Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ello1d | Structured version Visualization version GIF version |
Description: Sufficient condition for elementhood in the set of eventually upper bounded functions. (Contributed by Mario Carneiro, 26-May-2016.) |
Ref | Expression |
---|---|
ello1mpt.1 | ⊢ (𝜑 → 𝐴 ⊆ ℝ) |
ello1mpt.2 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ) |
ello1d.3 | ⊢ (𝜑 → 𝐶 ∈ ℝ) |
ello1d.4 | ⊢ (𝜑 → 𝑀 ∈ ℝ) |
ello1d.5 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝐶 ≤ 𝑥)) → 𝐵 ≤ 𝑀) |
Ref | Expression |
---|---|
ello1d | ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ ≤𝑂(1)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ello1d.3 | . . 3 ⊢ (𝜑 → 𝐶 ∈ ℝ) | |
2 | ello1d.4 | . . 3 ⊢ (𝜑 → 𝑀 ∈ ℝ) | |
3 | ello1d.5 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝐶 ≤ 𝑥)) → 𝐵 ≤ 𝑀) | |
4 | 3 | expr 456 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐶 ≤ 𝑥 → 𝐵 ≤ 𝑀)) |
5 | 4 | ralrimiva 3107 | . . 3 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 (𝐶 ≤ 𝑥 → 𝐵 ≤ 𝑀)) |
6 | breq1 5073 | . . . . . 6 ⊢ (𝑦 = 𝐶 → (𝑦 ≤ 𝑥 ↔ 𝐶 ≤ 𝑥)) | |
7 | 6 | imbi1d 341 | . . . . 5 ⊢ (𝑦 = 𝐶 → ((𝑦 ≤ 𝑥 → 𝐵 ≤ 𝑚) ↔ (𝐶 ≤ 𝑥 → 𝐵 ≤ 𝑚))) |
8 | 7 | ralbidv 3120 | . . . 4 ⊢ (𝑦 = 𝐶 → (∀𝑥 ∈ 𝐴 (𝑦 ≤ 𝑥 → 𝐵 ≤ 𝑚) ↔ ∀𝑥 ∈ 𝐴 (𝐶 ≤ 𝑥 → 𝐵 ≤ 𝑚))) |
9 | breq2 5074 | . . . . . 6 ⊢ (𝑚 = 𝑀 → (𝐵 ≤ 𝑚 ↔ 𝐵 ≤ 𝑀)) | |
10 | 9 | imbi2d 340 | . . . . 5 ⊢ (𝑚 = 𝑀 → ((𝐶 ≤ 𝑥 → 𝐵 ≤ 𝑚) ↔ (𝐶 ≤ 𝑥 → 𝐵 ≤ 𝑀))) |
11 | 10 | ralbidv 3120 | . . . 4 ⊢ (𝑚 = 𝑀 → (∀𝑥 ∈ 𝐴 (𝐶 ≤ 𝑥 → 𝐵 ≤ 𝑚) ↔ ∀𝑥 ∈ 𝐴 (𝐶 ≤ 𝑥 → 𝐵 ≤ 𝑀))) |
12 | 8, 11 | rspc2ev 3564 | . . 3 ⊢ ((𝐶 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ ∀𝑥 ∈ 𝐴 (𝐶 ≤ 𝑥 → 𝐵 ≤ 𝑀)) → ∃𝑦 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑥 ∈ 𝐴 (𝑦 ≤ 𝑥 → 𝐵 ≤ 𝑚)) |
13 | 1, 2, 5, 12 | syl3anc 1369 | . 2 ⊢ (𝜑 → ∃𝑦 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑥 ∈ 𝐴 (𝑦 ≤ 𝑥 → 𝐵 ≤ 𝑚)) |
14 | ello1mpt.1 | . . 3 ⊢ (𝜑 → 𝐴 ⊆ ℝ) | |
15 | ello1mpt.2 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ) | |
16 | 14, 15 | ello1mpt 15158 | . 2 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ 𝐵) ∈ ≤𝑂(1) ↔ ∃𝑦 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑥 ∈ 𝐴 (𝑦 ≤ 𝑥 → 𝐵 ≤ 𝑚))) |
17 | 13, 16 | mpbird 256 | 1 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ ≤𝑂(1)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∀wral 3063 ∃wrex 3064 ⊆ wss 3883 class class class wbr 5070 ↦ cmpt 5153 ℝcr 10801 ≤ cle 10941 ≤𝑂(1)clo1 15124 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-pre-lttri 10876 ax-pre-lttrn 10877 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-po 5494 df-so 5495 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-er 8456 df-pm 8576 df-en 8692 df-dom 8693 df-sdom 8694 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-ico 13014 df-lo1 15128 |
This theorem is referenced by: elo1d 15173 o1lo12 15175 icco1 15177 lo1const 15258 dirith2 26581 pntrlog2bndlem4 26633 pntrlog2bndlem6 26636 |
Copyright terms: Public domain | W3C validator |