Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ello1mpt | Structured version Visualization version GIF version |
Description: Elementhood in the set of eventually upper bounded functions. (Contributed by Mario Carneiro, 26-May-2016.) |
Ref | Expression |
---|---|
ello1mpt.1 | ⊢ (𝜑 → 𝐴 ⊆ ℝ) |
ello1mpt.2 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ) |
Ref | Expression |
---|---|
ello1mpt | ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ 𝐵) ∈ ≤𝑂(1) ↔ ∃𝑦 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑥 ∈ 𝐴 (𝑦 ≤ 𝑥 → 𝐵 ≤ 𝑚))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ello1mpt.2 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ) | |
2 | 1 | fmpttd 6876 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵):𝐴⟶ℝ) |
3 | ello1mpt.1 | . . 3 ⊢ (𝜑 → 𝐴 ⊆ ℝ) | |
4 | ello12 14934 | . . 3 ⊢ (((𝑥 ∈ 𝐴 ↦ 𝐵):𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) → ((𝑥 ∈ 𝐴 ↦ 𝐵) ∈ ≤𝑂(1) ↔ ∃𝑦 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑧 ∈ 𝐴 (𝑦 ≤ 𝑧 → ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑧) ≤ 𝑚))) | |
5 | 2, 3, 4 | syl2anc 587 | . 2 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ 𝐵) ∈ ≤𝑂(1) ↔ ∃𝑦 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑧 ∈ 𝐴 (𝑦 ≤ 𝑧 → ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑧) ≤ 𝑚))) |
6 | nfv 1915 | . . . . . 6 ⊢ Ⅎ𝑥 𝑦 ≤ 𝑧 | |
7 | nffvmpt1 6674 | . . . . . . 7 ⊢ Ⅎ𝑥((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑧) | |
8 | nfcv 2919 | . . . . . . 7 ⊢ Ⅎ𝑥 ≤ | |
9 | nfcv 2919 | . . . . . . 7 ⊢ Ⅎ𝑥𝑚 | |
10 | 7, 8, 9 | nfbr 5083 | . . . . . 6 ⊢ Ⅎ𝑥((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑧) ≤ 𝑚 |
11 | 6, 10 | nfim 1897 | . . . . 5 ⊢ Ⅎ𝑥(𝑦 ≤ 𝑧 → ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑧) ≤ 𝑚) |
12 | nfv 1915 | . . . . 5 ⊢ Ⅎ𝑧(𝑦 ≤ 𝑥 → ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥) ≤ 𝑚) | |
13 | breq2 5040 | . . . . . 6 ⊢ (𝑧 = 𝑥 → (𝑦 ≤ 𝑧 ↔ 𝑦 ≤ 𝑥)) | |
14 | fveq2 6663 | . . . . . . 7 ⊢ (𝑧 = 𝑥 → ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑧) = ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥)) | |
15 | 14 | breq1d 5046 | . . . . . 6 ⊢ (𝑧 = 𝑥 → (((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑧) ≤ 𝑚 ↔ ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥) ≤ 𝑚)) |
16 | 13, 15 | imbi12d 348 | . . . . 5 ⊢ (𝑧 = 𝑥 → ((𝑦 ≤ 𝑧 → ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑧) ≤ 𝑚) ↔ (𝑦 ≤ 𝑥 → ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥) ≤ 𝑚))) |
17 | 11, 12, 16 | cbvralw 3352 | . . . 4 ⊢ (∀𝑧 ∈ 𝐴 (𝑦 ≤ 𝑧 → ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑧) ≤ 𝑚) ↔ ∀𝑥 ∈ 𝐴 (𝑦 ≤ 𝑥 → ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥) ≤ 𝑚)) |
18 | simpr 488 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ 𝐴) | |
19 | eqid 2758 | . . . . . . . . 9 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
20 | 19 | fvmpt2 6775 | . . . . . . . 8 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝐵 ∈ ℝ) → ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥) = 𝐵) |
21 | 18, 1, 20 | syl2anc 587 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥) = 𝐵) |
22 | 21 | breq1d 5046 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥) ≤ 𝑚 ↔ 𝐵 ≤ 𝑚)) |
23 | 22 | imbi2d 344 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ((𝑦 ≤ 𝑥 → ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥) ≤ 𝑚) ↔ (𝑦 ≤ 𝑥 → 𝐵 ≤ 𝑚))) |
24 | 23 | ralbidva 3125 | . . . 4 ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 (𝑦 ≤ 𝑥 → ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥) ≤ 𝑚) ↔ ∀𝑥 ∈ 𝐴 (𝑦 ≤ 𝑥 → 𝐵 ≤ 𝑚))) |
25 | 17, 24 | syl5bb 286 | . . 3 ⊢ (𝜑 → (∀𝑧 ∈ 𝐴 (𝑦 ≤ 𝑧 → ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑧) ≤ 𝑚) ↔ ∀𝑥 ∈ 𝐴 (𝑦 ≤ 𝑥 → 𝐵 ≤ 𝑚))) |
26 | 25 | 2rexbidv 3224 | . 2 ⊢ (𝜑 → (∃𝑦 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑧 ∈ 𝐴 (𝑦 ≤ 𝑧 → ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑧) ≤ 𝑚) ↔ ∃𝑦 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑥 ∈ 𝐴 (𝑦 ≤ 𝑥 → 𝐵 ≤ 𝑚))) |
27 | 5, 26 | bitrd 282 | 1 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ 𝐵) ∈ ≤𝑂(1) ↔ ∃𝑦 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑥 ∈ 𝐴 (𝑦 ≤ 𝑥 → 𝐵 ≤ 𝑚))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 399 = wceq 1538 ∈ wcel 2111 ∀wral 3070 ∃wrex 3071 ⊆ wss 3860 class class class wbr 5036 ↦ cmpt 5116 ⟶wf 6336 ‘cfv 6340 ℝcr 10587 ≤ cle 10727 ≤𝑂(1)clo1 14905 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-sep 5173 ax-nul 5180 ax-pow 5238 ax-pr 5302 ax-un 7465 ax-cnex 10644 ax-resscn 10645 ax-pre-lttri 10662 ax-pre-lttrn 10663 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-nel 3056 df-ral 3075 df-rex 3076 df-rab 3079 df-v 3411 df-sbc 3699 df-csb 3808 df-dif 3863 df-un 3865 df-in 3867 df-ss 3877 df-nul 4228 df-if 4424 df-pw 4499 df-sn 4526 df-pr 4528 df-op 4532 df-uni 4802 df-br 5037 df-opab 5099 df-mpt 5117 df-id 5434 df-po 5447 df-so 5448 df-xp 5534 df-rel 5535 df-cnv 5536 df-co 5537 df-dm 5538 df-rn 5539 df-res 5540 df-ima 5541 df-iota 6299 df-fun 6342 df-fn 6343 df-f 6344 df-f1 6345 df-fo 6346 df-f1o 6347 df-fv 6348 df-ov 7159 df-oprab 7160 df-mpo 7161 df-er 8305 df-pm 8425 df-en 8541 df-dom 8542 df-sdom 8543 df-pnf 10728 df-mnf 10729 df-xr 10730 df-ltxr 10731 df-le 10732 df-ico 12798 df-lo1 14909 |
This theorem is referenced by: ello1mpt2 14940 ello1d 14941 elo1mpt 14952 o1lo1 14955 lo1resb 14982 lo1add 15044 lo1mul 15045 lo1le 15069 |
Copyright terms: Public domain | W3C validator |