Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ello1d | Structured version Visualization version GIF version |
Description: Sufficient condition for elementhood in the set of eventually upper bounded functions. (Contributed by Mario Carneiro, 26-May-2016.) |
Ref | Expression |
---|---|
ello1mpt.1 | ⊢ (𝜑 → 𝐴 ⊆ ℝ) |
ello1mpt.2 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ) |
ello1d.3 | ⊢ (𝜑 → 𝐶 ∈ ℝ) |
ello1d.4 | ⊢ (𝜑 → 𝑀 ∈ ℝ) |
ello1d.5 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝐶 ≤ 𝑥)) → 𝐵 ≤ 𝑀) |
Ref | Expression |
---|---|
ello1d | ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ ≤𝑂(1)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ello1d.3 | . . 3 ⊢ (𝜑 → 𝐶 ∈ ℝ) | |
2 | ello1d.4 | . . 3 ⊢ (𝜑 → 𝑀 ∈ ℝ) | |
3 | ello1d.5 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝐶 ≤ 𝑥)) → 𝐵 ≤ 𝑀) | |
4 | 3 | expr 457 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐶 ≤ 𝑥 → 𝐵 ≤ 𝑀)) |
5 | 4 | ralrimiva 3139 | . . 3 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 (𝐶 ≤ 𝑥 → 𝐵 ≤ 𝑀)) |
6 | breq1 5092 | . . . . . 6 ⊢ (𝑦 = 𝐶 → (𝑦 ≤ 𝑥 ↔ 𝐶 ≤ 𝑥)) | |
7 | 6 | imbi1d 341 | . . . . 5 ⊢ (𝑦 = 𝐶 → ((𝑦 ≤ 𝑥 → 𝐵 ≤ 𝑚) ↔ (𝐶 ≤ 𝑥 → 𝐵 ≤ 𝑚))) |
8 | 7 | ralbidv 3170 | . . . 4 ⊢ (𝑦 = 𝐶 → (∀𝑥 ∈ 𝐴 (𝑦 ≤ 𝑥 → 𝐵 ≤ 𝑚) ↔ ∀𝑥 ∈ 𝐴 (𝐶 ≤ 𝑥 → 𝐵 ≤ 𝑚))) |
9 | breq2 5093 | . . . . . 6 ⊢ (𝑚 = 𝑀 → (𝐵 ≤ 𝑚 ↔ 𝐵 ≤ 𝑀)) | |
10 | 9 | imbi2d 340 | . . . . 5 ⊢ (𝑚 = 𝑀 → ((𝐶 ≤ 𝑥 → 𝐵 ≤ 𝑚) ↔ (𝐶 ≤ 𝑥 → 𝐵 ≤ 𝑀))) |
11 | 10 | ralbidv 3170 | . . . 4 ⊢ (𝑚 = 𝑀 → (∀𝑥 ∈ 𝐴 (𝐶 ≤ 𝑥 → 𝐵 ≤ 𝑚) ↔ ∀𝑥 ∈ 𝐴 (𝐶 ≤ 𝑥 → 𝐵 ≤ 𝑀))) |
12 | 8, 11 | rspc2ev 3581 | . . 3 ⊢ ((𝐶 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ ∀𝑥 ∈ 𝐴 (𝐶 ≤ 𝑥 → 𝐵 ≤ 𝑀)) → ∃𝑦 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑥 ∈ 𝐴 (𝑦 ≤ 𝑥 → 𝐵 ≤ 𝑚)) |
13 | 1, 2, 5, 12 | syl3anc 1370 | . 2 ⊢ (𝜑 → ∃𝑦 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑥 ∈ 𝐴 (𝑦 ≤ 𝑥 → 𝐵 ≤ 𝑚)) |
14 | ello1mpt.1 | . . 3 ⊢ (𝜑 → 𝐴 ⊆ ℝ) | |
15 | ello1mpt.2 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ) | |
16 | 14, 15 | ello1mpt 15321 | . 2 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ 𝐵) ∈ ≤𝑂(1) ↔ ∃𝑦 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑥 ∈ 𝐴 (𝑦 ≤ 𝑥 → 𝐵 ≤ 𝑚))) |
17 | 13, 16 | mpbird 256 | 1 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ ≤𝑂(1)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1540 ∈ wcel 2105 ∀wral 3061 ∃wrex 3070 ⊆ wss 3897 class class class wbr 5089 ↦ cmpt 5172 ℝcr 10963 ≤ cle 11103 ≤𝑂(1)clo1 15287 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-sep 5240 ax-nul 5247 ax-pow 5305 ax-pr 5369 ax-un 7642 ax-cnex 11020 ax-resscn 11021 ax-pre-lttri 11038 ax-pre-lttrn 11039 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rab 3404 df-v 3443 df-sbc 3727 df-csb 3843 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4269 df-if 4473 df-pw 4548 df-sn 4573 df-pr 4575 df-op 4579 df-uni 4852 df-br 5090 df-opab 5152 df-mpt 5173 df-id 5512 df-po 5526 df-so 5527 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6425 df-fun 6475 df-fn 6476 df-f 6477 df-f1 6478 df-fo 6479 df-f1o 6480 df-fv 6481 df-ov 7332 df-oprab 7333 df-mpo 7334 df-er 8561 df-pm 8681 df-en 8797 df-dom 8798 df-sdom 8799 df-pnf 11104 df-mnf 11105 df-xr 11106 df-ltxr 11107 df-le 11108 df-ico 13178 df-lo1 15291 |
This theorem is referenced by: elo1d 15336 o1lo12 15338 icco1 15340 lo1const 15421 dirith2 26774 pntrlog2bndlem4 26826 pntrlog2bndlem6 26829 |
Copyright terms: Public domain | W3C validator |