![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > logblog | Structured version Visualization version GIF version |
Description: The general logarithm to the base being Euler's constant regarded as function is the natural logarithm. (Contributed by AV, 12-Jun-2020.) |
Ref | Expression |
---|---|
logblog | ⊢ (curry logb ‘e) = log |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | loge 24733 | . . . . . 6 ⊢ (log‘e) = 1 | |
2 | 1 | a1i 11 | . . . . 5 ⊢ (𝑦 ∈ (ℂ ∖ {0}) → (log‘e) = 1) |
3 | 2 | oveq2d 6922 | . . . 4 ⊢ (𝑦 ∈ (ℂ ∖ {0}) → ((log‘𝑦) / (log‘e)) = ((log‘𝑦) / 1)) |
4 | eldifsn 4537 | . . . . . 6 ⊢ (𝑦 ∈ (ℂ ∖ {0}) ↔ (𝑦 ∈ ℂ ∧ 𝑦 ≠ 0)) | |
5 | logcl 24715 | . . . . . 6 ⊢ ((𝑦 ∈ ℂ ∧ 𝑦 ≠ 0) → (log‘𝑦) ∈ ℂ) | |
6 | 4, 5 | sylbi 209 | . . . . 5 ⊢ (𝑦 ∈ (ℂ ∖ {0}) → (log‘𝑦) ∈ ℂ) |
7 | 6 | div1d 11120 | . . . 4 ⊢ (𝑦 ∈ (ℂ ∖ {0}) → ((log‘𝑦) / 1) = (log‘𝑦)) |
8 | 3, 7 | eqtrd 2862 | . . 3 ⊢ (𝑦 ∈ (ℂ ∖ {0}) → ((log‘𝑦) / (log‘e)) = (log‘𝑦)) |
9 | 8 | mpteq2ia 4964 | . 2 ⊢ (𝑦 ∈ (ℂ ∖ {0}) ↦ ((log‘𝑦) / (log‘e))) = (𝑦 ∈ (ℂ ∖ {0}) ↦ (log‘𝑦)) |
10 | ere 15192 | . . . 4 ⊢ e ∈ ℝ | |
11 | 10 | recni 10372 | . . 3 ⊢ e ∈ ℂ |
12 | epr 15311 | . . . 4 ⊢ e ∈ ℝ+ | |
13 | rpne0 12131 | . . . 4 ⊢ (e ∈ ℝ+ → e ≠ 0) | |
14 | 12, 13 | ax-mp 5 | . . 3 ⊢ e ≠ 0 |
15 | egt2lt3 15309 | . . . 4 ⊢ (2 < e ∧ e < 3) | |
16 | 1re 10357 | . . . . . . . . 9 ⊢ 1 ∈ ℝ | |
17 | 2re 11426 | . . . . . . . . 9 ⊢ 2 ∈ ℝ | |
18 | 16, 17, 10 | 3pm3.2i 1444 | . . . . . . . 8 ⊢ (1 ∈ ℝ ∧ 2 ∈ ℝ ∧ e ∈ ℝ) |
19 | 1lt2 11530 | . . . . . . . 8 ⊢ 1 < 2 | |
20 | lttr 10434 | . . . . . . . . 9 ⊢ ((1 ∈ ℝ ∧ 2 ∈ ℝ ∧ e ∈ ℝ) → ((1 < 2 ∧ 2 < e) → 1 < e)) | |
21 | 20 | expd 406 | . . . . . . . 8 ⊢ ((1 ∈ ℝ ∧ 2 ∈ ℝ ∧ e ∈ ℝ) → (1 < 2 → (2 < e → 1 < e))) |
22 | 18, 19, 21 | mp2 9 | . . . . . . 7 ⊢ (2 < e → 1 < e) |
23 | 22 | olcd 907 | . . . . . 6 ⊢ (2 < e → (e < 1 ∨ 1 < e)) |
24 | 10, 16 | pm3.2i 464 | . . . . . . 7 ⊢ (e ∈ ℝ ∧ 1 ∈ ℝ) |
25 | lttri2 10440 | . . . . . . 7 ⊢ ((e ∈ ℝ ∧ 1 ∈ ℝ) → (e ≠ 1 ↔ (e < 1 ∨ 1 < e))) | |
26 | 24, 25 | mp1i 13 | . . . . . 6 ⊢ (2 < e → (e ≠ 1 ↔ (e < 1 ∨ 1 < e))) |
27 | 23, 26 | mpbird 249 | . . . . 5 ⊢ (2 < e → e ≠ 1) |
28 | 27 | adantr 474 | . . . 4 ⊢ ((2 < e ∧ e < 3) → e ≠ 1) |
29 | 15, 28 | ax-mp 5 | . . 3 ⊢ e ≠ 1 |
30 | logbmpt 24929 | . . 3 ⊢ ((e ∈ ℂ ∧ e ≠ 0 ∧ e ≠ 1) → (curry logb ‘e) = (𝑦 ∈ (ℂ ∖ {0}) ↦ ((log‘𝑦) / (log‘e)))) | |
