| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > lsatcvat3 | Structured version Visualization version GIF version | ||
| Description: A condition implying that a certain subspace is an atom. Part of Lemma 3.2.20 of [PtakPulmannova] p. 68. (atcvat3i 32340 analog.) (Contributed by NM, 11-Jan-2015.) |
| Ref | Expression |
|---|---|
| lsatcvat3.s | ⊢ 𝑆 = (LSubSp‘𝑊) |
| lsatcvat3.p | ⊢ ⊕ = (LSSum‘𝑊) |
| lsatcvat3.a | ⊢ 𝐴 = (LSAtoms‘𝑊) |
| lsatcvat3.w | ⊢ (𝜑 → 𝑊 ∈ LVec) |
| lsatcvat3.u | ⊢ (𝜑 → 𝑈 ∈ 𝑆) |
| lsatcvat3.q | ⊢ (𝜑 → 𝑄 ∈ 𝐴) |
| lsatcvat3.r | ⊢ (𝜑 → 𝑅 ∈ 𝐴) |
| lsatcvat3.n | ⊢ (𝜑 → 𝑄 ≠ 𝑅) |
| lsatcvat3.m | ⊢ (𝜑 → ¬ 𝑅 ⊆ 𝑈) |
| lsatcvat3.l | ⊢ (𝜑 → 𝑄 ⊆ (𝑈 ⊕ 𝑅)) |
| Ref | Expression |
|---|---|
| lsatcvat3 | ⊢ (𝜑 → (𝑈 ∩ (𝑄 ⊕ 𝑅)) ∈ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lsatcvat3.s | . 2 ⊢ 𝑆 = (LSubSp‘𝑊) | |
| 2 | lsatcvat3.p | . 2 ⊢ ⊕ = (LSSum‘𝑊) | |
| 3 | lsatcvat3.a | . 2 ⊢ 𝐴 = (LSAtoms‘𝑊) | |
| 4 | eqid 2729 | . 2 ⊢ ( ⋖L ‘𝑊) = ( ⋖L ‘𝑊) | |
| 5 | lsatcvat3.w | . 2 ⊢ (𝜑 → 𝑊 ∈ LVec) | |
| 6 | lveclmod 21010 | . . . 4 ⊢ (𝑊 ∈ LVec → 𝑊 ∈ LMod) | |
| 7 | 5, 6 | syl 17 | . . 3 ⊢ (𝜑 → 𝑊 ∈ LMod) |
| 8 | lsatcvat3.u | . . 3 ⊢ (𝜑 → 𝑈 ∈ 𝑆) | |
| 9 | lsatcvat3.q | . . . . 5 ⊢ (𝜑 → 𝑄 ∈ 𝐴) | |
| 10 | 1, 3, 7, 9 | lsatlssel 38976 | . . . 4 ⊢ (𝜑 → 𝑄 ∈ 𝑆) |
| 11 | lsatcvat3.r | . . . . 5 ⊢ (𝜑 → 𝑅 ∈ 𝐴) | |
| 12 | 1, 3, 7, 11 | lsatlssel 38976 | . . . 4 ⊢ (𝜑 → 𝑅 ∈ 𝑆) |
| 13 | 1, 2 | lsmcl 20987 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝑄 ∈ 𝑆 ∧ 𝑅 ∈ 𝑆) → (𝑄 ⊕ 𝑅) ∈ 𝑆) |
| 14 | 7, 10, 12, 13 | syl3anc 1373 | . . 3 ⊢ (𝜑 → (𝑄 ⊕ 𝑅) ∈ 𝑆) |
| 15 | 1 | lssincl 20868 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ∧ (𝑄 ⊕ 𝑅) ∈ 𝑆) → (𝑈 ∩ (𝑄 ⊕ 𝑅)) ∈ 𝑆) |
| 16 | 7, 8, 14, 15 | syl3anc 1373 | . 2 ⊢ (𝜑 → (𝑈 ∩ (𝑄 ⊕ 𝑅)) ∈ 𝑆) |
| 17 | lsatcvat3.n | . 2 ⊢ (𝜑 → 𝑄 ≠ 𝑅) | |
| 18 | lsatcvat3.m | . . . . 5 ⊢ (𝜑 → ¬ 𝑅 ⊆ 𝑈) | |
| 19 | 1, 2, 3, 4, 5, 8, 11 | lcv1 39020 | . . . . 5 ⊢ (𝜑 → (¬ 𝑅 ⊆ 𝑈 ↔ 𝑈( ⋖L ‘𝑊)(𝑈 ⊕ 𝑅))) |
| 20 | 18, 19 | mpbid 232 | . . . 4 ⊢ (𝜑 → 𝑈( ⋖L ‘𝑊)(𝑈 ⊕ 𝑅)) |
