MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  o1const Structured version   Visualization version   GIF version

Theorem o1const 15545
Description: A constant function is eventually bounded. (Contributed by Mario Carneiro, 15-Sep-2014.) (Proof shortened by Mario Carneiro, 26-May-2016.)
Assertion
Ref Expression
o1const ((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℂ) → (𝑥𝐴𝐵) ∈ 𝑂(1))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem o1const
StepHypRef Expression
1 rlimconst 15469 . 2 ((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℂ) → (𝑥𝐴𝐵) ⇝𝑟 𝐵)
2 rlimo1 15542 . 2 ((𝑥𝐴𝐵) ⇝𝑟 𝐵 → (𝑥𝐴𝐵) ∈ 𝑂(1))
31, 2syl 17 1 ((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℂ) → (𝑥𝐴𝐵) ∈ 𝑂(1))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2109  wss 3905   class class class wbr 5095  cmpt 5176  cc 11026  cr 11027  𝑟 crli 15410  𝑂(1)co1 15411
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-pre-sup 11106
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-er 8632  df-pm 8763  df-en 8880  df-dom 8881  df-sdom 8882  df-sup 9351  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-div 11796  df-nn 12147  df-2 12209  df-3 12210  df-n0 12403  df-z 12490  df-uz 12754  df-rp 12912  df-ico 13272  df-seq 13927  df-exp 13987  df-cj 15024  df-re 15025  df-im 15026  df-sqrt 15160  df-abs 15161  df-rlim 15414  df-o1 15415
This theorem is referenced by:  fsumo1  15737  dchrmusum2  27421  dchrvmasumlem2  27425  dchrvmasumiflem2  27429  dchrisum0fno1  27438  rpvmasum2  27439  dchrisum0lem1  27443  dchrisum0lem2a  27444  dchrisum0lem2  27445  dchrmusumlem  27449  rplogsum  27454  dirith2  27455  mulogsumlem  27458  mulogsum  27459  mulog2sumlem2  27462  mulog2sumlem3  27463  vmalogdivsum2  27465  2vmadivsumlem  27467  selberglem1  27472  selberg3lem1  27484  selberg4lem1  27487  selberg4  27488  pntrmax  27491  pntrsumo1  27492  selberg3r  27496  selberg4r  27497  selberg34r  27498  pntrlog2bndlem2  27505  pntrlog2bndlem3  27506  pntrlog2bndlem4  27507
  Copyright terms: Public domain W3C validator