MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ello1d Structured version   Visualization version   GIF version

Theorem ello1d 14874
Description: Sufficient condition for elementhood in the set of eventually upper bounded functions. (Contributed by Mario Carneiro, 26-May-2016.)
Hypotheses
Ref Expression
ello1mpt.1 (𝜑𝐴 ⊆ ℝ)
ello1mpt.2 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
ello1d.3 (𝜑𝐶 ∈ ℝ)
ello1d.4 (𝜑𝑀 ∈ ℝ)
ello1d.5 ((𝜑 ∧ (𝑥𝐴𝐶𝑥)) → 𝐵𝑀)
Assertion
Ref Expression
ello1d (𝜑 → (𝑥𝐴𝐵) ∈ ≤𝑂(1))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐶   𝜑,𝑥   𝑥,𝑀
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem ello1d
Dummy variables 𝑚 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ello1d.3 . . 3 (𝜑𝐶 ∈ ℝ)
2 ello1d.4 . . 3 (𝜑𝑀 ∈ ℝ)
3 ello1d.5 . . . . 5 ((𝜑 ∧ (𝑥𝐴𝐶𝑥)) → 𝐵𝑀)
43expr 459 . . . 4 ((𝜑𝑥𝐴) → (𝐶𝑥𝐵𝑀))
54ralrimiva 3182 . . 3 (𝜑 → ∀𝑥𝐴 (𝐶𝑥𝐵𝑀))
6 breq1 5061 . . . . . 6 (𝑦 = 𝐶 → (𝑦𝑥𝐶𝑥))
76imbi1d 344 . . . . 5 (𝑦 = 𝐶 → ((𝑦𝑥𝐵𝑚) ↔ (𝐶𝑥𝐵𝑚)))
87ralbidv 3197 . . . 4 (𝑦 = 𝐶 → (∀𝑥𝐴 (𝑦𝑥𝐵𝑚) ↔ ∀𝑥𝐴 (𝐶𝑥𝐵𝑚)))
9 breq2 5062 . . . . . 6 (𝑚 = 𝑀 → (𝐵𝑚𝐵𝑀))
109imbi2d 343 . . . . 5 (𝑚 = 𝑀 → ((𝐶𝑥𝐵𝑚) ↔ (𝐶𝑥𝐵𝑀)))
1110ralbidv 3197 . . . 4 (𝑚 = 𝑀 → (∀𝑥𝐴 (𝐶𝑥𝐵𝑚) ↔ ∀𝑥𝐴 (𝐶𝑥𝐵𝑀)))
128, 11rspc2ev 3634 . . 3 ((𝐶 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ ∀𝑥𝐴 (𝐶𝑥𝐵𝑀)) → ∃𝑦 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑥𝐴 (𝑦𝑥𝐵𝑚))
131, 2, 5, 12syl3anc 1367 . 2 (𝜑 → ∃𝑦 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑥𝐴 (𝑦𝑥𝐵𝑚))
14 ello1mpt.1 . . 3 (𝜑𝐴 ⊆ ℝ)
15 ello1mpt.2 . . 3 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
1614, 15ello1mpt 14872 . 2 (𝜑 → ((𝑥𝐴𝐵) ∈ ≤𝑂(1) ↔ ∃𝑦 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑥𝐴 (𝑦𝑥𝐵𝑚)))
1713, 16mpbird 259 1 (𝜑 → (𝑥𝐴𝐵) ∈ ≤𝑂(1))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1533  wcel 2110  wral 3138  wrex 3139  wss 3935   class class class wbr 5058  cmpt 5138  cr 10530  cle 10670  ≤𝑂(1)clo1 14838
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-pre-lttri 10605  ax-pre-lttrn 10606
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-op 4567  df-uni 4832  df-br 5059  df-opab 5121  df-mpt 5139  df-id 5454  df-po 5468  df-so 5469  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-ov 7153  df-oprab 7154  df-mpo 7155  df-er 8283  df-pm 8403  df-en 8504  df-dom 8505  df-sdom 8506  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-ico 12738  df-lo1 14842
This theorem is referenced by:  elo1d  14887  o1lo12  14889  icco1  14891  lo1const  14971  dirith2  26098  pntrlog2bndlem4  26150  pntrlog2bndlem6  26153
  Copyright terms: Public domain W3C validator