MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  o1const Structured version   Visualization version   GIF version

Theorem o1const 15408
Description: A constant function is eventually bounded. (Contributed by Mario Carneiro, 15-Sep-2014.) (Proof shortened by Mario Carneiro, 26-May-2016.)
Assertion
Ref Expression
o1const ((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℂ) → (𝑥𝐴𝐵) ∈ 𝑂(1))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem o1const
StepHypRef Expression
1 rlimconst 15332 . 2 ((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℂ) → (𝑥𝐴𝐵) ⇝𝑟 𝐵)
2 rlimo1 15405 . 2 ((𝑥𝐴𝐵) ⇝𝑟 𝐵 → (𝑥𝐴𝐵) ∈ 𝑂(1))
31, 2syl 17 1 ((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℂ) → (𝑥𝐴𝐵) ∈ 𝑂(1))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wcel 2105  wss 3897   class class class wbr 5087  cmpt 5170  cc 10949  cr 10950  𝑟 crli 15273  𝑂(1)co1 15274
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2708  ax-sep 5238  ax-nul 5245  ax-pow 5303  ax-pr 5367  ax-un 7630  ax-cnex 11007  ax-resscn 11008  ax-1cn 11009  ax-icn 11010  ax-addcl 11011  ax-addrcl 11012  ax-mulcl 11013  ax-mulrcl 11014  ax-mulcom 11015  ax-addass 11016  ax-mulass 11017  ax-distr 11018  ax-i2m1 11019  ax-1ne0 11020  ax-1rid 11021  ax-rnegex 11022  ax-rrecex 11023  ax-cnre 11024  ax-pre-lttri 11025  ax-pre-lttrn 11026  ax-pre-ltadd 11027  ax-pre-mulgt0 11028  ax-pre-sup 11029
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3350  df-reu 3351  df-rab 3405  df-v 3443  df-sbc 3727  df-csb 3843  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3916  df-nul 4268  df-if 4472  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4851  df-iun 4939  df-br 5088  df-opab 5150  df-mpt 5171  df-tr 5205  df-id 5507  df-eprel 5513  df-po 5521  df-so 5522  df-fr 5563  df-we 5565  df-xp 5614  df-rel 5615  df-cnv 5616  df-co 5617  df-dm 5618  df-rn 5619  df-res 5620  df-ima 5621  df-pred 6225  df-ord 6292  df-on 6293  df-lim 6294  df-suc 6295  df-iota 6418  df-fun 6468  df-fn 6469  df-f 6470  df-f1 6471  df-fo 6472  df-f1o 6473  df-fv 6474  df-riota 7274  df-ov 7320  df-oprab 7321  df-mpo 7322  df-om 7760  df-2nd 7879  df-frecs 8146  df-wrecs 8177  df-recs 8251  df-rdg 8290  df-er 8548  df-pm 8668  df-en 8784  df-dom 8785  df-sdom 8786  df-sup 9278  df-pnf 11091  df-mnf 11092  df-xr 11093  df-ltxr 11094  df-le 11095  df-sub 11287  df-neg 11288  df-div 11713  df-nn 12054  df-2 12116  df-3 12117  df-n0 12314  df-z 12400  df-uz 12663  df-rp 12811  df-ico 13165  df-seq 13802  df-exp 13863  df-cj 14889  df-re 14890  df-im 14891  df-sqrt 15025  df-abs 15026  df-rlim 15277  df-o1 15278
This theorem is referenced by:  fsumo1  15603  dchrmusum2  26725  dchrvmasumlem2  26729  dchrvmasumiflem2  26733  dchrisum0fno1  26742  rpvmasum2  26743  dchrisum0lem1  26747  dchrisum0lem2a  26748  dchrisum0lem2  26749  dchrmusumlem  26753  rplogsum  26758  dirith2  26759  mulogsumlem  26762  mulogsum  26763  mulog2sumlem2  26766  mulog2sumlem3  26767  vmalogdivsum2  26769  2vmadivsumlem  26771  selberglem1  26776  selberg3lem1  26788  selberg4lem1  26791  selberg4  26792  pntrmax  26795  pntrsumo1  26796  selberg3r  26800  selberg4r  26801  selberg34r  26802  pntrlog2bndlem2  26809  pntrlog2bndlem3  26810  pntrlog2bndlem4  26811
  Copyright terms: Public domain W3C validator