| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > lsatcvat3 | Structured version Visualization version GIF version | ||
| Description: A condition implying that a certain subspace is an atom. Part of Lemma 3.2.20 of [PtakPulmannova] p. 68. (atcvat3i 32332 analog.) (Contributed by NM, 11-Jan-2015.) |
| Ref | Expression |
|---|---|
| lsatcvat3.s | ⊢ 𝑆 = (LSubSp‘𝑊) |
| lsatcvat3.p | ⊢ ⊕ = (LSSum‘𝑊) |
| lsatcvat3.a | ⊢ 𝐴 = (LSAtoms‘𝑊) |
| lsatcvat3.w | ⊢ (𝜑 → 𝑊 ∈ LVec) |
| lsatcvat3.u | ⊢ (𝜑 → 𝑈 ∈ 𝑆) |
| lsatcvat3.q | ⊢ (𝜑 → 𝑄 ∈ 𝐴) |
| lsatcvat3.r | ⊢ (𝜑 → 𝑅 ∈ 𝐴) |
| lsatcvat3.n | ⊢ (𝜑 → 𝑄 ≠ 𝑅) |
| lsatcvat3.m | ⊢ (𝜑 → ¬ 𝑅 ⊆ 𝑈) |
| lsatcvat3.l | ⊢ (𝜑 → 𝑄 ⊆ (𝑈 ⊕ 𝑅)) |
| Ref | Expression |
|---|---|
| lsatcvat3 | ⊢ (𝜑 → (𝑈 ∩ (𝑄 ⊕ 𝑅)) ∈ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lsatcvat3.s | . 2 ⊢ 𝑆 = (LSubSp‘𝑊) | |
| 2 | lsatcvat3.p | . 2 ⊢ ⊕ = (LSSum‘𝑊) | |
| 3 | lsatcvat3.a | . 2 ⊢ 𝐴 = (LSAtoms‘𝑊) | |
| 4 | eqid 2730 | . 2 ⊢ ( ⋖L ‘𝑊) = ( ⋖L ‘𝑊) | |
| 5 | lsatcvat3.w | . 2 ⊢ (𝜑 → 𝑊 ∈ LVec) | |
| 6 | lveclmod 21020 | . . . 4 ⊢ (𝑊 ∈ LVec → 𝑊 ∈ LMod) | |
| 7 | 5, 6 | syl 17 | . . 3 ⊢ (𝜑 → 𝑊 ∈ LMod) |
| 8 | lsatcvat3.u | . . 3 ⊢ (𝜑 → 𝑈 ∈ 𝑆) | |
| 9 | lsatcvat3.q | . . . . 5 ⊢ (𝜑 → 𝑄 ∈ 𝐴) | |
| 10 | 1, 3, 7, 9 | lsatlssel 38997 | . . . 4 ⊢ (𝜑 → 𝑄 ∈ 𝑆) |
| 11 | lsatcvat3.r | . . . . 5 ⊢ (𝜑 → 𝑅 ∈ 𝐴) | |
| 12 | 1, 3, 7, 11 | lsatlssel 38997 | . . . 4 ⊢ (𝜑 → 𝑅 ∈ 𝑆) |
| 13 | 1, 2 | lsmcl 20997 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝑄 ∈ 𝑆 ∧ 𝑅 ∈ 𝑆) → (𝑄 ⊕ 𝑅) ∈ 𝑆) |
| 14 | 7, 10, 12, 13 | syl3anc 1373 | . . 3 ⊢ (𝜑 → (𝑄 ⊕ 𝑅) ∈ 𝑆) |
| 15 | 1 | lssincl 20878 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ∧ (𝑄 ⊕ 𝑅) ∈ 𝑆) → (𝑈 ∩ (𝑄 ⊕ 𝑅)) ∈ 𝑆) |
| 16 | 7, 8, 14, 15 | syl3anc 1373 | . 2 ⊢ (𝜑 → (𝑈 ∩ (𝑄 ⊕ 𝑅)) ∈ 𝑆) |
| 17 | lsatcvat3.n | . 2 ⊢ (𝜑 → 𝑄 ≠ 𝑅) | |
| 18 | lsatcvat3.m | . . . . 5 ⊢ (𝜑 → ¬ 𝑅 ⊆ 𝑈) | |
| 19 | 1, 2, 3, 4, 5, 8, 11 | lcv1 39041 | . . . . 5 ⊢ (𝜑 → (¬ 𝑅 ⊆ 𝑈 ↔ 𝑈( ⋖L ‘𝑊)(𝑈 ⊕ 𝑅))) |
| 20 | 18, 19 | mpbid 232 | . . . 4 ⊢ (𝜑 → 𝑈( ⋖L ‘𝑊)(𝑈 ⊕ 𝑅)) |