31 | 11, 14, 29, 30 | mp3an 1591 | . 2 ⊢ (curry logb ‘e) = (𝑦 ∈ (ℂ ∖ {0}) ↦ ((log‘𝑦) / (log‘e))) |
32 | logf1o 24711 | . . . 4 ⊢ log:(ℂ ∖ {0})–1-1-onto→ran log | |
33 | f1ofn 6380 | . . . 4 ⊢ (log:(ℂ ∖ {0})–1-1-onto→ran log → log Fn (ℂ ∖ {0})) | |
34 | 32, 33 | ax-mp 5 | . . 3 ⊢ log Fn (ℂ ∖ {0}) |
35 | dffn5 6489 | . . 3 ⊢ (log Fn (ℂ ∖ {0}) ↔ log = (𝑦 ∈ (ℂ ∖ {0}) ↦ (log‘𝑦))) | |
36 | 34, 35 | mpbi 222 | . 2 ⊢ log = (𝑦 ∈ (ℂ ∖ {0}) ↦ (log‘𝑦)) |
37 | 9, 31, 36 | 3eqtr4i 2860 | 1 ⊢ (curry logb ‘e) = log |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 386 ∨ wo 880 ∧ w3a 1113 = wceq 1658 ∈ wcel 2166 ≠ wne 3000 ∖ cdif 3796 {csn 4398 class class class wbr 4874 ↦ cmpt 4953 ran crn 5344 Fn wfn 6119 –1-1-onto→wf1o 6123 ‘cfv 6124 (class class class)co 6906 curry ccur 7657 ℂcc 10251 ℝcr 10252 0cc0 10253 1c1 10254 < clt 10392 / cdiv 11010 2c2 11407 3c3 11408 ℝ+crp 12113 eceu 15166 logclog 24701 logb clogb 24905 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1896 ax-4 1910 ax-5 2011 ax-6 2077 ax-7 2114 ax-8 2168 ax-9 2175 ax-10 2194 ax-11 2209 ax-12 2222 ax-13 2391 ax-ext 2804 ax-rep 4995 ax-sep 5006 ax-nul 5014 ax-pow 5066 ax-pr 5128 ax-un 7210 ax-inf2 8816 ax-cnex 10309 ax-resscn 10310 ax-1cn 10311 ax-icn 10312 ax-addcl 10313 ax-addrcl 10314 ax-mulcl 10315 ax-mulrcl 10316 ax-mulcom 10317 ax-addass 10318 ax-mulass 10319 ax-distr 10320 ax-i2m1 10321 ax-1ne0 10322 ax-1rid 10323 ax-rnegex 10324 ax-rrecex 10325 ax-cnre 10326 ax-pre-lttri 10327 ax-pre-lttrn 10328 ax-pre-ltadd 10329 ax-pre-mulgt0 10330 ax-pre-sup 10331 ax-addf 10332 ax-mulf 10333 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 881 df-3or 1114 df-3an 1115 df-tru 1662 df-fal 1672 df-ex 1881 df-nf 1885 df-sb 2070 df-mo 2606 df-eu 2641 df-clab 2813 df-cleq 2819 df-clel 2822 df-nfc 2959 df-ne 3001 df-nel 3104 df-ral 3123 df-rex 3124 df-reu 3125 df-rmo 3126 df-rab 3127 df-v 3417 df-sbc 3664 df-csb 3759 df-dif 3802 df-un 3804 df-in 3806 df-ss 3813 df-pss 3815 df-nul 4146 df-if 4308 df-pw 4381 df-sn 4399 df-pr 4401 df-tp 4403 df-op 4405 df-uni 4660 df-int 4699 df-iun 4743 df-iin 4744 df-br 4875 df-opab 4937 df-mpt 4954 df-tr 4977 df-id 5251 df-eprel 5256 df-po 5264 df-so 5265 df-fr 5302 df-se 5303 df-we 5304 df-xp 5349 df-rel 5350 df-cnv 5351 df-co 5352 df-dm 5353 df-rn 