MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ello1mpt Structured version   Visualization version   GIF version

Theorem ello1mpt 14593
Description: Elementhood in the set of eventually upper bounded functions. (Contributed by Mario Carneiro, 26-May-2016.)
Hypotheses
Ref Expression
ello1mpt.1 (𝜑𝐴 ⊆ ℝ)
ello1mpt.2 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
Assertion
Ref Expression
ello1mpt (𝜑 → ((𝑥𝐴𝐵) ∈ ≤𝑂(1) ↔ ∃𝑦 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑥𝐴 (𝑦𝑥𝐵𝑚)))
Distinct variable groups:   𝑥,𝑚,𝑦,𝐴   𝐵,𝑚,𝑦   𝜑,𝑚,𝑥,𝑦
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem ello1mpt
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 ello1mpt.2 . . . 4 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
21fmpttd 6611 . . 3 (𝜑 → (𝑥𝐴𝐵):𝐴⟶ℝ)
3 ello1mpt.1 . . 3 (𝜑𝐴 ⊆ ℝ)
4 ello12 14588 . . 3 (((𝑥𝐴𝐵):𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) → ((𝑥𝐴𝐵) ∈ ≤𝑂(1) ↔ ∃𝑦 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑧𝐴 (𝑦𝑧 → ((𝑥𝐴𝐵)‘𝑧) ≤ 𝑚)))
52, 3, 4syl2anc 580 . 2 (𝜑 → ((𝑥𝐴𝐵) ∈ ≤𝑂(1) ↔ ∃𝑦 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑧𝐴 (𝑦𝑧 → ((𝑥𝐴𝐵)‘𝑧) ≤ 𝑚)))
6 nfv 2010 . . . . . 6 𝑥 𝑦𝑧
7 nffvmpt1 6422 . . . . . . 7 𝑥((𝑥𝐴𝐵)‘𝑧)
8 nfcv 2941 . . . . . . 7 𝑥
9 nfcv 2941 . . . . . . 7 𝑥𝑚
107, 8, 9nfbr 4890 . . . . . 6 𝑥((𝑥𝐴𝐵)‘𝑧) ≤ 𝑚
116, 10nfim 1996 . . . . 5 𝑥(𝑦𝑧 → ((𝑥𝐴𝐵)‘𝑧) ≤ 𝑚)
12 nfv 2010 . . . . 5 𝑧(𝑦𝑥 → ((𝑥𝐴𝐵)‘𝑥) ≤ 𝑚)
13 breq2 4847 . . . . . 6 (𝑧 = 𝑥 → (𝑦𝑧𝑦𝑥))
14 fveq2 6411 . . . . . . 7 (𝑧 = 𝑥 → ((𝑥𝐴𝐵)‘𝑧) = ((𝑥𝐴𝐵)‘𝑥))
1514breq1d 4853 . . . . . 6 (𝑧 = 𝑥 → (((𝑥𝐴𝐵)‘𝑧) ≤ 𝑚 ↔ ((𝑥𝐴𝐵)‘𝑥) ≤ 𝑚))
1613, 15imbi12d 336 . . . . 5 (𝑧 = 𝑥 → ((𝑦𝑧 → ((𝑥𝐴𝐵)‘𝑧) ≤ 𝑚) ↔ (𝑦𝑥 → ((𝑥𝐴𝐵)‘𝑥) ≤ 𝑚)))
1711, 12, 16cbvral 3350 . . . 4 (∀𝑧𝐴 (𝑦𝑧 → ((𝑥𝐴𝐵)‘𝑧) ≤ 𝑚) ↔ ∀𝑥𝐴 (𝑦𝑥 → ((𝑥𝐴𝐵)‘𝑥) ≤ 𝑚))
18 simpr 478 . . . . . . . 8 ((𝜑𝑥𝐴) → 𝑥𝐴)
19 eqid 2799 . . . . . . . . 9 (𝑥𝐴𝐵) = (𝑥𝐴𝐵)
2019fvmpt2 6516 . . . . . . . 8 ((𝑥𝐴𝐵 ∈ ℝ) → ((𝑥𝐴𝐵)‘𝑥) = 𝐵)
2118, 1, 20syl2anc 580 . . . . . . 7 ((𝜑𝑥𝐴) → ((𝑥𝐴𝐵)‘𝑥) = 𝐵)
2221breq1d 4853 . . . . . 6 ((𝜑𝑥𝐴) → (((𝑥𝐴𝐵)‘𝑥) ≤ 𝑚𝐵𝑚))
2322imbi2d 332 . . . . 5 ((𝜑𝑥𝐴) → ((𝑦𝑥 → ((𝑥𝐴𝐵)‘𝑥) ≤ 𝑚) ↔ (𝑦𝑥𝐵𝑚)))