| 21 | lmodabl 20822 | . . . . . . . . . . 11 ⊢ (𝑊 ∈ LMod → 𝑊 ∈ Abel) | |
| 22 | 7, 21 | syl 17 | . . . . . . . . . 10 ⊢ (𝜑 → 𝑊 ∈ Abel) |
| 23 | 1 | lsssssubg 20871 | . . . . . . . . . . . 12 ⊢ (𝑊 ∈ LMod → 𝑆 ⊆ (SubGrp‘𝑊)) |
| 24 | 7, 23 | syl 17 | . . . . . . . . . . 11 ⊢ (𝜑 → 𝑆 ⊆ (SubGrp‘𝑊)) |
| 25 | 24, 10 | sseldd 3950 | . . . . . . . . . 10 ⊢ (𝜑 → 𝑄 ∈ (SubGrp‘𝑊)) |
| 26 | 24, 12 | sseldd 3950 | . . . . . . . . . 10 ⊢ (𝜑 → 𝑅 ∈ (SubGrp‘𝑊)) |
| 27 | 2 | lsmcom 19795 | . . . . . . . . . 10 ⊢ ((𝑊 ∈ Abel ∧ 𝑄 ∈ (SubGrp‘𝑊) ∧ 𝑅 ∈ (SubGrp‘𝑊)) → (𝑄 ⊕ 𝑅) = (𝑅 ⊕ 𝑄)) |
| 28 | 22, 25, 26, 27 | syl3anc 1373 | . . . . . . . . 9 ⊢ (𝜑 → (𝑄 ⊕ 𝑅) = (𝑅 ⊕ 𝑄)) |
| 29 | 28 | oveq2d 7406 | . . . . . . . 8 ⊢ (𝜑 → (𝑈 ⊕ (𝑄 ⊕ 𝑅)) = (𝑈 ⊕ (𝑅 ⊕ 𝑄))) |
| 30 | 24, 8 | sseldd 3950 | . . . . . . . . 9 ⊢ (𝜑 → 𝑈 ∈ (SubGrp‘𝑊)) |
| 31 | 2 | lsmass 19606 | . . . . . . . . 9 ⊢ ((𝑈 ∈ (SubGrp‘𝑊) ∧ 𝑅 ∈ (SubGrp‘𝑊) ∧ 𝑄 ∈ (SubGrp‘𝑊)) → ((𝑈 ⊕ 𝑅) ⊕ 𝑄) = (𝑈 ⊕ (𝑅 ⊕ 𝑄))) |
| 32 | 30, 26, 25, 31 | syl3anc 1373 | . . . . . . . 8 ⊢ (𝜑 → ((𝑈 ⊕ 𝑅) ⊕ 𝑄) = (𝑈 ⊕ (𝑅 ⊕ 𝑄))) |
| 33 | 29, 32 | eqtr4d 2768 | . . . . . . 7 ⊢ (𝜑 → (𝑈 ⊕ (𝑄 ⊕ 𝑅)) = ((𝑈 ⊕ 𝑅) ⊕ 𝑄)) |
| 34 | 1, 2 | lsmcl 20997 | . . . . . . . . . 10 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ∧ 𝑅 ∈ 𝑆) → (𝑈 ⊕ 𝑅) ∈ 𝑆) |
| 35 | 7, 8, 12, 34 | syl3anc 1373 | . . . . . . . . 9 ⊢ (𝜑 → (𝑈 ⊕ 𝑅) ∈ 𝑆) |
| 36 | 24, 35 | sseldd 3950 | . . . . . . . 8 ⊢ (𝜑 → (𝑈 ⊕ 𝑅) ∈ (SubGrp‘𝑊)) |
| 37 | lsatcvat3.l | . . . . . . . 8 ⊢ (𝜑 → 𝑄 ⊆ (𝑈 ⊕ 𝑅)) | |
| 38 | 2 | lsmless2 19598 | . . . . . . . 8 ⊢ (((𝑈 ⊕ 𝑅) ∈ (SubGrp‘𝑊) ∧ (𝑈 ⊕ 𝑅) ∈ (SubGrp‘𝑊) ∧ 𝑄 ⊆ (𝑈 ⊕ 𝑅)) → ((𝑈 ⊕ 𝑅) ⊕ 𝑄) ⊆ ((𝑈 ⊕ 𝑅) ⊕ (𝑈 ⊕ 𝑅))) |
| 39 | 36, 36, 37, 38 | syl3anc 1373 | . . . . . . 7 ⊢ (𝜑 → ((𝑈 ⊕ 𝑅) ⊕ 𝑄) ⊆ ((𝑈 ⊕ 𝑅) ⊕ (𝑈 ⊕ 𝑅))) |
| 40 | 33, 39 | eqsstrd 3984 | . . . . . 6 ⊢ (𝜑 → (𝑈 ⊕ (𝑄 ⊕ 𝑅)) ⊆ ((𝑈 ⊕ 𝑅) ⊕ (𝑈 ⊕ 𝑅))) |
| 41 | 2 | lsmidm 19600 | . . . . . . 7 ⊢ ((𝑈 ⊕ 𝑅) ∈ (SubGrp‘𝑊) → ((𝑈 ⊕ 𝑅) ⊕ (𝑈 ⊕ 𝑅)) = (𝑈 ⊕ 𝑅)) |
| 42 | 36, 41 | syl 17 | . . . . . 6 ⊢ (𝜑 → ((𝑈 ⊕ 𝑅) ⊕ (𝑈 ⊕ 𝑅)) = (𝑈 ⊕ 𝑅)) |
| 43 | 40, 42 | sseqtrd 3986 | . . . . 5 ⊢ (𝜑 → (𝑈 ⊕ (𝑄 ⊕ 𝑅)) ⊆ (𝑈 ⊕ 𝑅)) |
