![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ello1d | Structured version Visualization version GIF version |
Description: Sufficient condition for elementhood in the set of eventually upper bounded functions. (Contributed by Mario Carneiro, 26-May-2016.) |
Ref | Expression |
---|---|
ello1mpt.1 | ⊢ (𝜑 → 𝐴 ⊆ ℝ) |
ello1mpt.2 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ) |
ello1d.3 | ⊢ (𝜑 → 𝐶 ∈ ℝ) |
ello1d.4 | ⊢ (𝜑 → 𝑀 ∈ ℝ) |
ello1d.5 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝐶 ≤ 𝑥)) → 𝐵 ≤ 𝑀) |
Ref | Expression |
---|---|
ello1d | ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ ≤𝑂(1)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ello1d.3 | . . 3 ⊢ (𝜑 → 𝐶 ∈ ℝ) | |
2 | ello1d.4 | . . 3 ⊢ (𝜑 → 𝑀 ∈ ℝ) | |
3 | ello1d.5 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝐶 ≤ 𝑥)) → 𝐵 ≤ 𝑀) | |
4 | 3 | expr 456 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐶 ≤ 𝑥 → 𝐵 ≤ 𝑀)) |
5 | 4 | ralrimiva 3143 | . . 3 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 (𝐶 ≤ 𝑥 → 𝐵 ≤ 𝑀)) |
6 | breq1 5150 | . . . . . 6 ⊢ (𝑦 = 𝐶 → (𝑦 ≤ 𝑥 ↔ 𝐶 ≤ 𝑥)) | |
7 | 6 | imbi1d 341 | . . . . 5 ⊢ (𝑦 = 𝐶 → ((𝑦 ≤ 𝑥 → 𝐵 ≤ 𝑚) ↔ (𝐶 ≤ 𝑥 → 𝐵 ≤ 𝑚))) |
8 | 7 | ralbidv 3175 | . . . 4 ⊢ (𝑦 = 𝐶 → (∀𝑥 ∈ 𝐴 (𝑦 ≤ 𝑥 → 𝐵 ≤ 𝑚) ↔ ∀𝑥 ∈ 𝐴 (𝐶 ≤ 𝑥 → 𝐵 ≤ 𝑚))) |
9 | breq2 5151 | . . . . . 6 ⊢ (𝑚 = 𝑀 → (𝐵 ≤ 𝑚 ↔ 𝐵 ≤ 𝑀)) | |
10 | 9 | imbi2d 340 | . . . . 5 ⊢ (𝑚 = 𝑀 → ((𝐶 ≤ 𝑥 → 𝐵 ≤ 𝑚) ↔ (𝐶 ≤ 𝑥 → 𝐵 ≤ 𝑀))) |
11 | 10 | ralbidv 3175 | . . . 4 ⊢ (𝑚 = 𝑀 → (∀𝑥 ∈ 𝐴 (𝐶 ≤ 𝑥 → 𝐵 ≤ 𝑚) ↔ ∀𝑥 ∈ 𝐴 (𝐶 ≤ 𝑥 → 𝐵 ≤ 𝑀))) |
12 | 8, 11 | rspc2ev 3634 | . . 3 ⊢ ((𝐶 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ ∀𝑥 ∈ 𝐴 (𝐶 ≤ 𝑥 → 𝐵 ≤ 𝑀)) → ∃𝑦 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑥 ∈ 𝐴 (𝑦 ≤ 𝑥 → 𝐵 ≤ 𝑚)) |
13 | 1, 2, 5, 12 | syl3anc 1370 | . 2 ⊢ (𝜑 → ∃𝑦 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑥 ∈ 𝐴 (𝑦 ≤ 𝑥 → 𝐵 ≤ 𝑚)) |
14 | ello1mpt.1 | . . 3 ⊢ (𝜑 → 𝐴 ⊆ ℝ) | |
15 | ello1mpt.2 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ) | |
16 | 14, 15 | ello1mpt 15553 | . 2 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ 𝐵) ∈ ≤𝑂(1) ↔ ∃𝑦 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑥 ∈ 𝐴 (𝑦 ≤ 𝑥 → 𝐵 ≤ 𝑚))) |
17 | 13, 16 | mpbird 257 | 1 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ ≤𝑂(1)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1536 ∈ wcel 2105 ∀wral 3058 ∃wrex 3067 ⊆ wss 3962 class class class wbr 5147 ↦ cmpt 5230 ℝcr 11151 ≤ cle 11293 ≤𝑂(1)clo1 15519 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-sep 5301 ax-nul 5311 ax-pow 5370 ax-pr 5437 ax-un 7753 ax-cnex 11208 ax-resscn 11209 ax-pre-lttri 11226 ax-pre-lttrn 11227 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rab 3433 df-v 3479 df-sbc 3791 df-csb 3908 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-nul 4339 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5582 df-po 5596 df-so 5597 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-rn 5699 df-res 5700 df-ima 5701 df-iota 6515 df-fun 6564 df-fn 6565 df-f 6566 df-f1 6567 df-fo 6568 df-f1o 6569 df-fv 6570 df-ov 7433 df-oprab 7434 df-mpo 7435 df-er 8743 df-pm 8867 df-en 8984 df-dom 8985 df-sdom 8986 df-pnf 11294 df-mnf 11295 df-xr 11296 df-ltxr 11297 df-le 11298 df-ico 13389 df-lo1 15523 |
This theorem is referenced by: elo1d 15568 o1lo12 15570 icco1 15572 lo1const 15653 dirith2 27586 pntrlog2bndlem4 27638 pntrlog2bndlem6 27641 |
Copyright terms: Public domain | W3C validator |