![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > lsatcvat3 | Structured version Visualization version GIF version |
Description: A condition implying that a certain subspace is an atom. Part of Lemma 3.2.20 of [PtakPulmannova] p. 68. (atcvat3i 32428 analog.) (Contributed by NM, 11-Jan-2015.) |
Ref | Expression |
---|---|
lsatcvat3.s | ⊢ 𝑆 = (LSubSp‘𝑊) |
lsatcvat3.p | ⊢ ⊕ = (LSSum‘𝑊) |
lsatcvat3.a | ⊢ 𝐴 = (LSAtoms‘𝑊) |
lsatcvat3.w | ⊢ (𝜑 → 𝑊 ∈ LVec) |
lsatcvat3.u | ⊢ (𝜑 → 𝑈 ∈ 𝑆) |
lsatcvat3.q | ⊢ (𝜑 → 𝑄 ∈ 𝐴) |
lsatcvat3.r | ⊢ (𝜑 → 𝑅 ∈ 𝐴) |
lsatcvat3.n | ⊢ (𝜑 → 𝑄 ≠ 𝑅) |
lsatcvat3.m | ⊢ (𝜑 → ¬ 𝑅 ⊆ 𝑈) |
lsatcvat3.l | ⊢ (𝜑 → 𝑄 ⊆ (𝑈 ⊕ 𝑅)) |
Ref | Expression |
---|---|
lsatcvat3 | ⊢ (𝜑 → (𝑈 ∩ (𝑄 ⊕ 𝑅)) ∈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lsatcvat3.s | . 2 ⊢ 𝑆 = (LSubSp‘𝑊) | |
2 | lsatcvat3.p | . 2 ⊢ ⊕ = (LSSum‘𝑊) | |
3 | lsatcvat3.a | . 2 ⊢ 𝐴 = (LSAtoms‘𝑊) | |
4 | eqid 2740 | . 2 ⊢ ( ⋖L ‘𝑊) = ( ⋖L ‘𝑊) | |
5 | lsatcvat3.w | . 2 ⊢ (𝜑 → 𝑊 ∈ LVec) | |
6 | lveclmod 21128 | . . . 4 ⊢ (𝑊 ∈ LVec → 𝑊 ∈ LMod) | |
7 | 5, 6 | syl 17 | . . 3 ⊢ (𝜑 → 𝑊 ∈ LMod) |
8 | lsatcvat3.u | . . 3 ⊢ (𝜑 → 𝑈 ∈ 𝑆) | |
9 | lsatcvat3.q | . . . . 5 ⊢ (𝜑 → 𝑄 ∈ 𝐴) | |
10 | 1, 3, 7, 9 | lsatlssel 38953 | . . . 4 ⊢ (𝜑 → 𝑄 ∈ 𝑆) |
11 | lsatcvat3.r | . . . . 5 ⊢ (𝜑 → 𝑅 ∈ 𝐴) | |
12 | 1, 3, 7, 11 | lsatlssel 38953 | . . . 4 ⊢ (𝜑 → 𝑅 ∈ 𝑆) |
13 | 1, 2 | lsmcl 21105 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝑄 ∈ 𝑆 ∧ 𝑅 ∈ 𝑆) → (𝑄 ⊕ 𝑅) ∈ 𝑆) |
14 | 7, 10, 12, 13 | syl3anc 1371 | . . 3 ⊢ (𝜑 → (𝑄 ⊕ 𝑅) ∈ 𝑆) |
15 | 1 | lssincl 20986 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ∧ (𝑄 ⊕ 𝑅) ∈ 𝑆) → (𝑈 ∩ (𝑄 ⊕ 𝑅)) ∈ 𝑆) |
16 | 7, 8, 14, 15 | syl3anc 1371 | . 2 ⊢ (𝜑 → (𝑈 ∩ (𝑄 ⊕ 𝑅)) ∈ 𝑆) |
17 | lsatcvat3.n | . 2 ⊢ (𝜑 → 𝑄 ≠ 𝑅) | |
18 | lsatcvat3.m | . . . . 5 ⊢ (𝜑 → ¬ 𝑅 ⊆ 𝑈) | |
19 | 1, 2, 3, 4, 5, 8, 11 | lcv1 38997 | . . . . 5 ⊢ (𝜑 → (¬ 𝑅 ⊆ 𝑈 ↔ 𝑈( ⋖L ‘𝑊)(𝑈 ⊕ 𝑅))) |
20 | 18, 19 | mpbid 232 | . . . 4 ⊢ (𝜑 → 𝑈( ⋖L ‘𝑊)(𝑈 ⊕ 𝑅)) |
