Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > lmodfopnelem2 | Structured version Visualization version GIF version |
Description: Lemma 2 for lmodfopne 20206. (Contributed by AV, 2-Oct-2021.) |
Ref | Expression |
---|---|
lmodfopne.t | ⊢ · = ( ·sf ‘𝑊) |
lmodfopne.a | ⊢ + = (+𝑓‘𝑊) |
lmodfopne.v | ⊢ 𝑉 = (Base‘𝑊) |
lmodfopne.s | ⊢ 𝑆 = (Scalar‘𝑊) |
lmodfopne.k | ⊢ 𝐾 = (Base‘𝑆) |
lmodfopne.0 | ⊢ 0 = (0g‘𝑆) |
lmodfopne.1 | ⊢ 1 = (1r‘𝑆) |
Ref | Expression |
---|---|
lmodfopnelem2 | ⊢ ((𝑊 ∈ LMod ∧ + = · ) → ( 0 ∈ 𝑉 ∧ 1 ∈ 𝑉)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lmodfopne.t | . . . . 5 ⊢ · = ( ·sf ‘𝑊) | |
2 | lmodfopne.a | . . . . 5 ⊢ + = (+𝑓‘𝑊) | |
3 | lmodfopne.v | . . . . 5 ⊢ 𝑉 = (Base‘𝑊) | |
4 | lmodfopne.s | . . . . 5 ⊢ 𝑆 = (Scalar‘𝑊) | |
5 | lmodfopne.k | . . . . 5 ⊢ 𝐾 = (Base‘𝑆) | |
6 | 1, 2, 3, 4, 5 | lmodfopnelem1 20204 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ + = · ) → 𝑉 = 𝐾) |
7 | 6 | ex 414 | . . 3 ⊢ (𝑊 ∈ LMod → ( + = · → 𝑉 = 𝐾)) |
8 | lmodfopne.0 | . . . . . 6 ⊢ 0 = (0g‘𝑆) | |
9 | 4, 5, 8 | lmod0cl 20194 | . . . . 5 ⊢ (𝑊 ∈ LMod → 0 ∈ 𝐾) |
10 | lmodfopne.1 | . . . . . 6 ⊢ 1 = (1r‘𝑆) | |
11 | 4, 5, 10 | lmod1cl 20195 | . . . . 5 ⊢ (𝑊 ∈ LMod → 1 ∈ 𝐾) |
12 | 9, 11 | jca 513 | . . . 4 ⊢ (𝑊 ∈ LMod → ( 0 ∈ 𝐾 ∧ 1 ∈ 𝐾)) |
13 | eleq2 2825 | . . . . 5 ⊢ (𝑉 = 𝐾 → ( 0 ∈ 𝑉 ↔ 0 ∈ 𝐾)) | |
14 | eleq2 2825 | . . . . 5 ⊢ (𝑉 = 𝐾 → ( 1 ∈ 𝑉 ↔ 1 ∈ 𝐾)) | |
15 | 13, 14 | anbi12d 632 | . . . 4 ⊢ (𝑉 = 𝐾 → (( 0 ∈ 𝑉 ∧ 1 ∈ 𝑉) ↔ ( 0 ∈ 𝐾 ∧ 1 ∈ 𝐾))) |
16 | 12, 15 | syl5ibrcom 247 | . . 3 ⊢ (𝑊 ∈ LMod → (𝑉 = 𝐾 → ( 0 ∈ 𝑉 ∧ 1 ∈ 𝑉))) |
17 | 7, 16 | syld 47 | . 2 ⊢ (𝑊 ∈ LMod → ( + = · → ( 0 ∈ 𝑉 ∧ 1 ∈ 𝑉))) |
18 | 17 | imp 408 | 1 ⊢ ((𝑊 ∈ LMod ∧ + = · ) → ( 0 ∈ 𝑉 ∧ 1 ∈ 𝑉)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1539 ∈ wcel 2104 ‘cfv 6458 Basecbs 16957 Scalarcsca 17010 0gc0g 17195 +𝑓cplusf 18368 1rcur 19782 LModclmod 20168 ·sf cscaf 20169 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-sep 5232 ax-nul 5239 ax-pow 5297 ax-pr 5361 ax-un 7620 ax-cnex 10973 ax-resscn 10974 ax-1cn 10975 ax-icn 10976 ax-addcl 10977 ax-addrcl 10978 ax-mulcl 10979 ax-mulrcl 10980 ax-mulcom 10981 ax-addass 10982 ax-mulass 10983 ax-distr 10984 ax-i2m1 10985 ax-1ne0 10986 ax-1rid 10987 ax-rnegex 10988 ax-rrecex 10989 ax-cnre 10990 ax-pre-lttri 10991 ax-pre-lttrn 10992 ax-pre-ltadd 10993 ax-pre-mulgt0 10994 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3285 df-reu 3286 df-rab 3287 df-v 3439 df-sbc 3722 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-iun 4933 df-br 5082 df-opab 5144 df-mpt 5165 df-tr 5199 df-id 5500 df-eprel 5506 df-po 5514 df-so 5515 df-fr 5555 df-we 5557 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-pred 6217 df-ord 6284 df-on 6285 df-lim 6286 df-suc 6287 df-iota 6410 df-fun 6460 df-fn 6461 df-f 6462 df-f1 6463 df-fo 6464 df-f1o 6465 df-fv 6466 df-riota 7264 df-ov 7310 df-oprab 7311 df-mpo 7312 df-om 7745 df-1st 7863 df-2nd 7864 df-frecs 8128 df-wrecs 8159 df-recs 8233 df-rdg 8272 df-er 8529 df-en 8765 df-dom 8766 df-sdom 8767 df-pnf 11057 df-mnf 11058 df-xr 11059 df-ltxr 11060 df-le 11061 df-sub 11253 df-neg 11254 df-nn 12020 df-2 12082 df-sets 16910 df-slot 16928 df-ndx 16940 df-base 16958 df-plusg 17020 df-0g 17197 df-plusf 18370 df-mgm 18371 df-sgrp 18420 df-mnd 18431 df-grp 18625 df-mgp 19766 df-ur 19783 df-ring 19830 df-lmod 20170 df-scaf 20171 |
This theorem is referenced by: lmodfopne 20206 |
Copyright terms: Public domain | W3C validator |