Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lsatcvat3 Structured version   Visualization version   GIF version

Theorem lsatcvat3 36993
Description: A condition implying that a certain subspace is an atom. Part of Lemma 3.2.20 of [PtakPulmannova] p. 68. (atcvat3i 30659 analog.) (Contributed by NM, 11-Jan-2015.)
Hypotheses
Ref Expression
lsatcvat3.s 𝑆 = (LSubSp‘𝑊)
lsatcvat3.p = (LSSum‘𝑊)
lsatcvat3.a 𝐴 = (LSAtoms‘𝑊)
lsatcvat3.w (𝜑𝑊 ∈ LVec)
lsatcvat3.u (𝜑𝑈𝑆)
lsatcvat3.q (𝜑𝑄𝐴)
lsatcvat3.r (𝜑𝑅𝐴)
lsatcvat3.n (𝜑𝑄𝑅)
lsatcvat3.m (𝜑 → ¬ 𝑅𝑈)
lsatcvat3.l (𝜑𝑄 ⊆ (𝑈 𝑅))
Assertion
Ref Expression
lsatcvat3 (𝜑 → (𝑈 ∩ (𝑄 𝑅)) ∈ 𝐴)

Proof of Theorem lsatcvat3
StepHypRef Expression
1 lsatcvat3.s . 2 𝑆 = (LSubSp‘𝑊)
2 lsatcvat3.p . 2 = (LSSum‘𝑊)
3 lsatcvat3.a . 2 𝐴 = (LSAtoms‘𝑊)
4 eqid 2738 . 2 ( ⋖L𝑊) = ( ⋖L𝑊)
5 lsatcvat3.w . 2 (𝜑𝑊 ∈ LVec)
6 lveclmod 20283 . . . 4 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
75, 6syl 17 . . 3 (𝜑𝑊 ∈ LMod)
8 lsatcvat3.u . . 3 (𝜑𝑈𝑆)
9 lsatcvat3.q . . . . 5 (𝜑𝑄𝐴)
101, 3, 7, 9lsatlssel 36938 . . . 4 (𝜑𝑄𝑆)
11 lsatcvat3.r . . . . 5 (𝜑𝑅𝐴)
121, 3, 7, 11lsatlssel 36938 . . . 4 (𝜑𝑅𝑆)
131, 2lsmcl 20260 . . . 4 ((𝑊 ∈ LMod ∧ 𝑄𝑆𝑅𝑆) → (𝑄 𝑅) ∈ 𝑆)
147, 10, 12, 13syl3anc 1369 . . 3 (𝜑 → (𝑄 𝑅) ∈ 𝑆)
151lssincl 20142 . . 3 ((𝑊 ∈ LMod ∧ 𝑈𝑆 ∧ (𝑄 𝑅) ∈ 𝑆) → (𝑈 ∩ (𝑄 𝑅)) ∈ 𝑆)
167, 8, 14, 15syl3anc 1369 . 2 (𝜑 → (𝑈 ∩ (𝑄 𝑅)) ∈ 𝑆)
17 lsatcvat3.n . 2 (𝜑𝑄𝑅)
18 lsatcvat3.m . . . . 5 (𝜑 → ¬ 𝑅𝑈)
191, 2, 3, 4, 5, 8, 11lcv1 36982 . . . . 5 (𝜑 → (¬ 𝑅𝑈𝑈( ⋖L𝑊)(𝑈 𝑅)))
2018, 19mpbid 231 . . . 4 (𝜑𝑈( ⋖L𝑊)(𝑈 𝑅))
21 lmodabl 20085 . . . . . . . . . . 11 (𝑊 ∈ LMod → 𝑊 ∈ Abel)
227, 21syl 17 . . . . . . . . . 10 (𝜑𝑊 ∈ Abel)
231lsssssubg 20135 . . . . . . . . . . . 12 (𝑊 ∈ LMod → 𝑆 ⊆ (SubGrp‘𝑊))
247, 23syl 17 . . . . . . . . . . 11 (𝜑𝑆 ⊆ (SubGrp‘𝑊))
2524, 10sseldd 3918 . . . . . . . . . 10 (𝜑𝑄 ∈ (SubGrp‘𝑊))
2624, 12sseldd 3918 . . . . . . . . . 10 (𝜑𝑅 ∈ (SubGrp‘𝑊))
272lsmcom 19374 . . . . . . . . . 10 ((𝑊 ∈ Abel ∧ 𝑄 ∈ (SubGrp‘𝑊) ∧ 𝑅 ∈ (SubGrp‘𝑊)) → (𝑄 𝑅) = (𝑅 𝑄))
2822, 25, 26, 27syl3anc 1369 . . . . . . . . 9 (𝜑 → (𝑄 𝑅) = (𝑅 𝑄))
2928oveq2d 7271 . . . . . . . 8 (𝜑 → (𝑈 (𝑄 𝑅)) = (𝑈 (𝑅 𝑄)))
3024, 8sseldd 3918 . . . . . . . . 9 (𝜑𝑈 ∈ (SubGrp‘𝑊))
312lsmass 19190 . . . . . . . . 9 ((𝑈 ∈ (SubGrp‘𝑊) ∧ 𝑅 ∈ (SubGrp‘𝑊) ∧ 𝑄 ∈ (SubGrp‘𝑊)) → ((𝑈 𝑅) 𝑄) = (𝑈 (𝑅 𝑄)))
3230, 26, 25, 31syl3anc 1369 . . . . . . . 8 (𝜑 → ((𝑈 𝑅) 𝑄) = (𝑈 (𝑅 𝑄)))
3329, 32eqtr4d 2781 . . . . . . 7 (𝜑 → (𝑈 (𝑄 𝑅)) = ((𝑈 𝑅) 𝑄))
