![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ello1mpt | Structured version Visualization version GIF version |
Description: Elementhood in the set of eventually upper bounded functions. (Contributed by Mario Carneiro, 26-May-2016.) |
Ref | Expression |
---|---|
ello1mpt.1 | ⊢ (𝜑 → 𝐴 ⊆ ℝ) |
ello1mpt.2 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ) |
Ref | Expression |
---|---|
ello1mpt | ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ 𝐵) ∈ ≤𝑂(1) ↔ ∃𝑦 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑥 ∈ 𝐴 (𝑦 ≤ 𝑥 → 𝐵 ≤ 𝑚))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ello1mpt.2 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ) | |
2 | 1 | fmpttd 7119 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵):𝐴⟶ℝ) |
3 | ello1mpt.1 | . . 3 ⊢ (𝜑 → 𝐴 ⊆ ℝ) | |
4 | ello12 15486 | . . 3 ⊢ (((𝑥 ∈ 𝐴 ↦ 𝐵):𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) → ((𝑥 ∈ 𝐴 ↦ 𝐵) ∈ ≤𝑂(1) ↔ ∃𝑦 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑧 ∈ 𝐴 (𝑦 ≤ 𝑧 → ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑧) ≤ 𝑚))) | |
5 | 2, 3, 4 | syl2anc 583 | . 2 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ 𝐵) ∈ ≤𝑂(1) ↔ ∃𝑦 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑧 ∈ 𝐴 (𝑦 ≤ 𝑧 → ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑧) ≤ 𝑚))) |
6 | nfv 1910 | . . . . . 6 ⊢ Ⅎ𝑥 𝑦 ≤ 𝑧 | |
7 | nffvmpt1 6902 | . . . . . . 7 ⊢ Ⅎ𝑥((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑧) | |
8 | nfcv 2898 | . . . . . . 7 ⊢ Ⅎ𝑥 ≤ | |
9 | nfcv 2898 | . . . . . . 7 ⊢ Ⅎ𝑥𝑚 | |
10 | 7, 8, 9 | nfbr 5189 | . . . . . 6 ⊢ Ⅎ𝑥((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑧) ≤ 𝑚 |
11 | 6, 10 | nfim 1892 | . . . . 5 ⊢ Ⅎ𝑥(𝑦 ≤ 𝑧 → ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑧) ≤ 𝑚) |
12 | nfv 1910 | . . . . 5 ⊢ Ⅎ𝑧(𝑦 ≤ 𝑥 → ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥) ≤ 𝑚) | |
13 | breq2 5146 | . . . . . 6 ⊢ (𝑧 = 𝑥 → (𝑦 ≤ 𝑧 ↔ 𝑦 ≤ 𝑥)) | |
14 | fveq2 6891 | . . . . . . 7 ⊢ (𝑧 = 𝑥 → ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑧) = ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥)) | |
15 | 14 | breq1d 5152 | . . . . . 6 ⊢ (𝑧 = 𝑥 → (((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑧) ≤ 𝑚 ↔ ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥) ≤ 𝑚)) |
16 | 13, 15 | imbi12d 344 | . . . . 5 ⊢ (𝑧 = 𝑥 → ((𝑦 ≤ 𝑧 → ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑧) ≤ 𝑚) ↔ (𝑦 ≤ 𝑥 → ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥) ≤ 𝑚))) |
17 | 11, 12, 16 | cbvralw 3298 | . . . 4 ⊢ (∀𝑧 ∈ 𝐴 (𝑦 ≤ 𝑧 → ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑧) ≤ 𝑚) ↔ ∀𝑥 ∈ 𝐴 (𝑦 ≤ 𝑥 → ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥) ≤ 𝑚)) |
18 | simpr 484 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ 𝐴) | |
19 | eqid 2727 | . . . . . . . . 9 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
20 | 19 | fvmpt2 7010 | . . . . . . . 8 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝐵 ∈ ℝ) → ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥) = 𝐵) |
21 | 18, 1, 20 | syl2anc 583 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥) = 𝐵) |
22 | 21 | breq1d 5152 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥) ≤ 𝑚 ↔ 𝐵 ≤ 𝑚)) |
23 | 22 | imbi2d 340 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ((𝑦 ≤ 𝑥 → ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥) ≤ 𝑚) ↔ (𝑦 ≤ 𝑥 → 𝐵 ≤ 𝑚))) |
24 | 23 | ralbidva 3170 | . . . 4 ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 (𝑦 ≤ 𝑥 → ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥) ≤ 𝑚) ↔ ∀𝑥 ∈ 𝐴 (𝑦 ≤ 𝑥 → 𝐵 ≤ 𝑚))) |
25 | 17, 24 | bitrid 283 | . . 3 ⊢ (𝜑 → (∀𝑧 ∈ 𝐴 (𝑦 ≤ 𝑧 → ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑧) ≤ 𝑚) ↔ ∀𝑥 ∈ 𝐴 (𝑦 ≤ 𝑥 → 𝐵 ≤ 𝑚))) |
26 | 25 | 2rexbidv 3214 | . 2 ⊢ (𝜑 → (∃𝑦 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑧 ∈ 𝐴 (𝑦 ≤ 𝑧 → ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑧) ≤ 𝑚) ↔ ∃𝑦 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑥 ∈ 𝐴 (𝑦 ≤ 𝑥 → 𝐵 ≤ 𝑚))) |
27 | 5, 26 | bitrd 279 | 1 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ 𝐵) ∈ ≤𝑂(1) ↔ ∃𝑦 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑥 ∈ 𝐴 (𝑦 ≤ 𝑥 → 𝐵 ≤ 𝑚))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1534 ∈ wcel 2099 ∀wral 3056 ∃wrex 3065 ⊆ wss 3944 class class class wbr 5142 ↦ cmpt 5225 ⟶wf 6538 ‘cfv 6542 ℝcr 11131 ≤ cle 11273 ≤𝑂(1)clo1 15457 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7734 ax-cnex 11188 ax-resscn 11189 ax-pre-lttri 11206 ax-pre-lttrn 11207 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-nel 3042 df-ral 3057 df-rex 3066 df-rab 3428 df-v 3471 df-sbc 3775 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-br 5143 df-opab 5205 df-mpt 5226 df-id 5570 df-po 5584 df-so 5585 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-ov 7417 df-oprab 7418 df-mpo 7419 df-er 8718 df-pm 8841 df-en 8958 df-dom 8959 df-sdom 8960 df-pnf 11274 df-mnf 11275 df-xr 11276 df-ltxr 11277 df-le 11278 df-ico 13356 df-lo1 15461 |
This theorem is referenced by: ello1mpt2 15492 ello1d 15493 elo1mpt 15504 o1lo1 15507 lo1resb 15534 lo1add 15597 lo1mul 15598 lo1le 15624 |
Copyright terms: Public domain | W3C validator |