![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ello1d | Structured version Visualization version GIF version |
Description: Sufficient condition for elementhood in the set of eventually upper bounded functions. (Contributed by Mario Carneiro, 26-May-2016.) |
Ref | Expression |
---|---|
ello1mpt.1 | ⊢ (𝜑 → 𝐴 ⊆ ℝ) |
ello1mpt.2 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ) |
ello1d.3 | ⊢ (𝜑 → 𝐶 ∈ ℝ) |
ello1d.4 | ⊢ (𝜑 → 𝑀 ∈ ℝ) |
ello1d.5 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝐶 ≤ 𝑥)) → 𝐵 ≤ 𝑀) |
Ref | Expression |
---|---|
ello1d | ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ ≤𝑂(1)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ello1d.3 | . . 3 ⊢ (𝜑 → 𝐶 ∈ ℝ) | |
2 | ello1d.4 | . . 3 ⊢ (𝜑 → 𝑀 ∈ ℝ) | |
3 | ello1d.5 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝐶 ≤ 𝑥)) → 𝐵 ≤ 𝑀) | |
4 | 3 | expr 449 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐶 ≤ 𝑥 → 𝐵 ≤ 𝑀)) |
5 | 4 | ralrimiva 3126 | . . 3 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 (𝐶 ≤ 𝑥 → 𝐵 ≤ 𝑀)) |
6 | breq1 4928 | . . . . . 6 ⊢ (𝑦 = 𝐶 → (𝑦 ≤ 𝑥 ↔ 𝐶 ≤ 𝑥)) | |
7 | 6 | imbi1d 334 | . . . . 5 ⊢ (𝑦 = 𝐶 → ((𝑦 ≤ 𝑥 → 𝐵 ≤ 𝑚) ↔ (𝐶 ≤ 𝑥 → 𝐵 ≤ 𝑚))) |
8 | 7 | ralbidv 3141 | . . . 4 ⊢ (𝑦 = 𝐶 → (∀𝑥 ∈ 𝐴 (𝑦 ≤ 𝑥 → 𝐵 ≤ 𝑚) ↔ ∀𝑥 ∈ 𝐴 (𝐶 ≤ 𝑥 → 𝐵 ≤ 𝑚))) |
9 | breq2 4929 | . . . . . 6 ⊢ (𝑚 = 𝑀 → (𝐵 ≤ 𝑚 ↔ 𝐵 ≤ 𝑀)) | |
10 | 9 | imbi2d 333 | . . . . 5 ⊢ (𝑚 = 𝑀 → ((𝐶 ≤ 𝑥 → 𝐵 ≤ 𝑚) ↔ (𝐶 ≤ 𝑥 → 𝐵 ≤ 𝑀))) |
11 | 10 | ralbidv 3141 | . . . 4 ⊢ (𝑚 = 𝑀 → (∀𝑥 ∈ 𝐴 (𝐶 ≤ 𝑥 → 𝐵 ≤ 𝑚) ↔ ∀𝑥 ∈ 𝐴 (𝐶 ≤ 𝑥 → 𝐵 ≤ 𝑀))) |
12 | 8, 11 | rspc2ev 3544 | . . 3 ⊢ ((𝐶 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ ∀𝑥 ∈ 𝐴 (𝐶 ≤ 𝑥 → 𝐵 ≤ 𝑀)) → ∃𝑦 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑥 ∈ 𝐴 (𝑦 ≤ 𝑥 → 𝐵 ≤ 𝑚)) |
13 | 1, 2, 5, 12 | syl3anc 1351 | . 2 ⊢ (𝜑 → ∃𝑦 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑥 ∈ 𝐴 (𝑦 ≤ 𝑥 → 𝐵 ≤ 𝑚)) |
14 | ello1mpt.1 | . . 3 ⊢ (𝜑 → 𝐴 ⊆ ℝ) | |
15 | ello1mpt.2 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ) | |
16 | 14, 15 | ello1mpt 14737 | . 2 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ 𝐵) ∈ ≤𝑂(1) ↔ ∃𝑦 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑥 ∈ 𝐴 (𝑦 ≤ 𝑥 → 𝐵 ≤ 𝑚))) |
17 | 13, 16 | mpbird 249 | 1 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ ≤𝑂(1)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 387 = wceq 1507 ∈ wcel 2050 ∀wral 3082 ∃wrex 3083 ⊆ wss 3823 class class class wbr 4925 ↦ cmpt 5004 ℝcr 10332 ≤ cle 10473 ≤𝑂(1)clo1 14703 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1965 ax-8 2052 ax-9 2059 ax-10 2079 ax-11 2093 ax-12 2106 ax-13 2301 ax-ext 2744 ax-sep 5056 ax-nul 5063 ax-pow 5115 ax-pr 5182 ax-un 7277 ax-cnex 10389 ax-resscn 10390 ax-pre-lttri 10407 ax-pre-lttrn 10408 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3or 1069 df-3an 1070 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2016 df-mo 2547 df-eu 2584 df-clab 2753 df-cleq 2765 df-clel 2840 df-nfc 2912 df-ne 2962 df-nel 3068 df-ral 3087 df-rex 3088 df-rab 3091 df-v 3411 df-sbc 3676 df-csb 3781 df-dif 3826 df-un 3828 df-in 3830 df-ss 3837 df-nul 4173 df-if 4345 df-pw 4418 df-sn 4436 df-pr 4438 df-op 4442 df-uni 4709 df-br 4926 df-opab 4988 df-mpt 5005 df-id 5308 df-po 5322 df-so 5323 df-xp 5409 df-rel 5410 df-cnv 5411 df-co 5412 df-dm 5413 df-rn 5414 df-res 5415 df-ima 5416 df-iota 6149 df-fun 6187 df-fn 6188 df-f 6189 df-f1 6190 df-fo 6191 df-f1o 6192 df-fv 6193 df-ov 6977 df-oprab 6978 df-mpo 6979 df-er 8087 df-pm 8207 df-en 8305 df-dom 8306 df-sdom 8307 df-pnf 10474 df-mnf 10475 df-xr 10476 df-ltxr 10477 df-le 10478 df-ico 12558 df-lo1 14707 |
This theorem is referenced by: elo1d 14752 o1lo12 14754 icco1 14756 lo1const 14836 dirith2 25818 pntrlog2bndlem4 25870 pntrlog2bndlem6 25873 |
Copyright terms: Public domain | W3C validator |