MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  o1const Structured version   Visualization version   GIF version

Theorem o1const 14687
Description: A constant function is eventually bounded. (Contributed by Mario Carneiro, 15-Sep-2014.) (Proof shortened by Mario Carneiro, 26-May-2016.)
Assertion
Ref Expression
o1const ((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℂ) → (𝑥𝐴𝐵) ∈ 𝑂(1))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem o1const
StepHypRef Expression
1 rlimconst 14612 . 2 ((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℂ) → (𝑥𝐴𝐵) ⇝𝑟 𝐵)
2 rlimo1 14684 . 2 ((𝑥𝐴𝐵) ⇝𝑟 𝐵 → (𝑥𝐴𝐵) ∈ 𝑂(1))
31, 2syl 17 1 ((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℂ) → (𝑥𝐴𝐵) ∈ 𝑂(1))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 385  wcel 2157  wss 3767   class class class wbr 4841  cmpt 4920  cc 10220  cr 10221  𝑟 crli 14553  𝑂(1)co1 14554
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-8 2159  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2375  ax-ext 2775  ax-sep 4973  ax-nul 4981  ax-pow 5033  ax-pr 5095  ax-un 7181  ax-cnex 10278  ax-resscn 10279  ax-1cn 10280  ax-icn 10281  ax-addcl 10282  ax-addrcl 10283  ax-mulcl 10284  ax-mulrcl 10285  ax-mulcom 10286  ax-addass 10287  ax-mulass 10288  ax-distr 10289  ax-i2m1 10290  ax-1ne0 10291  ax-1rid 10292  ax-rnegex 10293  ax-rrecex 10294  ax-cnre 10295  ax-pre-lttri 10296  ax-pre-lttrn 10297  ax-pre-ltadd 10298  ax-pre-mulgt0 10299  ax-pre-sup 10300
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3or 1109  df-3an 1110  df-tru 1657  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2590  df-eu 2607  df-clab 2784  df-cleq 2790  df-clel 2793  df-nfc 2928  df-ne 2970  df-nel 3073  df-ral 3092  df-rex 3093  df-reu 3094  df-rmo 3095  df-rab 3096  df-v 3385  df-sbc 3632  df-csb 3727  df-dif 3770  df-un 3772  df-in 3774  df-ss 3781  df-pss 3783  df-nul 4114  df-if 4276  df-pw 4349  df-sn 4367  df-pr 4369  df-tp 4371  df-op 4373  df-uni 4627  df-iun 4710  df-br 4842  df-opab 4904  df-mpt 4921  df-tr 4944  df-id 5218  df-eprel 5223  df-po 5231  df-so 5232  df-fr 5269  df-we 5271  df-xp 5316  df-rel 5317  df-cnv 5318  df-co 5319  df-dm 5320  df-rn 5321  df-res 5322  df-ima 5323  df-pred 5896  df-ord 5942  df-on 5943  df-lim 5944  df-suc 5945  df-iota 6062  df-fun 6101  df-fn 6102  df-f 6103  df-f1 6104  df-fo 6105  df-f1o 6106  df-fv 6107  df-riota 6837  df-ov 6879  df-oprab 6880  df-mpt2 6881  df-om 7298  df-2nd 7400  df-wrecs 7643  df-recs 7705  df-rdg 7743  df-er 7980  df-pm 8096  df-en 8194  df-dom 8195  df-sdom 8196  df-sup 8588  df-pnf 10363  df-mnf 10364  df-xr 10365  df-ltxr 10366  df-le 10367  df-sub 10556  df-neg 10557  df-div 10975  df-nn 11311  df-2 11372  df-3 11373  df-n0 11577  df-z 11663  df-uz 11927  df-rp 12071  df-ico 12426  df-seq 13052  df-exp 13111  df-cj 14176  df-re 14177  df-im 14178  df-sqrt 14312  df-abs 14313  df-rlim 14557  df-o1 14558
This theorem is referenced by:  fsumo1  14878  dchrmusum2  25531  dchrvmasumlem2  25535  dchrvmasumiflem2  25539  dchrisum0fno1  25548  rpvmasum2  25549  dchrisum0lem1  25553  dchrisum0lem2a  25554  dchrisum0lem2  25555  dchrmusumlem  25559  rplogsum  25564  dirith2  25565  mulogsumlem  25568  mulogsum  25569  mulog2sumlem2  25572  mulog2sumlem3  25573  vmalogdivsum2  25575  2vmadivsumlem  25577  selberglem1  25582  selberg3lem1  25594  selberg4lem1  25597  selberg4  25598  pntrmax  25601  pntrsumo1  25602  selberg3r  25606  selberg4r  25607  selberg34r  25608  pntrlog2bndlem2  25615  pntrlog2bndlem3  25616  pntrlog2bndlem4  25617
  Copyright terms: Public domain W3C validator