| 21 | lmodabl 20812 | . . . . . . . . . . 11 ⊢ (𝑊 ∈ LMod → 𝑊 ∈ Abel) | |
| 22 | 7, 21 | syl 17 | . . . . . . . . . 10 ⊢ (𝜑 → 𝑊 ∈ Abel) |
| 23 | 1 | lsssssubg 20861 | . . . . . . . . . . . 12 ⊢ (𝑊 ∈ LMod → 𝑆 ⊆ (SubGrp‘𝑊)) |
| 24 | 7, 23 | syl 17 | . . . . . . . . . . 11 ⊢ (𝜑 → 𝑆 ⊆ (SubGrp‘𝑊)) |
| 25 | 24, 10 | sseldd 3936 | . . . . . . . . . 10 ⊢ (𝜑 → 𝑄 ∈ (SubGrp‘𝑊)) |
| 26 | 24, 12 | sseldd 3936 | . . . . . . . . . 10 ⊢ (𝜑 → 𝑅 ∈ (SubGrp‘𝑊)) |
| 27 | 2 | lsmcom 19737 | . . . . . . . . . 10 ⊢ ((𝑊 ∈ Abel ∧ 𝑄 ∈ (SubGrp‘𝑊) ∧ 𝑅 ∈ (SubGrp‘𝑊)) → (𝑄 ⊕ 𝑅) = (𝑅 ⊕ 𝑄)) |
| 28 | 22, 25, 26, 27 | syl3anc 1373 | . . . . . . . . 9 ⊢ (𝜑 → (𝑄 ⊕ 𝑅) = (𝑅 ⊕ 𝑄)) |
| 29 | 28 | oveq2d 7365 | . . . . . . . 8 ⊢ (𝜑 → (𝑈 ⊕ (𝑄 ⊕ 𝑅)) = (𝑈 ⊕ (𝑅 ⊕ 𝑄))) |
| 30 | 24, 8 | sseldd 3936 | . . . . . . . . 9 ⊢ (𝜑 → 𝑈 ∈ (SubGrp‘𝑊)) |
| 31 | 2 | lsmass 19548 | . . . . . . . . 9 ⊢ ((𝑈 ∈ (SubGrp‘𝑊) ∧ 𝑅 ∈ (SubGrp‘𝑊) ∧ 𝑄 ∈ (SubGrp‘𝑊)) → ((𝑈 ⊕ 𝑅) ⊕ 𝑄) = (𝑈 ⊕ (𝑅 ⊕ 𝑄))) |
| 32 | 30, 26, 25, 31 | syl3anc 1373 | . . . . . . . 8 ⊢ (𝜑 → ((𝑈 ⊕ 𝑅) ⊕ 𝑄) = (𝑈 ⊕ (𝑅 ⊕ 𝑄))) |
| 33 | 29, 32 | eqtr4d 2767 | . . . . . . 7 ⊢ (𝜑 → (𝑈 ⊕ (𝑄 ⊕ 𝑅)) = ((𝑈 ⊕ 𝑅) ⊕ 𝑄)) |
| 34 | 1, 2 | lsmcl 20987 | . . . . . . . . . 10 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ∧ 𝑅 ∈ 𝑆) → (𝑈 ⊕ 𝑅) ∈ 𝑆) |
| 35 | 7, 8, 12, 34 | syl3anc 1373 | . . . . . . . . 9 ⊢ (𝜑 → (𝑈 ⊕ 𝑅) ∈ 𝑆) |
| 36 | 24, 35 | sseldd 3936 | . . . . . . . 8 ⊢ (𝜑 → (𝑈 ⊕ 𝑅) ∈ (SubGrp‘𝑊)) |
| 37 | lsatcvat3.l | . . . . . . . 8 ⊢ (𝜑 → 𝑄 ⊆ (𝑈 ⊕ 𝑅)) | |
| 38 | 2 | lsmless2 19540 | . . . . . . . 8 ⊢ (((𝑈 ⊕ 𝑅) ∈ (SubGrp‘𝑊) ∧ (𝑈 ⊕ 𝑅) ∈ (SubGrp‘𝑊) ∧ 𝑄 ⊆ (𝑈 ⊕ 𝑅)) → ((𝑈 ⊕ 𝑅) ⊕ 𝑄) ⊆ ((𝑈 ⊕ 𝑅) ⊕ (𝑈 ⊕ 𝑅))) |
| 39 | 36, 36, 37, 38 | syl3anc 1373 | . . . . . . 7 ⊢ (𝜑 → ((𝑈 ⊕ 𝑅) ⊕ 𝑄) ⊆ ((𝑈 ⊕ 𝑅) ⊕ (𝑈 ⊕ 𝑅))) |
| 40 | 33, 39 | eqsstrd 3970 | . . . . . 6 ⊢ (𝜑 → (𝑈 ⊕ (𝑄 ⊕ 𝑅)) ⊆ ((𝑈 ⊕ 𝑅) ⊕ (𝑈 ⊕ 𝑅))) |
| 41 | 2 | lsmidm 19542 | . . . . . . 7 ⊢ ((𝑈 ⊕ 𝑅) ∈ (SubGrp‘𝑊) → ((𝑈 ⊕ 𝑅) ⊕ (𝑈 ⊕ 𝑅)) = (𝑈 ⊕ 𝑅)) |
| 42 | 36, 41 | syl 17 | . . . . . 6 ⊢ (𝜑 → ((𝑈 ⊕ 𝑅) ⊕ (𝑈 ⊕ 𝑅)) = (𝑈 ⊕ 𝑅)) |
| 43 | 40, 42 | sseqtrd 3972 | . . . . 5 ⊢ (𝜑 → (𝑈 ⊕ (𝑄 ⊕ 𝑅)) ⊆ (𝑈 ⊕ 𝑅)) |
