Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lsatcvat3 Structured version   Visualization version   GIF version

Theorem lsatcvat3 38654
Description: A condition implying that a certain subspace is an atom. Part of Lemma 3.2.20 of [PtakPulmannova] p. 68. (atcvat3i 32278 analog.) (Contributed by NM, 11-Jan-2015.)
Hypotheses
Ref Expression
lsatcvat3.s 𝑆 = (LSubSp‘𝑊)
lsatcvat3.p = (LSSum‘𝑊)
lsatcvat3.a 𝐴 = (LSAtoms‘𝑊)
lsatcvat3.w (𝜑𝑊 ∈ LVec)
lsatcvat3.u (𝜑𝑈𝑆)
lsatcvat3.q (𝜑𝑄𝐴)
lsatcvat3.r (𝜑𝑅𝐴)
lsatcvat3.n (𝜑𝑄𝑅)
lsatcvat3.m (𝜑 → ¬ 𝑅𝑈)
lsatcvat3.l (𝜑𝑄 ⊆ (𝑈 𝑅))
Assertion
Ref Expression
lsatcvat3 (𝜑 → (𝑈 ∩ (𝑄 𝑅)) ∈ 𝐴)

Proof of Theorem lsatcvat3
StepHypRef Expression
1 lsatcvat3.s . 2 𝑆 = (LSubSp‘𝑊)
2 lsatcvat3.p . 2 = (LSSum‘𝑊)
3 lsatcvat3.a . 2 𝐴 = (LSAtoms‘𝑊)
4 eqid 2725 . 2 ( ⋖L𝑊) = ( ⋖L𝑊)
5 lsatcvat3.w . 2 (𝜑𝑊 ∈ LVec)
6 lveclmod 21003 . . . 4 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
75, 6syl 17 . . 3 (𝜑𝑊 ∈ LMod)
8 lsatcvat3.u . . 3 (𝜑𝑈𝑆)
9 lsatcvat3.q . . . . 5 (𝜑𝑄𝐴)
101, 3, 7, 9lsatlssel 38599 . . . 4 (𝜑𝑄𝑆)
11 lsatcvat3.r . . . . 5 (𝜑𝑅𝐴)
121, 3, 7, 11lsatlssel 38599 . . . 4 (𝜑𝑅𝑆)
131, 2lsmcl 20980 . . . 4 ((𝑊 ∈ LMod ∧ 𝑄𝑆𝑅𝑆) → (𝑄 𝑅) ∈ 𝑆)
147, 10, 12, 13syl3anc 1368 . . 3 (𝜑 → (𝑄 𝑅) ∈ 𝑆)
151lssincl 20861 . . 3 ((𝑊 ∈ LMod ∧ 𝑈𝑆 ∧ (𝑄 𝑅) ∈ 𝑆) → (𝑈 ∩ (𝑄 𝑅)) ∈ 𝑆)
167, 8, 14, 15syl3anc 1368 . 2 (𝜑 → (𝑈 ∩ (𝑄 𝑅)) ∈ 𝑆)
17 lsatcvat3.n . 2 (𝜑𝑄𝑅)
18 lsatcvat3.m . . . . 5 (𝜑 → ¬ 𝑅𝑈)
191, 2, 3, 4, 5, 8, 11lcv1 38643 . . . . 5 (𝜑 → (¬ 𝑅𝑈𝑈( ⋖L𝑊)(𝑈 𝑅)))
2018, 19mpbid 231 . . . 4 (𝜑𝑈( ⋖L𝑊)(𝑈 𝑅))
21 lmodabl 20804 . . . . . . . . . . 11 (𝑊 ∈ LMod → 𝑊 ∈ Abel)
227, 21syl 17 . . . . . . . . . 10 (𝜑𝑊 ∈ Abel)
231lsssssubg 20854 . . . . . . . . . . . 12 (𝑊 ∈ LMod → 𝑆 ⊆ (SubGrp‘𝑊))
247, 23syl 17 . . . . . . . . . . 11 (𝜑𝑆 ⊆ (SubGrp‘𝑊))
2524, 10sseldd 3977 . . . . . . . . . 10 (𝜑𝑄 ∈ (SubGrp‘𝑊))
2624, 12sseldd 3977 . . . . . . . . . 10 (𝜑𝑅 ∈ (SubGrp‘𝑊))
272lsmcom 19825 . . . . . . . . . 10 ((𝑊 ∈ Abel ∧ 𝑄 ∈ (SubGrp‘𝑊) ∧ 𝑅 ∈ (SubGrp‘𝑊)) → (𝑄 𝑅) = (𝑅 𝑄))
2822, 25, 26, 27syl3anc 1368 . . . . . . . . 9 (𝜑 → (𝑄 𝑅) = (𝑅 𝑄))
2928oveq2d 7435 . . . . . . . 8 (𝜑 → (𝑈 (𝑄 𝑅)) = (𝑈 (𝑅 𝑄)))
3024, 8sseldd 3977 . . . . . . . . 9 (𝜑𝑈 ∈ (SubGrp‘𝑊))
312lsmass 19636 . . . . . . . . 9 ((𝑈 ∈ (SubGrp‘𝑊) ∧ 𝑅 ∈ (SubGrp‘𝑊) ∧ 𝑄 ∈ (SubGrp‘𝑊)) → ((𝑈 𝑅) 𝑄) = (𝑈 (𝑅 𝑄)))
3230, 26, 25, 31syl3anc 1368 . . . . . . . 8 (𝜑 → ((𝑈 𝑅) 𝑄) = (𝑈 (𝑅 𝑄)))
3329, 32eqtr4d 2768 . . . . . . 7 (𝜑 → (𝑈 (𝑄 𝑅)) = ((𝑈 𝑅) 𝑄))
341, 2lsmcl 20980 . . . . . . . . . 10 ((𝑊 ∈ LMod ∧ 𝑈𝑆𝑅𝑆) → (𝑈 𝑅) ∈ 𝑆)
357, 8, 12, 34syl3anc 1368 . . . . . . . . 9 (𝜑 → (𝑈 𝑅) ∈ 𝑆)
3624, 35sseldd 3977 . . . . . . . 8 (𝜑 → (𝑈 𝑅) ∈ (SubGrp‘𝑊))
37 lsatcvat3.l . . . . . . . 8 (𝜑𝑄 ⊆ (𝑈 𝑅))
382lsmless2 19628 . . . . . . . 8 (((𝑈 𝑅) ∈ (SubGrp‘𝑊) ∧ (𝑈 𝑅) ∈ (SubGrp‘𝑊) ∧ 𝑄 ⊆ (𝑈 𝑅)) → ((𝑈 𝑅) 𝑄) ⊆ ((𝑈 𝑅) (𝑈 𝑅)))
3936, 36, 37, 38syl3anc 1368 . . . . . . 7 (𝜑 → ((𝑈 𝑅) 𝑄) ⊆ ((𝑈 𝑅) (𝑈 𝑅)))
4033, 39eqsstrd 4015 . . . . . 6 (𝜑 → (𝑈 (𝑄 𝑅)) ⊆ ((𝑈 𝑅) (𝑈 𝑅)))
412lsmidm 19630 . . . . . . 7 ((𝑈 𝑅) ∈ (SubGrp‘𝑊) → ((𝑈 𝑅) (𝑈 𝑅)) = (𝑈 𝑅))
4236, 41syl 17 . . . . . 6 (𝜑 → ((𝑈 𝑅) (𝑈 𝑅)) = (𝑈 𝑅))
4340, 42sseqtrd 4017 . . . . 5 (𝜑 → (𝑈 (𝑄 𝑅)) ⊆ (𝑈 𝑅))
4424, 14sseldd 3977 . . . . . 6 (𝜑 → (𝑄 𝑅) ∈ (SubGrp‘𝑊))
452lsmub2 19625 . . . . . . 7 ((𝑄 ∈ (SubGrp‘𝑊) ∧ 𝑅 ∈ (SubGrp‘𝑊)) → 𝑅 ⊆ (𝑄 𝑅))
4625, 26, 45syl2anc 582 . . . . . 6 (𝜑𝑅 ⊆ (𝑄 𝑅))
472lsmless2 19628 . . . . . 6 ((𝑈 ∈ (SubGrp‘𝑊) ∧ (𝑄 𝑅) ∈ (SubGrp‘𝑊) ∧ 𝑅 ⊆ (𝑄 𝑅)) → (𝑈 𝑅) ⊆ (𝑈 (𝑄 𝑅)))
4830, 44, 46, 47syl3anc 1368 . . . . 5 (𝜑 → (𝑈 𝑅) ⊆ (𝑈 (𝑄 𝑅)))
4943, 48eqssd 3994 . . . 4 (𝜑 → (𝑈 (𝑄 𝑅)) = (𝑈 𝑅))
5020, 49breqtrrd 5177 . . 3 (𝜑𝑈( ⋖L𝑊)(𝑈 (𝑄 𝑅)))
511, 2, 4, 7, 8, 14, 50lcvexchlem4 38639 . 2 (𝜑 → (𝑈 ∩ (𝑄 𝑅))( ⋖L𝑊)(𝑄 𝑅))
521, 2, 3, 4, 5, 16, 9, 11, 17, 51lsatcvat2 38653 1 (𝜑 → (𝑈 ∩ (𝑄 𝑅)) ∈ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1533  wcel 2098  wne 2929  cin 3943  wss 3944   class class class wbr 5149  cfv 6549  (class class class)co 7419  SubGrpcsubg 19083  LSSumclsm 19601  Abelcabl 19748  LModclmod 20755  LSubSpclss 20827  LVecclvec 20999  LSAtomsclsa 38576  L clcv 38620
