6460, 63sylibr 234 . . 3 (𝜑 → inf((𝐺𝐴), ℝ*, < ) ≤ inf(ran 𝐺, ℝ*, < ))
65 xrletri3 13216 . . . 4 ((inf(ran 𝐺, ℝ*, < ) ∈ ℝ* ∧ inf((𝐺𝐴), ℝ*, < ) ∈ ℝ*) → (inf(ran 𝐺, ℝ*, < ) = inf((𝐺𝐴), ℝ*, < ) ↔ (inf(ran 𝐺, ℝ*, < ) ≤ inf((𝐺𝐴), ℝ*, < ) ∧ inf((𝐺𝐴), ℝ*, < ) ≤ inf(ran 𝐺, ℝ*, < ))))
6616, 61, 65mp2an 691 . . 3 (inf(ran 𝐺, ℝ*, < ) = inf((𝐺𝐴), ℝ*, < ) ↔ (inf(ran 𝐺, ℝ*, < ) ≤ inf((𝐺𝐴), ℝ*, < ) ∧ inf((𝐺𝐴), ℝ*, < ) ≤ inf(ran 𝐺, ℝ*, < )))
6719, 64, 66sylanbrc 582 . 2 (𝜑 → inf(ran 𝐺, ℝ*, < ) = inf((𝐺𝐴), ℝ*, < ))
684, 67eqtrd 2780 1 (𝜑 → (lim sup‘𝐹) = inf((𝐺𝐴), ℝ*, < ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  wral 3067  wrex 3076  cin 3975  wss 3976   class class class wbr 5166  cmpt 5249  ran crn 5701  cima 5703   Fn wfn 6568  wf 6569  cfv 6573  (class class class)co 7448  supcsup 9509  infcinf 9510  cr 11183  +∞cpnf 11321  *cxr 11323   < clt 11324  cle 11325  [,)cico 13409  lim supclsp 15516
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-po 5607  df-so 5608  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-1st 8030  df-2nd 8031  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-sup 9511  df-inf 9512  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-ico 13413  df-limsup 15517
This theorem is referenced by:  mbflimsup  25720  limsupresico  45621  limsupvaluz  45629
  Copyright terms: Public domain W3C validator