MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ello1mpt Structured version   Visualization version   GIF version

Theorem ello1mpt 14868
Description: Elementhood in the set of eventually upper bounded functions. (Contributed by Mario Carneiro, 26-May-2016.)
Hypotheses
Ref Expression
ello1mpt.1 (𝜑𝐴 ⊆ ℝ)
ello1mpt.2 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
Assertion
Ref Expression
ello1mpt (𝜑 → ((𝑥𝐴𝐵) ∈ ≤𝑂(1) ↔ ∃𝑦 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑥𝐴 (𝑦𝑥𝐵𝑚)))
Distinct variable groups:   𝑥,𝑚,𝑦,𝐴   𝐵,𝑚,𝑦   𝜑,𝑚,𝑥,𝑦
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem ello1mpt
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 ello1mpt.2 . . . 4 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
21fmpttd 6875 . . 3 (𝜑 → (𝑥𝐴𝐵):𝐴⟶ℝ)
3 ello1mpt.1 . . 3 (𝜑𝐴 ⊆ ℝ)
4 ello12 14863 . . 3 (((𝑥𝐴𝐵):𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) → ((𝑥𝐴𝐵) ∈ ≤𝑂(1) ↔ ∃𝑦 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑧𝐴 (𝑦𝑧 → ((𝑥𝐴𝐵)‘𝑧) ≤ 𝑚)))
52, 3, 4syl2anc 584 . 2 (𝜑 → ((𝑥𝐴𝐵) ∈ ≤𝑂(1) ↔ ∃𝑦 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑧𝐴 (𝑦𝑧 → ((𝑥𝐴𝐵)‘𝑧) ≤ 𝑚)))
6 nfv 1908 . . . . . 6 𝑥 𝑦𝑧
7 nffvmpt1 6678 . . . . . . 7 𝑥((𝑥𝐴𝐵)‘𝑧)
8 nfcv 2982 . . . . . . 7 𝑥
9 nfcv 2982 . . . . . . 7 𝑥𝑚
107, 8, 9nfbr 5110 . . . . . 6 𝑥((𝑥𝐴𝐵)‘𝑧) ≤ 𝑚
116, 10nfim 1890 . . . . 5 𝑥(𝑦𝑧 → ((𝑥𝐴𝐵)‘𝑧) ≤ 𝑚)
12 nfv 1908 . . . . 5 𝑧(𝑦𝑥 → ((𝑥𝐴𝐵)‘𝑥) ≤ 𝑚)
13 breq2 5067 . . . . . 6 (𝑧 = 𝑥 → (𝑦𝑧𝑦𝑥))
14 fveq2 6667 . . . . . . 7 (𝑧 = 𝑥 → ((𝑥𝐴𝐵)‘𝑧) = ((𝑥𝐴𝐵)‘𝑥))
1514breq1d 5073 . . . . . 6 (𝑧 = 𝑥 → (((𝑥𝐴𝐵)‘𝑧) ≤ 𝑚 ↔ ((𝑥𝐴𝐵)‘𝑥) ≤ 𝑚))
1613, 15imbi12d 346 . . . . 5 (𝑧 = 𝑥 → ((𝑦𝑧 → ((𝑥𝐴𝐵)‘𝑧) ≤ 𝑚) ↔ (𝑦𝑥 → ((𝑥𝐴𝐵)‘𝑥) ≤ 𝑚)))
1711, 12, 16cbvralw 3447 . . . 4 (∀𝑧𝐴 (𝑦𝑧 → ((𝑥𝐴𝐵)‘𝑧) ≤ 𝑚) ↔ ∀𝑥𝐴 (𝑦𝑥 → ((𝑥𝐴𝐵)‘𝑥) ≤ 𝑚))
18 simpr 485 . . . . . . . 8 ((𝜑𝑥𝐴) → 𝑥𝐴)
19 eqid 2826 . . . . . . . . 9 (𝑥𝐴𝐵) = (𝑥𝐴𝐵)
2019fvmpt2 6775 . . . . . . . 8 ((𝑥𝐴𝐵 ∈ ℝ) → ((𝑥𝐴𝐵)‘𝑥) = 𝐵)
2118, 1, 20syl2anc 584 . . . . . . 7 ((𝜑𝑥𝐴) → ((𝑥𝐴𝐵)‘𝑥) = 𝐵)
2221breq1d 5073 . . . . . 6 ((𝜑𝑥𝐴) → (((𝑥𝐴𝐵)‘𝑥) ≤ 𝑚𝐵𝑚))
2322imbi2d 342 . . . . 5 ((𝜑𝑥𝐴) → ((𝑦𝑥 → ((𝑥𝐴𝐵)‘𝑥) ≤ 𝑚) ↔ (𝑦𝑥𝐵𝑚)))
2423ralbidva 3201 . . . 4 (𝜑 → (∀𝑥𝐴 (𝑦𝑥 → ((𝑥𝐴𝐵)‘𝑥) ≤ 𝑚) ↔ ∀𝑥𝐴 (𝑦𝑥𝐵𝑚)))
2517, 24syl5bb 284 . . 3 (𝜑 → (∀𝑧𝐴 (𝑦𝑧 → ((𝑥𝐴𝐵)‘𝑧) ≤ 𝑚) ↔ ∀𝑥𝐴 (𝑦𝑥𝐵𝑚)))
26252rexbidv 3305 . 2 (𝜑 → (∃𝑦 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑧𝐴 (𝑦𝑧 → ((𝑥𝐴𝐵)‘𝑧) ≤ 𝑚) ↔ ∃𝑦 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑥𝐴 (𝑦𝑥𝐵𝑚)))
275, 26bitrd 280 1 (𝜑 → ((𝑥𝐴𝐵) ∈ ≤𝑂(1) ↔ ∃𝑦 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑥𝐴 (𝑦𝑥𝐵𝑚)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396   = wceq 1530  wcel 2107  wral 3143  wrex 3144  wss 3940   class class class wbr 5063  cmpt 5143  wf 6348  cfv 6352  cr 10525  cle 10665  ≤𝑂(1)clo1 14834
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2798  ax-sep 5200  ax-nul 5207  ax-pow 5263  ax-pr 5326  ax-un 7451  ax-cnex 10582  ax-resscn 10583  ax-pre-lttri 10600  ax-pre-lttrn 10601
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2620  df-eu 2652  df-clab 2805  df-cleq 2819  df-clel 2898  df-nfc 2968  df-ne 3022  df-nel 3129  df-ral 3148  df-rex 3149  df-rab 3152  df-v 3502  df-sbc 3777  df-csb 3888  df-dif 3943  df-un 3945  df-in 3947  df-ss 3956  df-nul 4296  df-if 4471  df-pw 4544  df-sn 4565  df-pr 4567  df-op 4571  df-uni 4838  df-br 5064  df-opab 5126  df-mpt 5144  df-id 5459  df-po 5473  df-so 5474  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-iota 6312  df-fun 6354  df-fn 6355  df-f 6356  df-f1 6357  df-fo 6358  df-f1o 6359  df-fv 6360  df-ov 7151  df-oprab 7152  df-mpo 7153  df-er 8279  df-pm 8399  df-en 8499  df-dom 8500  df-sdom 8501  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-ico 12734  df-lo1 14838
This theorem is referenced by:  ello1mpt2  14869  ello1d  14870  elo1mpt  14881  o1lo1  14884  lo1resb  14911  lo1add  14973  lo1mul  14974  lo1le  14998
  Copyright terms: Public domain W3C validator