| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > lsatcvat3 | Structured version Visualization version GIF version | ||
| Description: A condition implying that a certain subspace is an atom. Part of Lemma 3.2.20 of [PtakPulmannova] p. 68. (atcvat3i 32343 analog.) (Contributed by NM, 11-Jan-2015.) |
| Ref | Expression |
|---|---|
| lsatcvat3.s | ⊢ 𝑆 = (LSubSp‘𝑊) |
| lsatcvat3.p | ⊢ ⊕ = (LSSum‘𝑊) |
| lsatcvat3.a | ⊢ 𝐴 = (LSAtoms‘𝑊) |
| lsatcvat3.w | ⊢ (𝜑 → 𝑊 ∈ LVec) |
| lsatcvat3.u | ⊢ (𝜑 → 𝑈 ∈ 𝑆) |
| lsatcvat3.q | ⊢ (𝜑 → 𝑄 ∈ 𝐴) |
| lsatcvat3.r | ⊢ (𝜑 → 𝑅 ∈ 𝐴) |
| lsatcvat3.n | ⊢ (𝜑 → 𝑄 ≠ 𝑅) |
| lsatcvat3.m | ⊢ (𝜑 → ¬ 𝑅 ⊆ 𝑈) |
| lsatcvat3.l | ⊢ (𝜑 → 𝑄 ⊆ (𝑈 ⊕ 𝑅)) |
| Ref | Expression |
|---|---|
| lsatcvat3 | ⊢ (𝜑 → (𝑈 ∩ (𝑄 ⊕ 𝑅)) ∈ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lsatcvat3.s | . 2 ⊢ 𝑆 = (LSubSp‘𝑊) | |
| 2 | lsatcvat3.p | . 2 ⊢ ⊕ = (LSSum‘𝑊) | |
| 3 | lsatcvat3.a | . 2 ⊢ 𝐴 = (LSAtoms‘𝑊) | |
| 4 | eqid 2734 | . 2 ⊢ ( ⋖L ‘𝑊) = ( ⋖L ‘𝑊) | |
| 5 | lsatcvat3.w | . 2 ⊢ (𝜑 → 𝑊 ∈ LVec) | |
| 6 | lveclmod 21073 | . . . 4 ⊢ (𝑊 ∈ LVec → 𝑊 ∈ LMod) | |
| 7 | 5, 6 | syl 17 | . . 3 ⊢ (𝜑 → 𝑊 ∈ LMod) |
| 8 | lsatcvat3.u | . . 3 ⊢ (𝜑 → 𝑈 ∈ 𝑆) | |
| 9 | lsatcvat3.q | . . . . 5 ⊢ (𝜑 → 𝑄 ∈ 𝐴) | |
| 10 | 1, 3, 7, 9 | lsatlssel 38957 | . . . 4 ⊢ (𝜑 → 𝑄 ∈ 𝑆) |
| 11 | lsatcvat3.r | . . . . 5 ⊢ (𝜑 → 𝑅 ∈ 𝐴) | |
| 12 | 1, 3, 7, 11 | lsatlssel 38957 | . . . 4 ⊢ (𝜑 → 𝑅 ∈ 𝑆) |
| 13 | 1, 2 | lsmcl 21050 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝑄 ∈ 𝑆 ∧ 𝑅 ∈ 𝑆) → (𝑄 ⊕ 𝑅) ∈ 𝑆) |
| 14 | 7, 10, 12, 13 | syl3anc 1372 | . . 3 ⊢ (𝜑 → (𝑄 ⊕ 𝑅) ∈ 𝑆) |
| 15 | 1 | lssincl 20931 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ∧ (𝑄 ⊕ 𝑅) ∈ 𝑆) → (𝑈 ∩ (𝑄 ⊕ 𝑅)) ∈ 𝑆) |
| 16 | 7, 8, 14, 15 | syl3anc 1372 | . 2 ⊢ (𝜑 → (𝑈 ∩ (𝑄 ⊕ 𝑅)) ∈ 𝑆) |
| 17 | lsatcvat3.n | . 2 ⊢ (𝜑 → 𝑄 ≠ 𝑅) | |
| 18 | lsatcvat3.m | . . . . 5 ⊢ (𝜑 → ¬ 𝑅 ⊆ 𝑈) | |
| 19 | 1, 2, 3, 4, 5, 8, 11 | lcv1 39001 | . . . . 5 ⊢ (𝜑 → (¬ 𝑅 ⊆ 𝑈 ↔ 𝑈( ⋖L ‘𝑊)(𝑈 ⊕ 𝑅))) |
| 20 | 18, 19 | mpbid 232 | . . . 4 ⊢ (𝜑 → 𝑈( ⋖L ‘𝑊)(𝑈 ⊕ 𝑅)) |
| 21 | lmodabl 20875 | . . . . . . . . . . 11 ⊢ (𝑊 ∈ LMod → 𝑊 ∈ Abel) | |
| 22 | 7, 21 | syl 17 | . . . . . . . . . 10 ⊢ (𝜑 → 𝑊 ∈ Abel) |
| 23 | 1 | lsssssubg 20924 | . . . . . . . . . . . 12 ⊢ (𝑊 ∈ LMod → 𝑆 ⊆ (SubGrp‘𝑊)) |