5354 df-res 5355 df-ima 5356 df-pred 5921 df-ord 5967 df-on 5968 df-lim 5969 df-suc 5970 df-iota 6087 df-fun 6126 df-fn 6127 df-f 6128 df-f1 6129 df-fo 6130 df-f1o 6131 df-fv 6132 df-isom 6133 df-riota 6867 df-ov 6909 df-oprab 6910 df-mpt2 6911 df-of 7158 df-om 7328 df-1st 7429 df-2nd 7430 df-supp 7561 df-cur 7659 df-wrecs 7673 df-recs 7735 df-rdg 7773 df-1o 7827 df-2o 7828 df-oadd 7831 df-er 8010 df-map 8125 df-pm 8126 df-ixp 8177 df-en 8224 df-dom 8225 df-sdom 8226 df-fin 8227 df-fsupp 8546 df-fi 8587 df-sup 8618 df-inf 8619 df-oi 8685 df-card 9079 df-cda 9306 df-pnf 10394 df-mnf 10395 df-xr 10396 df-ltxr 10397 df-le 10398 df-sub 10588 df-neg 10589 df-div 11011 df-nn 11352 df-2 11415 df-3 11416 df-4 11417 df-5 11418 df-6 11419 df-7 11420 df-8 11421 df-9 11422 df-n0 11620 df-z 11706 df-dec 11823 df-uz 11970 df-q 12073 df-rp 12114 df-xneg 12233 df-xadd 12234 df-xmul 12235 df-ioo 12468 df-ioc 12469 df-ico 12470 df-icc 12471 df-fz 12621 df-fzo 12762 df-fl 12889 df-mod 12965 df-seq 13097 df-exp 13156 df-fac 13355 df-bc 13384 df-hash 13412 df-shft 14185 df-cj 14217 df-re 14218 df-im 14219 df-sqrt 14353 df-abs 14354 df-limsup 14580 df-clim 14597 df-rlim 14598 df-sum 14795 df-ef 15171 df-e 15172 df-sin 15173 df-cos 15174 df-pi 15176 df-struct 16225 df-ndx 16226 df-slot 16227 df-base 16229 df-sets 16230 df-ress 16231 df-plusg 16319 df-mulr 16320 df-starv 16321 df-sca 16322 df-vsca 16323 df-ip 16324 df-tset 16325 df-ple 16326 df-ds 16328 df-unif 16329 df-hom 16330 df-cco 16331 df-rest 16437 df-topn 16438 df-0g 16456 df-gsum 16457 df-topgen 16458 df-pt 16459 df-prds 16462 df-xrs 16516 df-qtop 16521 df-imas 16522 df-xps 16524 df-mre 16600 df-mrc 16601 df-acs 16603 df-mgm 17596 df-sgrp 17638 df-mnd 17649 df-submnd 17690 df-mulg 17896 df-cntz 18101 df-cmn 18549 df-psmet 20099 df-xmet 20100 df-met 20101 df-bl 20102 df-mopn 20103 df-fbas 20104 df-fg 20105 df-cnfld 20108 df-top 21070 df-topon 21087 df-topsp 21109 df-bases 21122 df-cld 21195 df-ntr 21196 df-cls 21197 df-nei 21274 df-lp 21312 df-perf 21313 df-cn 21403 df-cnp 21404 df-haus 21491 df-tx 21737 df-hmeo 21930 df-fil 22021 df-fm 22113 df-flim 22114 df-flf 22115 df-xms 22496 df-ms 22497 df-tms 22498 df-cncf 23052 df-limc 24030 df-dv 24031 df-log 24703 df-logb 24906 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |