MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ello1d Structured version   Visualization version   GIF version

Theorem ello1d 14880
Description: Sufficient condition for elementhood in the set of eventually upper bounded functions. (Contributed by Mario Carneiro, 26-May-2016.)
Hypotheses
Ref Expression
ello1mpt.1 (𝜑𝐴 ⊆ ℝ)
ello1mpt.2 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
ello1d.3 (𝜑𝐶 ∈ ℝ)
ello1d.4 (𝜑𝑀 ∈ ℝ)
ello1d.5 ((𝜑 ∧ (𝑥𝐴𝐶𝑥)) → 𝐵𝑀)
Assertion
Ref Expression
ello1d (𝜑 → (𝑥𝐴𝐵) ∈ ≤𝑂(1))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐶   𝜑,𝑥   𝑥,𝑀
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem ello1d
Dummy variables 𝑚 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ello1d.3 . . 3 (𝜑𝐶 ∈ ℝ)
2 ello1d.4 . . 3 (𝜑𝑀 ∈ ℝ)
3 ello1d.5 . . . . 5 ((𝜑 ∧ (𝑥𝐴𝐶𝑥)) → 𝐵𝑀)
43expr 460 . . . 4 ((𝜑𝑥𝐴) → (𝐶𝑥𝐵𝑀))
54ralrimiva 3177 . . 3 (𝜑 → ∀𝑥𝐴 (𝐶𝑥𝐵𝑀))
6 breq1 5055 . . . . . 6 (𝑦 = 𝐶 → (𝑦𝑥𝐶𝑥))
76imbi1d 345 . . . . 5 (𝑦 = 𝐶 → ((𝑦𝑥𝐵𝑚) ↔ (𝐶𝑥𝐵𝑚)))
87ralbidv 3192 . . . 4 (𝑦 = 𝐶 → (∀𝑥𝐴 (𝑦𝑥𝐵𝑚) ↔ ∀𝑥𝐴 (𝐶𝑥𝐵𝑚)))
9 breq2 5056 . . . . . 6 (𝑚 = 𝑀 → (𝐵𝑚𝐵𝑀))
109imbi2d 344 . . . . 5 (𝑚 = 𝑀 → ((𝐶𝑥𝐵𝑚) ↔ (𝐶𝑥𝐵𝑀)))
1110ralbidv 3192 . . . 4 (𝑚 = 𝑀 → (∀𝑥𝐴 (𝐶𝑥𝐵𝑚) ↔ ∀𝑥𝐴 (𝐶𝑥𝐵𝑀)))
128, 11rspc2ev 3621 . . 3 ((𝐶 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ ∀𝑥𝐴 (𝐶𝑥𝐵𝑀)) → ∃𝑦 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑥𝐴 (𝑦𝑥𝐵𝑚))
131, 2, 5, 12syl3anc 1368 . 2 (𝜑 → ∃𝑦 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑥𝐴 (𝑦𝑥𝐵𝑚))
14 ello1mpt.1 . . 3 (𝜑𝐴 ⊆ ℝ)
15 ello1mpt.2 . . 3 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
1614, 15ello1mpt 14878 . 2 (𝜑 → ((𝑥𝐴𝐵) ∈ ≤𝑂(1) ↔ ∃𝑦 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑥𝐴 (𝑦𝑥𝐵𝑚)))
1713, 16mpbird 260 1 (𝜑 → (𝑥𝐴𝐵) ∈ ≤𝑂(1))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wcel 2115  wral 3133  wrex 3134  wss 3919   class class class wbr 5052  cmpt 5132  cr 10534  cle 10674  ≤𝑂(1)clo1 14844
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-sep 5189  ax-nul 5196  ax-pow 5253  ax-pr 5317  ax-un 7455  ax-cnex 10591  ax-resscn 10592  ax-pre-lttri 10609  ax-pre-lttrn 10610
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-nel 3119  df-ral 3138  df-rex 3139  df-rab 3142  df-v 3482  df-sbc 3759  df-csb 3867  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-nul 4277  df-if 4451  df-pw 4524  df-sn 4551  df-pr 4553  df-op 4557  df-uni 4825  df-br 5053  df-opab 5115  df-mpt 5133  df-id 5447  df-po 5461  df-so 5462  df-xp 5548  df-rel 5549  df-cnv 5550  df-co 5551  df-dm 5552  df-rn 5553  df-res 5554  df-ima 5555  df-iota 6302  df-fun 6345  df-fn 6346  df-f 6347  df-f1 6348  df-fo 6349  df-f1o 6350  df-fv 6351  df-ov 7152  df-oprab 7153  df-mpo 7154  df-er 8285  df-pm 8405  df-en 8506  df-dom 8507  df-sdom 8508  df-pnf 10675  df-mnf 10676  df-xr 10677  df-ltxr 10678  df-le 10679  df-ico 12741  df-lo1 14848
This theorem is referenced by:  elo1d  14893  o1lo12  14895  icco1  14897  lo1const  14977  dirith2  26118  pntrlog2bndlem4  26170  pntrlog2bndlem6  26173
  Copyright terms: Public domain W3C validator