| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ello1d | Structured version Visualization version GIF version | ||
| Description: Sufficient condition for elementhood in the set of eventually upper bounded functions. (Contributed by Mario Carneiro, 26-May-2016.) |
| Ref | Expression |
|---|---|
| ello1mpt.1 | ⊢ (𝜑 → 𝐴 ⊆ ℝ) |
| ello1mpt.2 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ) |
| ello1d.3 | ⊢ (𝜑 → 𝐶 ∈ ℝ) |
| ello1d.4 | ⊢ (𝜑 → 𝑀 ∈ ℝ) |
| ello1d.5 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝐶 ≤ 𝑥)) → 𝐵 ≤ 𝑀) |
| Ref | Expression |
|---|---|
| ello1d | ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ ≤𝑂(1)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ello1d.3 | . . 3 ⊢ (𝜑 → 𝐶 ∈ ℝ) | |
| 2 | ello1d.4 | . . 3 ⊢ (𝜑 → 𝑀 ∈ ℝ) | |
| 3 | ello1d.5 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝐶 ≤ 𝑥)) → 𝐵 ≤ 𝑀) | |
| 4 | 3 | expr 456 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐶 ≤ 𝑥 → 𝐵 ≤ 𝑀)) |
| 5 | 4 | ralrimiva 3132 | . . 3 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 (𝐶 ≤ 𝑥 → 𝐵 ≤ 𝑀)) |
| 6 | breq1 5122 | . . . . . 6 ⊢ (𝑦 = 𝐶 → (𝑦 ≤ 𝑥 ↔ 𝐶 ≤ 𝑥)) | |
| 7 | 6 | imbi1d 341 | . . . . 5 ⊢ (𝑦 = 𝐶 → ((𝑦 ≤ 𝑥 → 𝐵 ≤ 𝑚) ↔ (𝐶 ≤ 𝑥 → 𝐵 ≤ 𝑚))) |
| 8 | 7 | ralbidv 3163 | . . . 4 ⊢ (𝑦 = 𝐶 → (∀𝑥 ∈ 𝐴 (𝑦 ≤ 𝑥 → 𝐵 ≤ 𝑚) ↔ ∀𝑥 ∈ 𝐴 (𝐶 ≤ 𝑥 → 𝐵 ≤ 𝑚))) |
| 9 | breq2 5123 | . . . . . 6 ⊢ (𝑚 = 𝑀 → (𝐵 ≤ 𝑚 ↔ 𝐵 ≤ 𝑀)) | |
| 10 | 9 | imbi2d 340 | . . . . 5 ⊢ (𝑚 = 𝑀 → ((𝐶 ≤ 𝑥 → 𝐵 ≤ 𝑚) ↔ (𝐶 ≤ 𝑥 → 𝐵 ≤ 𝑀))) |
| 11 | 10 | ralbidv 3163 | . . . 4 ⊢ (𝑚 = 𝑀 → (∀𝑥 ∈ 𝐴 (𝐶 ≤ 𝑥 → 𝐵 ≤ 𝑚) ↔ ∀𝑥 ∈ 𝐴 (𝐶 ≤ 𝑥 → 𝐵 ≤ 𝑀))) |
| 12 | 8, 11 | rspc2ev 3614 | . . 3 ⊢ ((𝐶 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ ∀𝑥 ∈ 𝐴 (𝐶 ≤ 𝑥 → 𝐵 ≤ 𝑀)) → ∃𝑦 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑥 ∈ 𝐴 (𝑦 ≤ 𝑥 → 𝐵 ≤ 𝑚)) |
| 13 | 1, 2, 5, 12 | syl3anc 1373 | . 2 ⊢ (𝜑 → ∃𝑦 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑥 ∈ 𝐴 (𝑦 ≤ 𝑥 → 𝐵 ≤ 𝑚)) |
| 14 | ello1mpt.1 | . . 3 ⊢ (𝜑 → 𝐴 ⊆ ℝ) | |
| 15 | ello1mpt.2 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ) | |
| 16 | 14, 15 | ello1mpt 15535 | . 2 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ 𝐵) ∈ ≤𝑂(1) ↔ ∃𝑦 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑥 ∈ 𝐴 (𝑦 ≤ 𝑥 → 𝐵 ≤ 𝑚))) |
| 17 | 13, 16 | mpbird 257 | 1 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ ≤𝑂(1)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ∀wral 3051 ∃wrex 3060 ⊆ wss 3926 class class class wbr 5119 ↦ cmpt 5201 ℝcr 11126 ≤ cle 11268 ≤𝑂(1)clo1 15501 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7727 ax-cnex 11183 ax-resscn 11184 ax-pre-lttri 11201 ax-pre-lttrn 11202 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-po 5561 df-so 5562 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6483 df-fun 6532 df-fn 6533 df-f 6534 df-f1 6535 df-fo 6536 df-f1o 6537 df-fv 6538 df-ov 7406 df-oprab 7407 df-mpo 7408 df-er 8717 df-pm 8841 df-en 8958 df-dom 8959 df-sdom 8960 df-pnf 11269 df-mnf 11270 df-xr 11271 df-ltxr 11272 df-le 11273 df-ico 13366 df-lo1 15505 |
| This theorem is referenced by: elo1d 15550 o1lo12 15552 icco1 15554 lo1const 15635 dirith2 27489 pntrlog2bndlem4 27541 pntrlog2bndlem6 27544 |
| Copyright terms: Public domain | W3C validator |