341, 2lsmcl 20260 . . . . . . . . . 10 ((𝑊 ∈ LMod ∧ 𝑈𝑆𝑅𝑆) → (𝑈 𝑅) ∈ 𝑆)
357, 8, 12, 34syl3anc 1369 . . . . . . . . 9 (𝜑 → (𝑈 𝑅) ∈ 𝑆)
3624, 35sseldd 3918 . . . . . . . 8 (𝜑 → (𝑈 𝑅) ∈ (SubGrp‘𝑊))
37 lsatcvat3.l . . . . . . . 8 (𝜑𝑄 ⊆ (𝑈 𝑅))
382lsmless2 19181 . . . . . . . 8 (((𝑈 𝑅) ∈ (SubGrp‘𝑊) ∧ (𝑈 𝑅) ∈ (SubGrp‘𝑊) ∧ 𝑄 ⊆ (𝑈 𝑅)) → ((𝑈 𝑅) 𝑄) ⊆ ((𝑈 𝑅) (𝑈 𝑅)))
3936, 36, 37, 38syl3anc 1369 . . . . . . 7 (𝜑 → ((𝑈 𝑅) 𝑄) ⊆ ((𝑈 𝑅) (𝑈 𝑅)))
4033, 39eqsstrd 3955 . . . . . 6 (𝜑 → (𝑈 (𝑄 𝑅)) ⊆ ((𝑈 𝑅) (𝑈 𝑅)))
412lsmidm 19183 . . . . . . 7 ((𝑈 𝑅) ∈ (SubGrp‘𝑊) → ((𝑈 𝑅) (𝑈 𝑅)) = (𝑈 𝑅))
4236, 41syl 17 . . . . . 6 (𝜑 → ((𝑈 𝑅) (𝑈 𝑅)) = (𝑈 𝑅))
4340, 42sseqtrd 3957 . . . . 5 (𝜑 → (𝑈 (𝑄 𝑅)) ⊆ (𝑈 𝑅))
4424, 14sseldd 3918 . . . . . 6 (𝜑 → (𝑄 𝑅) ∈ (SubGrp‘𝑊))
452lsmub2 19178 . . . . . . 7 ((𝑄 ∈ (SubGrp‘𝑊) ∧ 𝑅 ∈ (SubGrp‘𝑊)) → 𝑅 ⊆ (𝑄 𝑅))
4625, 26, 45syl2anc 583 . . . . . 6 (𝜑𝑅 ⊆ (𝑄 𝑅))
472lsmless2 19181 . . . . . 6 ((𝑈 ∈ (SubGrp‘𝑊) ∧ (𝑄 𝑅) ∈ (SubGrp‘𝑊) ∧ 𝑅 ⊆ (𝑄 𝑅)) → (𝑈 𝑅) ⊆ (𝑈 (𝑄 𝑅)))
4830, 44, 46, 47syl3anc 1369 . . . . 5 (𝜑 → (𝑈 𝑅) ⊆ (𝑈 (𝑄 𝑅)))
4943, 48eqssd 3934 . . . 4 (𝜑 → (𝑈 (𝑄 𝑅)) = (𝑈 𝑅))
5020, 49breqtrrd 5098 . . 3 (𝜑𝑈( ⋖L𝑊)(𝑈 (𝑄 𝑅)))
511, 2, 4, 7, 8, 14, 50lcvexchlem4 36978 . 2 (𝜑 → (𝑈 ∩ (𝑄 𝑅))( ⋖L𝑊)(𝑄 𝑅))
521, 2, 3, 4, 5, 16, 9, 11, 17, 51lsatcvat2 36992 1 (𝜑 → (𝑈 ∩ (𝑄 𝑅)) ∈ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1539  wcel 2108  wne 2942  cin 3882  wss 3883   class class class wbr 5070  cfv 6418  (class class class)co 7255  SubGrpcsubg 18664  LSSumclsm 19154  Abelcabl 19302  LModclmod 20038  LSubSpclss 20108  LVecclvec 20279  LSAtomsclsa 36915  L clcv 36959
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-iin 4924  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-tpos 8013  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-3 11967  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-mulr 16902  df-0g 17069  df-mre 17212  df-mrc 17213  df-acs 17215  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-submnd 18346  df-grp 18495  df-minusg 18496  df-sbg 18497  df-subg 18667  df-cntz 18838  df-oppg 18865  df-lsm 19156  df-cmn 19303  df-abl 19304  df-mgp 19636  df-ur 19653  df-ring 19700  df-oppr 19777  df-dvdsr 19798  df-unit 19799  df-invr 19829  df-drng 19908  df-lmod 20040  df-lss 20109  df-lsp 20149  df-lvec 20280  df-lsatoms 36917  df-lcv 36960
This theorem is referenced by:  l1cvat  36996
  Copyright terms: Public domain W3C validator