![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ello1mpt | Structured version Visualization version GIF version |
Description: Elementhood in the set of eventually upper bounded functions. (Contributed by Mario Carneiro, 26-May-2016.) |
Ref | Expression |
---|---|
ello1mpt.1 | ⊢ (𝜑 → 𝐴 ⊆ ℝ) |
ello1mpt.2 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ) |
Ref | Expression |
---|---|
ello1mpt | ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ 𝐵) ∈ ≤𝑂(1) ↔ ∃𝑦 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑥 ∈ 𝐴 (𝑦 ≤ 𝑥 → 𝐵 ≤ 𝑚))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ello1mpt.2 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ) | |
2 | 1 | fmpttd 7149 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵):𝐴⟶ℝ) |
3 | ello1mpt.1 | . . 3 ⊢ (𝜑 → 𝐴 ⊆ ℝ) | |
4 | ello12 15562 | . . 3 ⊢ (((𝑥 ∈ 𝐴 ↦ 𝐵):𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) → ((𝑥 ∈ 𝐴 ↦ 𝐵) ∈ ≤𝑂(1) ↔ ∃𝑦 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑧 ∈ 𝐴 (𝑦 ≤ 𝑧 → ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑧) ≤ 𝑚))) | |
5 | 2, 3, 4 | syl2anc 583 | . 2 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ 𝐵) ∈ ≤𝑂(1) ↔ ∃𝑦 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑧 ∈ 𝐴 (𝑦 ≤ 𝑧 → ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑧) ≤ 𝑚))) |
6 | nfv 1913 | . . . . . 6 ⊢ Ⅎ𝑥 𝑦 ≤ 𝑧 | |
7 | nffvmpt1 6931 | . . . . . . 7 ⊢ Ⅎ𝑥((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑧) | |
8 | nfcv 2908 | . . . . . . 7 ⊢ Ⅎ𝑥 ≤ | |
9 | nfcv 2908 | . . . . . . 7 ⊢ Ⅎ𝑥𝑚 | |
10 | 7, 8, 9 | nfbr 5213 | . . . . . 6 ⊢ Ⅎ𝑥((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑧) ≤ 𝑚 |
11 | 6, 10 | nfim 1895 | . . . . 5 ⊢ Ⅎ𝑥(𝑦 ≤ 𝑧 → ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑧) ≤ 𝑚) |
12 | nfv 1913 | . . . . 5 ⊢ Ⅎ𝑧(𝑦 ≤ 𝑥 → ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥) ≤ 𝑚) | |
13 | breq2 5170 | . . . . . 6 ⊢ (𝑧 = 𝑥 → (𝑦 ≤ 𝑧 ↔ 𝑦 ≤ 𝑥)) | |
14 | fveq2 6920 | . . . . . . 7 ⊢ (𝑧 = 𝑥 → ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑧) = ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥)) | |
15 | 14 | breq1d 5176 | . . . . . 6 ⊢ (𝑧 = 𝑥 → (((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑧) ≤ 𝑚 ↔ ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥) ≤ 𝑚)) |
16 | 13, 15 | imbi12d 344 | . . . . 5 ⊢ (𝑧 = 𝑥 → ((𝑦 ≤ 𝑧 → ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑧) ≤ 𝑚) ↔ (𝑦 ≤ 𝑥 → ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥) ≤ 𝑚))) |
17 | 11, 12, 16 | cbvralw 3312 | . . . 4 ⊢ (∀𝑧 ∈ 𝐴 (𝑦 ≤ 𝑧 → ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑧) ≤ 𝑚) ↔ ∀𝑥 ∈ 𝐴 (𝑦 ≤ 𝑥 → ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥) ≤ 𝑚)) |
18 | simpr 484 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ 𝐴) | |
19 | eqid 2740 | . . . . . . . . 9 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
20 | 19 | fvmpt2 7040 | . . . . . . . 8 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝐵 ∈ ℝ) → ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥) = 𝐵) |
21 | 18, 1, 20 | syl2anc 583 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥) = 𝐵) |
22 | 21 | breq1d 5176 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥) ≤ 𝑚 ↔ 𝐵 ≤ 𝑚)) |
23 | 22 | imbi2d 340 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ((𝑦 ≤ 𝑥 → ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥) ≤ 𝑚) ↔ (𝑦 ≤ 𝑥 → 𝐵 ≤ 𝑚))) |
24 | 23 | ralbidva 3182 | . . . 4 ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 (𝑦 ≤ 𝑥 → ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥) ≤ 𝑚) ↔ ∀𝑥 ∈ 𝐴 (𝑦 ≤ 𝑥 → 𝐵 ≤ 𝑚))) |
25 | 17, 24 | bitrid 283 | . . 3 ⊢ (𝜑 → (∀𝑧 ∈ 𝐴 (𝑦 ≤ 𝑧 → ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑧) ≤ 𝑚) ↔ ∀𝑥 ∈ 𝐴 (𝑦 ≤ 𝑥 → 𝐵 ≤ 𝑚))) |
26 | 25 | 2rexbidv 3228 | . 2 ⊢ (𝜑 → (∃𝑦 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑧 ∈ 𝐴 (𝑦 ≤ 𝑧 → ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑧) ≤ 𝑚) ↔ ∃𝑦 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑥 ∈ 𝐴 (𝑦 ≤ 𝑥 → 𝐵 ≤ 𝑚))) |
27 | 5, 26 | bitrd 279 | 1 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ 𝐵) ∈ ≤𝑂(1) ↔ ∃𝑦 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑥 ∈ 𝐴 (𝑦 ≤ 𝑥 → 𝐵 ≤ 𝑚))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ∀wral 3067 ∃wrex 3076 ⊆ wss 3976 class class class wbr 5166 ↦ cmpt 5249 ⟶wf 6569 ‘cfv 6573 ℝcr 11183 ≤ cle 11325 ≤𝑂(1)clo1 15533 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-pre-lttri 11258 ax-pre-lttrn 11259 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-po 5607 df-so 5608 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 df-er 8763 df-pm 8887 df-en 9004 df-dom 9005 df-sdom 9006 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-ico 13413 df-lo1 15537 |
This theorem is referenced by: ello1mpt2 15568 ello1d 15569 elo1mpt 15580 o1lo1 15583 lo1resb 15610 lo1add 15673 lo1mul 15674 lo1le 15700 |
Copyright terms: Public domain | W3C validator |