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741  ax-cnex 11196  ax-resscn 11197  ax-1cn 11198  ax-icn 11199  ax-addcl 11200  ax-addrcl 11201  ax-mulcl 11202  ax-mulrcl 11203  ax-mulcom 11204  ax-addass 11205  ax-mulass 11206  ax-distr 11207  ax-i2m1 11208  ax-1ne0 11209  ax-1rid 11210  ax-rnegex 11211  ax-rrecex 11212  ax-cnre 11213  ax-pre-lttri 11214  ax-pre-lttrn 11215  ax-pre-ltadd 11216  ax-pre-mulgt0 11217
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3964  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-int 4951  df-iun 4999  df-iin 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6307  df-ord 6374  df-on 6375  df-lim 6376  df-suc 6377  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-riota 7375  df-ov 7422  df-oprab 7423  df-mpo 7424  df-om 7872  df-1st 7994  df-2nd 7995  df-tpos 8232  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-1o 8487  df-er 8725  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-pnf 11282  df-mnf 11283  df-xr 11284  df-ltxr 11285  df-le 11286  df-sub 11478  df-neg 11479  df-nn 12246  df-2 12308  df-3 12309  df-sets 17136  df-slot 17154  df-ndx 17166  df-base 17184  df-ress 17213  df-plusg 17249  df-mulr 17250  df-0g 17426  df-mre 17569  df-mrc 17570  df-acs 17572  df-mgm 18603  df-sgrp 18682  df-mnd 18698  df-submnd 18744  df-grp 18901  df-minusg 18902  df-sbg 18903  df-subg 19086  df-cntz 19280  df-oppg 19309  df-lsm 19603  df-cmn 19749  df-abl 19750  df-mgp 20087  df-rng 20105  df-ur 20134  df-ring 20187  df-oppr 20285  df-dvdsr 20308  df-unit 20309  df-invr 20339  df-drng 20638  df-lmod 20757  df-lss 20828  df-lsp 20868  df-lvec 21000  df-lsatoms 38578  df-lcv 38621
This theorem is referenced by:  l1cvat  38657
  Copyright terms: Public domain W3C validator