| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ello1mpt | Structured version Visualization version GIF version | ||
| Description: Elementhood in the set of eventually upper bounded functions. (Contributed by Mario Carneiro, 26-May-2016.) |
| Ref | Expression |
|---|---|
| ello1mpt.1 | ⊢ (𝜑 → 𝐴 ⊆ ℝ) |
| ello1mpt.2 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ) |
| Ref | Expression |
|---|---|
| ello1mpt | ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ 𝐵) ∈ ≤𝑂(1) ↔ ∃𝑦 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑥 ∈ 𝐴 (𝑦 ≤ 𝑥 → 𝐵 ≤ 𝑚))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ello1mpt.2 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ) | |
| 2 | 1 | fmpttd 7054 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵):𝐴⟶ℝ) |
| 3 | ello1mpt.1 | . . 3 ⊢ (𝜑 → 𝐴 ⊆ ℝ) | |
| 4 | ello12 15425 | . . 3 ⊢ (((𝑥 ∈ 𝐴 ↦ 𝐵):𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) → ((𝑥 ∈ 𝐴 ↦ 𝐵) ∈ ≤𝑂(1) ↔ ∃𝑦 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑧 ∈ 𝐴 (𝑦 ≤ 𝑧 → ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑧) ≤ 𝑚))) | |
| 5 | 2, 3, 4 | syl2anc 584 | . 2 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ 𝐵) ∈ ≤𝑂(1) ↔ ∃𝑦 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑧 ∈ 𝐴 (𝑦 ≤ 𝑧 → ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑧) ≤ 𝑚))) |
| 6 | nfv 1915 | . . . . . 6 ⊢ Ⅎ𝑥 𝑦 ≤ 𝑧 | |
| 7 | nffvmpt1 6839 | . . . . . . 7 ⊢ Ⅎ𝑥((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑧) | |
| 8 | nfcv 2895 | . . . . . . 7 ⊢ Ⅎ𝑥 ≤ | |
| 9 | nfcv 2895 | . . . . . . 7 ⊢ Ⅎ𝑥𝑚 | |
| 10 | 7, 8, 9 | nfbr 5140 | . . . . . 6 ⊢ Ⅎ𝑥((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑧) ≤ 𝑚 |
| 11 | 6, 10 | nfim 1897 | . . . . 5 ⊢ Ⅎ𝑥(𝑦 ≤ 𝑧 → ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑧) ≤ 𝑚) |
| 12 | nfv 1915 | . . . . 5 ⊢ Ⅎ𝑧(𝑦 ≤ 𝑥 → ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥) ≤ 𝑚) | |
| 13 | breq2 5097 | . . . . . 6 ⊢ (𝑧 = 𝑥 → (𝑦 ≤ 𝑧 ↔ 𝑦 ≤ 𝑥)) | |
| 14 | fveq2 6828 | . . . . . . 7 ⊢ (𝑧 = 𝑥 → ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑧) = ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥)) | |
| 15 | 14 | breq1d 5103 | . . . . . 6 ⊢ (𝑧 = 𝑥 → (((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑧) ≤ 𝑚 ↔ ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥) ≤ 𝑚)) |
| 16 | 13, 15 | imbi12d 344 | . . . . 5 ⊢ (𝑧 = 𝑥 → ((𝑦 ≤ 𝑧 → ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑧) ≤ 𝑚) ↔ (𝑦 ≤ 𝑥 → ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥) ≤ 𝑚))) |
| 17 | 11, 12, 16 | cbvralw 3275 | . . . 4 ⊢ (∀𝑧 ∈ 𝐴 (𝑦 ≤ 𝑧 → ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑧) ≤ 𝑚) ↔ ∀𝑥 ∈ 𝐴 (𝑦 ≤ 𝑥 → ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥) ≤ 𝑚)) |
| 18 | simpr 484 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ 𝐴) | |
| 19 | eqid 2733 | . . . . . . . . 9 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
| 20 | 19 | fvmpt2 6946 | . . . . . . . 8 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝐵 ∈ ℝ) → ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥) = 𝐵) |
| 21 | 18, 1, 20 | syl2anc 584 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥) = 𝐵) |
| 22 | 21 | breq1d 5103 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥) ≤ 𝑚 ↔ 𝐵 ≤ 𝑚)) |
| 23 | 22 | imbi2d 340 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ((𝑦 ≤ 𝑥 → ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥) ≤ 𝑚) ↔ (𝑦 ≤ 𝑥 → 𝐵 ≤ 𝑚))) |
| 24 | 23 | ralbidva 3154 | . . . 4 ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 (𝑦 ≤ 𝑥 → ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥) ≤ 𝑚) ↔ ∀𝑥 ∈ 𝐴 (𝑦 ≤ 𝑥 → 𝐵 ≤ 𝑚))) |
| 25 | 17, 24 | bitrid 283 | . . 3 ⊢ (𝜑 → (∀𝑧 ∈ 𝐴 (𝑦 ≤ 𝑧 → ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑧) ≤ 𝑚) ↔ ∀𝑥 ∈ 𝐴 (𝑦 ≤ 𝑥 → 𝐵 ≤ 𝑚))) |
| 26 | 25 | 2rexbidv 3198 | . 2 ⊢ (𝜑 → (∃𝑦 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑧 ∈ 𝐴 (𝑦 ≤ 𝑧 → ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑧) ≤ 𝑚) ↔ ∃𝑦 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑥 ∈ 𝐴 (𝑦 ≤ 𝑥 → 𝐵 ≤ 𝑚))) |
| 27 | 5, 26 | bitrd 279 | 1 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ 𝐵) ∈ ≤𝑂(1) ↔ ∃𝑦 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑥 ∈ 𝐴 (𝑦 ≤ 𝑥 → 𝐵 ≤ 𝑚))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ∀wral 3048 ∃wrex 3057 ⊆ wss 3898 class class class wbr 5093 ↦ cmpt 5174 ⟶wf 6482 ‘cfv 6486 ℝcr 11012 ≤ cle 11154 ≤𝑂(1)clo1 15396 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-cnex 11069 ax-resscn 11070 ax-pre-lttri 11087 ax-pre-lttrn 11088 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-po 5527 df-so 5528 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ov 7355 df-oprab 7356 df-mpo 7357 df-er 8628 df-pm 8759 df-en 8876 df-dom 8877 df-sdom 8878 df-pnf 11155 df-mnf 11156 df-xr 11157 df-ltxr 11158 df-le 11159 df-ico 13253 df-lo1 15400 |
| This theorem is referenced by: ello1mpt2 15431 ello1d 15432 elo1mpt 15443 o1lo1 15446 lo1resb 15473 lo1add 15536 lo1mul 15537 lo1le 15561 |
| Copyright terms: Public domain | W3C validator |