| 44 | 24, 14 | sseldd 3950 | . . . . . 6 ⊢ (𝜑 → (𝑄 ⊕ 𝑅) ∈ (SubGrp‘𝑊)) |
| 45 | 2 | lsmub2 19595 | . . . . . . 7 ⊢ ((𝑄 ∈ (SubGrp‘𝑊) ∧ 𝑅 ∈ (SubGrp‘𝑊)) → 𝑅 ⊆ (𝑄 ⊕ 𝑅)) |
| 46 | 25, 26, 45 | syl2anc 584 | . . . . . 6 ⊢ (𝜑 → 𝑅 ⊆ (𝑄 ⊕ 𝑅)) |
| 47 | 2 | lsmless2 19598 | . . . . . 6 ⊢ ((𝑈 ∈ (SubGrp‘𝑊) ∧ (𝑄 ⊕ 𝑅) ∈ (SubGrp‘𝑊) ∧ 𝑅 ⊆ (𝑄 ⊕ 𝑅)) → (𝑈 ⊕ 𝑅) ⊆ (𝑈 ⊕ (𝑄 ⊕ 𝑅))) |
| 48 | 30, 44, 46, 47 | syl3anc 1373 | . . . . 5 ⊢ (𝜑 → (𝑈 ⊕ 𝑅) ⊆ (𝑈 ⊕ (𝑄 ⊕ 𝑅))) |
| 49 | 43, 48 | eqssd 3967 | . . . 4 ⊢ (𝜑 → (𝑈 ⊕ (𝑄 ⊕ 𝑅)) = (𝑈 ⊕ 𝑅)) |
| 50 | 20, 49 | breqtrrd 5138 | . . 3 ⊢ (𝜑 → 𝑈( ⋖L ‘𝑊)(𝑈 ⊕ (𝑄 ⊕ 𝑅))) |
| 51 | 1, 2, 4, 7, 8, 14, 50 | lcvexchlem4 39037 | . 2 ⊢ (𝜑 → (𝑈 ∩ (𝑄 ⊕ 𝑅))( ⋖L ‘𝑊)(𝑄 ⊕ 𝑅)) |
| 52 | 1, 2, 3, 4, 5, 16, 9, 11, 17, 51 | lsatcvat2 39051 | 1 ⊢ (𝜑 → (𝑈 ∩ (𝑄 ⊕ 𝑅)) ∈ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1540 ∈ wcel 2109 ≠ wne 2926 ∩ cin 3916 ⊆ wss 3917 class class class wbr 5110 ‘cfv 6514 (class class class)co 7390 SubGrpcsubg 19059 LSSumclsm 19571 Abelcabl 19718 LModclmod 20773 LSubSpclss 20844 LVecclvec 21016 LSAtomsclsa 38974 ⋖L clcv 39018 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-int 4914 df-iun 4960 df-iin 4961 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-tpos 8208 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-2o 8438 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-nn 12194 df-2 12256 df-3 12257 df-sets 17141 df-slot 17159 df-ndx 17171 df-base 17187 df-ress 17208 df-plusg 17240 df-mulr 17241 df-0g 17411 df-mre 17554 df-mrc 17555 df-acs 17557 df-mgm 18574 df-sgrp 18653 df-mnd 18669 df-submnd 18718 df-grp 18875 df-minusg 18876 df-sbg 18877 df-subg 19062 df-cntz 19256 df-oppg 19285 df-lsm 19573 df-cmn 19719 df-abl 19720 df-mgp 20057 df-rng 20069 df-ur 20098 df-ring 20151 df-oppr 20253 df-dvdsr 20273 df-unit 20274 df-invr 20304 df-drng 20647 df-lmod 20775 df-lss 20845 df-lsp 20885 df-lvec 21017 df-lsatoms 38976 df-lcv 39019 |
| This theorem is referenced by: l1cvat 39055 |
| Copyright terms: Public domain | W3C validator |