MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ello1mpt Structured version   Visualization version   GIF version

Theorem ello1mpt 15537
Description: Elementhood in the set of eventually upper bounded functions. (Contributed by Mario Carneiro, 26-May-2016.)
Hypotheses
Ref Expression
ello1mpt.1 (𝜑𝐴 ⊆ ℝ)
ello1mpt.2 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
Assertion
Ref Expression
ello1mpt (𝜑 → ((𝑥𝐴𝐵) ∈ ≤𝑂(1) ↔ ∃𝑦 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑥𝐴 (𝑦𝑥𝐵𝑚)))
Distinct variable groups:   𝑥,𝑚,𝑦,𝐴   𝐵,𝑚,𝑦   𝜑,𝑚,𝑥,𝑦
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem ello1mpt
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 ello1mpt.2 . . . 4 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
21fmpttd 7105 . . 3 (𝜑 → (𝑥𝐴𝐵):𝐴⟶ℝ)
3 ello1mpt.1 . . 3 (𝜑𝐴 ⊆ ℝ)
4 ello12 15532 . . 3 (((𝑥𝐴𝐵):𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) → ((𝑥𝐴𝐵) ∈ ≤𝑂(1) ↔ ∃𝑦 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑧𝐴 (𝑦𝑧 → ((𝑥𝐴𝐵)‘𝑧) ≤ 𝑚)))
52, 3, 4syl2anc 584 . 2 (𝜑 → ((𝑥𝐴𝐵) ∈ ≤𝑂(1) ↔ ∃𝑦 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑧𝐴 (𝑦𝑧 → ((𝑥𝐴𝐵)‘𝑧) ≤ 𝑚)))
6 nfv 1914 . . . . . 6 𝑥 𝑦𝑧
7 nffvmpt1 6887 . . . . . . 7 𝑥((𝑥𝐴𝐵)‘𝑧)
8 nfcv 2898 . . . . . . 7 𝑥
9 nfcv 2898 . . . . . . 7 𝑥𝑚
107, 8, 9nfbr 5166 . . . . . 6 𝑥((𝑥𝐴𝐵)‘𝑧) ≤ 𝑚
116, 10nfim 1896 . . . . 5 𝑥(𝑦𝑧 → ((𝑥𝐴𝐵)‘𝑧) ≤ 𝑚)
12 nfv 1914 . . . . 5 𝑧(𝑦𝑥 → ((𝑥𝐴𝐵)‘𝑥) ≤ 𝑚)
13 breq2 5123 . . . . . 6 (𝑧 = 𝑥 → (𝑦𝑧𝑦𝑥))
14 fveq2 6876 . . . . . . 7 (𝑧 = 𝑥 → ((𝑥𝐴𝐵)‘𝑧) = ((𝑥𝐴𝐵)‘𝑥))
1514breq1d 5129 . . . . . 6 (𝑧 = 𝑥 → (((𝑥𝐴𝐵)‘𝑧) ≤ 𝑚 ↔ ((𝑥𝐴𝐵)‘𝑥) ≤ 𝑚))
1613, 15imbi12d 344 . . . . 5 (𝑧 = 𝑥 → ((𝑦𝑧 → ((𝑥𝐴𝐵)‘𝑧) ≤ 𝑚) ↔ (𝑦𝑥 → ((𝑥𝐴𝐵)‘𝑥) ≤ 𝑚)))
1711, 12, 16cbvralw 3286 . . . 4 (∀𝑧𝐴 (𝑦𝑧 → ((𝑥𝐴𝐵)‘𝑧) ≤ 𝑚) ↔ ∀𝑥𝐴 (𝑦𝑥 → ((𝑥𝐴𝐵)‘𝑥) ≤ 𝑚))
18 simpr 484 . . . . . . . 8 ((𝜑𝑥𝐴) → 𝑥𝐴)
19 eqid 2735 . . . . . . . . 9 (𝑥𝐴𝐵) = (𝑥𝐴𝐵)
2019fvmpt2 6997 . . . . . . . 8 ((𝑥𝐴𝐵 ∈ ℝ) → ((𝑥𝐴𝐵)‘𝑥) = 𝐵)
2118, 1, 20syl2anc 584 . . . . . . 7 ((𝜑𝑥𝐴) → ((𝑥𝐴𝐵)‘𝑥) = 𝐵)
2221breq1d 5129 . . . . . 6 ((𝜑𝑥𝐴) → (((𝑥𝐴𝐵)‘𝑥) ≤ 𝑚𝐵𝑚))
2322imbi2d 340 . . . . 5 ((𝜑𝑥𝐴) → ((𝑦𝑥 → ((𝑥𝐴𝐵)‘𝑥) ≤ 𝑚) ↔ (𝑦𝑥𝐵𝑚)))
2423ralbidva 3161 . . . 4 (𝜑 → (∀𝑥𝐴 (𝑦𝑥 → ((𝑥𝐴𝐵)‘𝑥) ≤ 𝑚) ↔ ∀𝑥𝐴 (𝑦𝑥𝐵𝑚)))
2517, 24bitrid 283 . . 3 (𝜑 → (∀𝑧𝐴 (𝑦𝑧 → ((𝑥𝐴𝐵)‘𝑧) ≤ 𝑚) ↔ ∀𝑥𝐴 (𝑦𝑥𝐵𝑚)))
26252rexbidv 3206 . 2 (𝜑 → (∃𝑦 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑧𝐴 (𝑦𝑧 → ((𝑥𝐴𝐵)‘𝑧) ≤ 𝑚) ↔ ∃𝑦 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑥𝐴 (𝑦𝑥𝐵𝑚)))
275, 26bitrd 279 1 (𝜑 → ((𝑥𝐴𝐵) ∈ ≤𝑂(1) ↔ ∃𝑦 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑥𝐴 (𝑦𝑥𝐵𝑚)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  wral 3051  wrex 3060  wss 3926   class class class wbr 5119  cmpt 5201  wf 6527  cfv 6531  cr 11128  cle 11270  ≤𝑂(1)clo1 15503
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-pre-lttri 11203  ax-pre-lttrn 11204
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-po 5561  df-so 5562  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-ov 7408  df-oprab 7409  df-mpo 7410  df-er 8719  df-pm 8843  df-en 8960  df-dom 8961  df-sdom 8962  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-ico 13368  df-lo1 15507
This theorem is referenced by:  ello1mpt2  15538  ello1d  15539  elo1mpt  15550  o1lo1  15553  lo1resb  15580  lo1add  15643  lo1mul  15644  lo1le  15668
  Copyright terms: Public domain W3C validator