21 | lmodabl 20929 | . . . . . . . . . . 11 ⊢ (𝑊 ∈ LMod → 𝑊 ∈ Abel) | |
22 | 7, 21 | syl 17 | . . . . . . . . . 10 ⊢ (𝜑 → 𝑊 ∈ Abel) |
23 | 1 | lsssssubg 20979 | . . . . . . . . . . . 12 ⊢ (𝑊 ∈ LMod → 𝑆 ⊆ (SubGrp‘𝑊)) |
24 | 7, 23 | syl 17 | . . . . . . . . . . 11 ⊢ (𝜑 → 𝑆 ⊆ (SubGrp‘𝑊)) |
25 | 24, 10 | sseldd 4009 | . . . . . . . . . 10 ⊢ (𝜑 → 𝑄 ∈ (SubGrp‘𝑊)) |
26 | 24, 12 | sseldd 4009 | . . . . . . . . . 10 ⊢ (𝜑 → 𝑅 ∈ (SubGrp‘𝑊)) |
27 | 2 | lsmcom 19900 | . . . . . . . . . 10 ⊢ ((𝑊 ∈ Abel ∧ 𝑄 ∈ (SubGrp‘𝑊) ∧ 𝑅 ∈ (SubGrp‘𝑊)) → (𝑄 ⊕ 𝑅) = (𝑅 ⊕ 𝑄)) |
28 | 22, 25, 26, 27 | syl3anc 1371 | . . . . . . . . 9 ⊢ (𝜑 → (𝑄 ⊕ 𝑅) = (𝑅 ⊕ 𝑄)) |
29 | 28 | oveq2d 7464 | . . . . . . . 8 ⊢ (𝜑 → (𝑈 ⊕ (𝑄 ⊕ 𝑅)) = (𝑈 ⊕ (𝑅 ⊕ 𝑄))) |
30 | 24, 8 | sseldd 4009 | . . . . . . . . 9 ⊢ (𝜑 → 𝑈 ∈ (SubGrp‘𝑊)) |
31 | 2 | lsmass 19711 | . . . . . . . . 9 ⊢ ((𝑈 ∈ (SubGrp‘𝑊) ∧ 𝑅 ∈ (SubGrp‘𝑊) ∧ 𝑄 ∈ (SubGrp‘𝑊)) → ((𝑈 ⊕ 𝑅) ⊕ 𝑄) = (𝑈 ⊕ (𝑅 ⊕ 𝑄))) |
32 | 30, 26, 25, 31 | syl3anc 1371 | . . . . . . . 8 ⊢ (𝜑 → ((𝑈 ⊕ 𝑅) ⊕ 𝑄) = (𝑈 ⊕ (𝑅 ⊕ 𝑄))) |
33 | 29, 32 | eqtr4d 2783 | . . . . . . 7 ⊢ (𝜑 → (𝑈 ⊕ (𝑄 ⊕ 𝑅)) = ((𝑈 ⊕ 𝑅) ⊕ 𝑄)) |
34 | 1, 2 | lsmcl 21105 | . . . . . . . . . 10 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ∧ 𝑅 ∈ 𝑆) → (𝑈 ⊕ 𝑅) ∈ 𝑆) |
35 | 7, 8, 12, 34 | syl3anc 1371 | . . . . . . . . 9 ⊢ (𝜑 → (𝑈 ⊕ 𝑅) ∈ 𝑆) |
36 | 24, 35 | sseldd 4009 | . . . . . . . 8 ⊢ (𝜑 → (𝑈 ⊕ 𝑅) ∈ (SubGrp‘𝑊)) |
37 | lsatcvat3.l | . . . . . . . 8 ⊢ (𝜑 → 𝑄 ⊆ (𝑈 ⊕ 𝑅)) | |
38 | 2 | lsmless2 19703 | . . . . . . . 8 ⊢ (((𝑈 ⊕ 𝑅) ∈ (SubGrp‘𝑊) ∧ (𝑈 ⊕ 𝑅) ∈ (SubGrp‘𝑊) ∧ 𝑄 ⊆ (𝑈 ⊕ 𝑅)) → ((𝑈 ⊕ 𝑅) ⊕ 𝑄) ⊆ ((𝑈 ⊕ 𝑅) ⊕ (𝑈 ⊕ 𝑅))) |
39 | 36, 36, 37, 38 | syl3anc 1371 | . . . . . . 7 ⊢ (𝜑 → ((𝑈 ⊕ 𝑅) ⊕ 𝑄) ⊆ ((𝑈 ⊕ 𝑅) ⊕ (𝑈 ⊕ 𝑅))) |
40 | 33, 39 | eqsstrd 4047 | . . . . . 6 ⊢ (𝜑 → (𝑈 ⊕ (𝑄 ⊕ 𝑅)) ⊆ ((𝑈 ⊕ 𝑅) ⊕ (𝑈 ⊕ 𝑅))) |
41 | 2 | lsmidm 19705 | . . . . . . 7 ⊢ ((𝑈 ⊕ 𝑅) ∈ (SubGrp‘𝑊) → ((𝑈 ⊕ 𝑅) ⊕ (𝑈 ⊕ 𝑅)) = (𝑈 ⊕ 𝑅)) |
42 | 36, 41 | syl 17 | . . . . . 6 ⊢ (𝜑 → ((𝑈 ⊕ 𝑅) ⊕ (𝑈 ⊕ 𝑅)) = (𝑈 ⊕ 𝑅)) |
43 | 40, 42 | sseqtrd 4049 | . . . . 5 ⊢ (𝜑 → (𝑈 ⊕ (𝑄 ⊕ 𝑅)) ⊆ (𝑈 ⊕ 𝑅)) |
