MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ello1mpt Structured version   Visualization version   GIF version

Theorem ello1mpt 15446
Description: Elementhood in the set of eventually upper bounded functions. (Contributed by Mario Carneiro, 26-May-2016.)
Hypotheses
Ref Expression
ello1mpt.1 (𝜑𝐴 ⊆ ℝ)
ello1mpt.2 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
Assertion
Ref Expression
ello1mpt (𝜑 → ((𝑥𝐴𝐵) ∈ ≤𝑂(1) ↔ ∃𝑦 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑥𝐴 (𝑦𝑥𝐵𝑚)))
Distinct variable groups:   𝑥,𝑚,𝑦,𝐴   𝐵,𝑚,𝑦   𝜑,𝑚,𝑥,𝑦
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem ello1mpt
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 ello1mpt.2 . . . 4 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
21fmpttd 7053 . . 3 (𝜑 → (𝑥𝐴𝐵):𝐴⟶ℝ)
3 ello1mpt.1 . . 3 (𝜑𝐴 ⊆ ℝ)
4 ello12 15441 . . 3 (((𝑥𝐴𝐵):𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) → ((𝑥𝐴𝐵) ∈ ≤𝑂(1) ↔ ∃𝑦 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑧𝐴 (𝑦𝑧 → ((𝑥𝐴𝐵)‘𝑧) ≤ 𝑚)))
52, 3, 4syl2anc 584 . 2 (𝜑 → ((𝑥𝐴𝐵) ∈ ≤𝑂(1) ↔ ∃𝑦 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑧𝐴 (𝑦𝑧 → ((𝑥𝐴𝐵)‘𝑧) ≤ 𝑚)))
6 nfv 1914 . . . . . 6 𝑥 𝑦𝑧
7 nffvmpt1 6837 . . . . . . 7 𝑥((𝑥𝐴𝐵)‘𝑧)
8 nfcv 2891 . . . . . . 7 𝑥
9 nfcv 2891 . . . . . . 7 𝑥𝑚
107, 8, 9nfbr 5142 . . . . . 6 𝑥((𝑥𝐴𝐵)‘𝑧) ≤ 𝑚
116, 10nfim 1896 . . . . 5 𝑥(𝑦𝑧 → ((𝑥𝐴𝐵)‘𝑧) ≤ 𝑚)
12 nfv 1914 . . . . 5 𝑧(𝑦𝑥 → ((𝑥𝐴𝐵)‘𝑥) ≤ 𝑚)
13 breq2 5099 . . . . . 6 (𝑧 = 𝑥 → (𝑦𝑧𝑦𝑥))
14 fveq2 6826 . . . . . . 7 (𝑧 = 𝑥 → ((𝑥𝐴𝐵)‘𝑧) = ((𝑥𝐴𝐵)‘𝑥))
1514breq1d 5105 . . . . . 6 (𝑧 = 𝑥 → (((𝑥𝐴𝐵)‘𝑧) ≤ 𝑚 ↔ ((𝑥𝐴𝐵)‘𝑥) ≤ 𝑚))
1613, 15imbi12d 344 . . . . 5 (𝑧 = 𝑥 → ((𝑦𝑧 → ((𝑥𝐴𝐵)‘𝑧) ≤ 𝑚) ↔ (𝑦𝑥 → ((𝑥𝐴𝐵)‘𝑥) ≤ 𝑚)))
1711, 12, 16cbvralw 3272 . . . 4 (∀𝑧𝐴 (𝑦𝑧 → ((𝑥𝐴𝐵)‘𝑧) ≤ 𝑚) ↔ ∀𝑥𝐴 (𝑦𝑥 → ((𝑥𝐴𝐵)‘𝑥) ≤ 𝑚))
18 simpr 484 . . . . . . . 8 ((𝜑𝑥𝐴) → 𝑥𝐴)
19 eqid 2729 . . . . . . . . 9 (𝑥𝐴𝐵) = (𝑥𝐴𝐵)
2019fvmpt2 6945 . . . . . . . 8 ((𝑥𝐴𝐵 ∈ ℝ) → ((𝑥𝐴𝐵)‘𝑥) = 𝐵)
2118, 1, 20syl2anc 584 . . . . . . 7 ((𝜑𝑥𝐴) → ((𝑥𝐴𝐵)‘𝑥) = 𝐵)
2221breq1d 5105 . . . . . 6 ((𝜑𝑥𝐴) → (((𝑥𝐴𝐵)‘𝑥) ≤ 𝑚𝐵𝑚))
2322imbi2d 340 . . . . 5 ((𝜑𝑥𝐴) → ((𝑦𝑥 → ((𝑥𝐴𝐵)‘𝑥) ≤ 𝑚) ↔ (𝑦𝑥𝐵𝑚)))
2423ralbidva 3150 . . . 4 (𝜑 → (∀𝑥𝐴 (𝑦𝑥 → ((𝑥𝐴𝐵)‘𝑥) ≤ 𝑚) ↔ ∀𝑥𝐴 (𝑦𝑥𝐵𝑚)))
2517, 24bitrid 283 . . 3 (𝜑 → (∀𝑧𝐴 (𝑦𝑧 → ((𝑥𝐴𝐵)‘𝑧) ≤ 𝑚) ↔ ∀𝑥𝐴 (𝑦𝑥𝐵𝑚)))
26252rexbidv 3194 . 2 (𝜑 → (∃𝑦 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑧𝐴 (𝑦𝑧 → ((𝑥𝐴𝐵)‘𝑧) ≤ 𝑚) ↔ ∃𝑦 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑥𝐴 (𝑦𝑥𝐵𝑚)))
275, 26bitrd 279 1 (𝜑 → ((𝑥𝐴𝐵) ∈ ≤𝑂(1) ↔ ∃𝑦 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑥𝐴 (𝑦𝑥𝐵𝑚)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3044  wrex 3053  wss 3905   class class class wbr 5095  cmpt 5176  wf 6482  cfv 6486  cr 11027  cle 11169  ≤𝑂(1)clo1 15412
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-pre-lttri 11102  ax-pre-lttrn 11103
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-po 5531  df-so 5532  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-ov 7356  df-oprab 7357  df-mpo 7358  df-er 8632  df-pm 8763  df-en 8880  df-dom 8881  df-sdom 8882  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-ico 13272  df-lo1 15416
This theorem is referenced by:  ello1mpt2  15447  ello1d  15448  elo1mpt  15459  o1lo1  15462  lo1resb  15489  lo1add  15552  lo1mul  15553  lo1le  15577
  Copyright terms: Public domain W3C validator