| 44 | 24, 14 | sseldd 3936 | . . . . . 6 ⊢ (𝜑 → (𝑄 ⊕ 𝑅) ∈ (SubGrp‘𝑊)) |
| 45 | 2 | lsmub2 19537 | . . . . . . 7 ⊢ ((𝑄 ∈ (SubGrp‘𝑊) ∧ 𝑅 ∈ (SubGrp‘𝑊)) → 𝑅 ⊆ (𝑄 ⊕ 𝑅)) |
| 46 | 25, 26, 45 | syl2anc 584 | . . . . . 6 ⊢ (𝜑 → 𝑅 ⊆ (𝑄 ⊕ 𝑅)) |
| 47 | 2 | lsmless2 19540 | . . . . . 6 ⊢ ((𝑈 ∈ (SubGrp‘𝑊) ∧ (𝑄 ⊕ 𝑅) ∈ (SubGrp‘𝑊) ∧ 𝑅 ⊆ (𝑄 ⊕ 𝑅)) → (𝑈 ⊕ 𝑅) ⊆ (𝑈 ⊕ (𝑄 ⊕ 𝑅))) |
| 48 | 30, 44, 46, 47 | syl3anc 1373 | . . . . 5 ⊢ (𝜑 → (𝑈 ⊕ 𝑅) ⊆ (𝑈 ⊕ (𝑄 ⊕ 𝑅))) |
| 49 | 43, 48 | eqssd 3953 | . . . 4 ⊢ (𝜑 → (𝑈 ⊕ (𝑄 ⊕ 𝑅)) = (𝑈 ⊕ 𝑅)) |
| 50 | 20, 49 | breqtrrd 5120 | . . 3 ⊢ (𝜑 → 𝑈( ⋖L ‘𝑊)(𝑈 ⊕ (𝑄 ⊕ 𝑅))) |
| 51 | 1, 2, 4, 7, 8, 14, 50 | lcvexchlem4 39016 | . 2 ⊢ (𝜑 → (𝑈 ∩ (𝑄 ⊕ 𝑅))( ⋖L ‘𝑊)(𝑄 ⊕ 𝑅)) |
| 52 | 1, 2, 3, 4, 5, 16, 9, 11, 17, 51 | lsatcvat2 39030 | 1 ⊢ (𝜑 → (𝑈 ∩ (𝑄 ⊕ 𝑅)) ∈ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ∩ cin 3902 ⊆ wss 3903 class class class wbr 5092 ‘cfv 6482 (class class class)co 7349 SubGrpcsubg 18999 LSSumclsm 19513 Abelcabl 19660 LModclmod 20763 LSubSpclss 20834 LVecclvec 21006 LSAtomsclsa 38953 ⋖L clcv 38997 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-int 4897 df-iun 4943 df-iin 4944 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-om 7800 df-1st 7924 df-2nd 7925 df-tpos 8159 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-1o 8388 df-2o 8389 df-er 8625 df-en 8873 df-dom 8874 df-sdom 8875 df-fin 8876 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-nn 12129 df-2 12191 df-3 12192 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-ress 17142 df-plusg 17174 df-mulr 17175 df-0g 17345 df-mre 17488 df-mrc 17489 df-acs 17491 df-mgm 18514 df-sgrp 18593 df-mnd 18609 df-submnd 18658 df-grp 18815 df-minusg 18816 df-sbg 18817 df-subg 19002 df-cntz 19196 df-oppg 19225 df-lsm 19515 df-cmn 19661 df-abl 19662 df-mgp 20026 df-rng 20038 df-ur 20067 df-ring 20120 df-oppr 20222 df-dvdsr 20242 df-unit 20243 df-invr 20273 df-drng 20616 df-lmod 20765 df-lss 20835 df-lsp 20875 df-lvec 21007 df-lsatoms 38955 df-lcv 38998 |
| This theorem is referenced by: l1cvat 39034 |
| Copyright terms: Public domain | W3C validator |