44 | 24, 14 | sseldd 4009 | . . . . . 6 ⊢ (𝜑 → (𝑄 ⊕ 𝑅) ∈ (SubGrp‘𝑊)) |
45 | 2 | lsmub2 19700 | . . . . . . 7 ⊢ ((𝑄 ∈ (SubGrp‘𝑊) ∧ 𝑅 ∈ (SubGrp‘𝑊)) → 𝑅 ⊆ (𝑄 ⊕ 𝑅)) |
46 | 25, 26, 45 | syl2anc 583 | . . . . . 6 ⊢ (𝜑 → 𝑅 ⊆ (𝑄 ⊕ 𝑅)) |
47 | 2 | lsmless2 19703 | . . . . . 6 ⊢ ((𝑈 ∈ (SubGrp‘𝑊) ∧ (𝑄 ⊕ 𝑅) ∈ (SubGrp‘𝑊) ∧ 𝑅 ⊆ (𝑄 ⊕ 𝑅)) → (𝑈 ⊕ 𝑅) ⊆ (𝑈 ⊕ (𝑄 ⊕ 𝑅))) |
48 | 30, 44, 46, 47 | syl3anc 1371 | . . . . 5 ⊢ (𝜑 → (𝑈 ⊕ 𝑅) ⊆ (𝑈 ⊕ (𝑄 ⊕ 𝑅))) |
49 | 43, 48 | eqssd 4026 | . . . 4 ⊢ (𝜑 → (𝑈 ⊕ (𝑄 ⊕ 𝑅)) = (𝑈 ⊕ 𝑅)) |
50 | 20, 49 | breqtrrd 5194 | . . 3 ⊢ (𝜑 → 𝑈( ⋖L ‘𝑊)(𝑈 ⊕ (𝑄 ⊕ 𝑅))) |
51 | 1, 2, 4, 7, 8, 14, 50 | lcvexchlem4 38993 | . 2 ⊢ (𝜑 → (𝑈 ∩ (𝑄 ⊕ 𝑅))( ⋖L ‘𝑊)(𝑄 ⊕ 𝑅)) |
52 | 1, 2, 3, 4, 5, 16, 9, 11, 17, 51 | lsatcvat2 39007 | 1 ⊢ (𝜑 → (𝑈 ∩ (𝑄 ⊕ 𝑅)) ∈ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1537 ∈ wcel 2108 ≠ wne 2946 ∩ cin 3975 ⊆ wss 3976 class class class wbr 5166 ‘cfv 6573 (class class class)co 7448 SubGrpcsubg 19160 LSSumclsm 19676 Abelcabl 19823 LModclmod 20880 LSubSpclss 20952 LVecclvec 21124 LSAtomsclsa 38930 ⋖L clcv 38974 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-iin 5018 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-1st 8030 df-2nd 8031 df-tpos 8267 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-2o 8523 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-nn 12294 df-2 12356 df-3 12357 df-sets 17211 df-slot 17229 df-ndx 17241 df-base 17259 df-ress 17288 df-plusg 17324 df-mulr 17325 df-0g 17501 df-mre 17644 df-mrc 17645 df-acs 17647 df-mgm 18678 df-sgrp 18757 df-mnd 18773 df-submnd 18819 df-grp 18976 df-minusg 18977 df-sbg 18978 df-subg 19163 df-cntz 19357 df-oppg 19386 df-lsm 19678 df-cmn 19824 df-abl 19825 df-mgp 20162 df-rng 20180 df-ur 20209 df-ring 20262 df-oppr 20360 df-dvdsr 20383 df-unit 20384 df-invr 20414 df-drng 20753 df-lmod 20882 df-lss 20953 df-lsp 20993 df-lvec 21125 df-lsatoms 38932 df-lcv 38975 |
This theorem is referenced by: l1cvat 39011 |
Copyright terms: Public domain | W3C validator |