MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  o1const Structured version   Visualization version   GIF version

Theorem o1const 15586
Description: A constant function is eventually bounded. (Contributed by Mario Carneiro, 15-Sep-2014.) (Proof shortened by Mario Carneiro, 26-May-2016.)
Assertion
Ref Expression
o1const ((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℂ) → (𝑥𝐴𝐵) ∈ 𝑂(1))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem o1const
StepHypRef Expression
1 rlimconst 15510 . 2 ((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℂ) → (𝑥𝐴𝐵) ⇝𝑟 𝐵)
2 rlimo1 15583 . 2 ((𝑥𝐴𝐵) ⇝𝑟 𝐵 → (𝑥𝐴𝐵) ∈ 𝑂(1))
31, 2syl 17 1 ((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℂ) → (𝑥𝐴𝐵) ∈ 𝑂(1))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2109  wss 3914   class class class wbr 5107  cmpt 5188  cc 11066  cr 11067  𝑟 crli 15451  𝑂(1)co1 15452
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-er 8671  df-pm 8802  df-en 8919  df-dom 8920  df-sdom 8921  df-sup 9393  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-n0 12443  df-z 12530  df-uz 12794  df-rp 12952  df-ico 13312  df-seq 13967  df-exp 14027  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-rlim 15455  df-o1 15456
This theorem is referenced by:  fsumo1  15778  dchrmusum2  27405  dchrvmasumlem2  27409  dchrvmasumiflem2  27413  dchrisum0fno1  27422  rpvmasum2  27423  dchrisum0lem1  27427  dchrisum0lem2a  27428  dchrisum0lem2  27429  dchrmusumlem  27433  rplogsum  27438  dirith2  27439  mulogsumlem  27442  mulogsum  27443  mulog2sumlem2  27446  mulog2sumlem3  27447  vmalogdivsum2  27449  2vmadivsumlem  27451  selberglem1  27456  selberg3lem1  27468  selberg4lem1  27471  selberg4  27472  pntrmax  27475  pntrsumo1  27476  selberg3r  27480  selberg4r  27481  selberg34r  27482  pntrlog2bndlem2  27489  pntrlog2bndlem3  27490  pntrlog2bndlem4  27491
  Copyright terms: Public domain W3C validator