2423ralbidva 3166 . . . 4 (𝜑 → (∀𝑥𝐴 (𝑦𝑥 → ((𝑥𝐴𝐵)‘𝑥) ≤ 𝑚) ↔ ∀𝑥𝐴 (𝑦𝑥𝐵𝑚)))
2517, 24syl5bb 275 . . 3 (𝜑 → (∀𝑧𝐴 (𝑦𝑧 → ((𝑥𝐴𝐵)‘𝑧) ≤ 𝑚) ↔ ∀𝑥𝐴 (𝑦𝑥𝐵𝑚)))
26252rexbidv 3238 . 2 (𝜑 → (∃𝑦 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑧𝐴 (𝑦𝑧 → ((𝑥𝐴𝐵)‘𝑧) ≤ 𝑚) ↔ ∃𝑦 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑥𝐴 (𝑦𝑥𝐵𝑚)))
275, 26bitrd 271 1 (𝜑 → ((𝑥𝐴𝐵) ∈ ≤𝑂(1) ↔ ∃𝑦 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑥𝐴 (𝑦𝑥𝐵𝑚)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 385   = wceq 1653  wcel 2157  wral 3089  wrex 3090  wss 3769   class class class wbr 4843  cmpt 4922  wf 6097  cfv 6101  cr 10223  cle 10364  ≤𝑂(1)clo1 14559
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-8 2159  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2377  ax-ext 2777  ax-sep 4975  ax-nul 4983  ax-pow 5035  ax-pr 5097  ax-un 7183  ax-cnex 10280  ax-resscn 10281  ax-pre-lttri 10298  ax-pre-lttrn 10299
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3or 1109  df-3an 1110  df-tru 1657  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2591  df-eu 2609  df-clab 2786  df-cleq 2792  df-clel 2795  df-nfc 2930  df-ne 2972  df-nel 3075  df-ral 3094  df-rex 3095  df-rab 3098  df-v 3387  df-sbc 3634  df-csb 3729  df-dif 3772  df-un 3774  df-in 3776  df-ss 3783  df-nul 4116  df-if 4278  df-pw 4351  df-sn 4369  df-pr 4371  df-op 4375  df-uni 4629  df-br 4844  df-opab 4906  df-mpt 4923  df-id 5220  df-po 5233  df-so 5234  df-xp 5318  df-rel 5319  df-cnv 5320  df-co 5321  df-dm 5322  df-rn 5323  df-res 5324  df-ima 5325  df-iota 6064  df-fun 6103  df-fn 6104  df-f 6105  df-f1 6106  df-fo 6107  df-f1o 6108  df-fv 6109  df-ov 6881  df-oprab 6882  df-mpt2 6883  df-er 7982  df-pm 8098  df-en 8196  df-dom 8197  df-sdom 8198  df-pnf 10365  df-mnf 10366  df-xr 10367  df-ltxr 10368  df-le 10369  df-ico 12430  df-lo1 14563
This theorem is referenced by:  ello1mpt2  14594  ello1d  14595  elo1mpt  14606  o1lo1  14609  lo1resb  14636  lo1add  14698  lo1mul  14699  lo1le  14723
  Copyright terms: Public domain W3C validator