| 24 | 7, 23 | syl 17 | . . . . . . . . . . 11 ⊢ (𝜑 → 𝑆 ⊆ (SubGrp‘𝑊)) |
| 25 | 24, 10 | sseldd 3964 | . . . . . . . . . 10 ⊢ (𝜑 → 𝑄 ∈ (SubGrp‘𝑊)) |
| 26 | 24, 12 | sseldd 3964 | . . . . . . . . . 10 ⊢ (𝜑 → 𝑅 ∈ (SubGrp‘𝑊)) |
| 27 | 2 | lsmcom 19844 | . . . . . . . . . 10 ⊢ ((𝑊 ∈ Abel ∧ 𝑄 ∈ (SubGrp‘𝑊) ∧ 𝑅 ∈ (SubGrp‘𝑊)) → (𝑄 ⊕ 𝑅) = (𝑅 ⊕ 𝑄)) |
| 28 | 22, 25, 26, 27 | syl3anc 1372 | . . . . . . . . 9 ⊢ (𝜑 → (𝑄 ⊕ 𝑅) = (𝑅 ⊕ 𝑄)) |
| 29 | 28 | oveq2d 7429 | . . . . . . . 8 ⊢ (𝜑 → (𝑈 ⊕ (𝑄 ⊕ 𝑅)) = (𝑈 ⊕ (𝑅 ⊕ 𝑄))) |
| 30 | 24, 8 | sseldd 3964 | . . . . . . . . 9 ⊢ (𝜑 → 𝑈 ∈ (SubGrp‘𝑊)) |
| 31 | 2 | lsmass 19655 | . . . . . . . . 9 ⊢ ((𝑈 ∈ (SubGrp‘𝑊) ∧ 𝑅 ∈ (SubGrp‘𝑊) ∧ 𝑄 ∈ (SubGrp‘𝑊)) → ((𝑈 ⊕ 𝑅) ⊕ 𝑄) = (𝑈 ⊕ (𝑅 ⊕ 𝑄))) |
| 32 | 30, 26, 25, 31 | syl3anc 1372 | . . . . . . . 8 ⊢ (𝜑 → ((𝑈 ⊕ 𝑅) ⊕ 𝑄) = (𝑈 ⊕ (𝑅 ⊕ 𝑄))) |
| 33 | 29, 32 | eqtr4d 2772 | . . . . . . 7 ⊢ (𝜑 → (𝑈 ⊕ (𝑄 ⊕ 𝑅)) = ((𝑈 ⊕ 𝑅) ⊕ 𝑄)) |
| 34 | 1, 2 | lsmcl 21050 | . . . . . . . . . 10 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ∧ 𝑅 ∈ 𝑆) → (𝑈 ⊕ 𝑅) ∈ 𝑆) |
| 35 | 7, 8, 12, 34 | syl3anc 1372 | . . . . . . . . 9 ⊢ (𝜑 → (𝑈 ⊕ 𝑅) ∈ 𝑆) |
| 36 | 24, 35 | sseldd 3964 | . . . . . . . 8 ⊢ (𝜑 → (𝑈 ⊕ 𝑅) ∈ (SubGrp‘𝑊)) |
| 37 | lsatcvat3.l | . . . . . . . 8 ⊢ (𝜑 → 𝑄 ⊆ (𝑈 ⊕ 𝑅)) | |
| 38 | 2 | lsmless2 19647 | . . . . . . . 8 ⊢ (((𝑈 ⊕ 𝑅) ∈ (SubGrp‘𝑊) ∧ (𝑈 ⊕ 𝑅) ∈ (SubGrp‘𝑊) ∧ 𝑄 ⊆ (𝑈 ⊕ 𝑅)) → ((𝑈 ⊕ 𝑅) ⊕ 𝑄) ⊆ ((𝑈 ⊕ 𝑅) ⊕ (𝑈 ⊕ 𝑅))) |
| 39 | 36, 36, 37, 38 | syl3anc 1372 | . . . . . . 7 ⊢ (𝜑 → ((𝑈 ⊕ 𝑅) ⊕ 𝑄) ⊆ ((𝑈 ⊕ 𝑅) ⊕ (𝑈 ⊕ 𝑅))) |
| 40 | 33, 39 | eqsstrd 3998 | . . . . . 6 ⊢ (𝜑 → (𝑈 ⊕ (𝑄 ⊕ 𝑅)) ⊆ ((𝑈 ⊕ 𝑅) ⊕ (𝑈 ⊕ 𝑅))) |
| 41 | 2 | lsmidm 19649 | . . . . . . 7 ⊢ ((𝑈 ⊕ 𝑅) ∈ (SubGrp‘𝑊) → ((𝑈 ⊕ 𝑅) ⊕ (𝑈 ⊕ 𝑅)) = (𝑈 ⊕ 𝑅)) |
| 42 | 36, 41 | syl 17 | . . . . . 6 ⊢ (𝜑 → ((𝑈 ⊕ 𝑅) ⊕ (𝑈 ⊕ 𝑅)) = (𝑈 ⊕ 𝑅)) |
| 43 | 40, 42 | sseqtrd 4000 | . . . . 5 ⊢ (𝜑 → (𝑈 ⊕ (𝑄 ⊕ 𝑅)) ⊆ (𝑈 ⊕ 𝑅)) |
| 44 | 24, 14 | sseldd 3964 | . . . . . 6 ⊢ (𝜑 → (𝑄 ⊕ 𝑅) ∈ (SubGrp‘𝑊)) |
| 45 | 2 | lsmub2 19644 | . . . . . . 7 ⊢ ((𝑄 ∈ (SubGrp‘𝑊) ∧ 𝑅 ∈ (SubGrp‘𝑊)) → 𝑅 ⊆ (𝑄 ⊕ 𝑅)) |
| 46 | 25, 26, 45 | syl2anc 584 | . . . . . 6 ⊢ (𝜑 → 𝑅 ⊆ (𝑄 ⊕ 𝑅)) |
| 47 | 2 | lsmless2 19647 | . . . . . 6 ⊢ ((𝑈 ∈ (SubGrp‘𝑊) ∧ (𝑄 ⊕ 𝑅) ∈ (SubGrp‘𝑊) ∧ 𝑅 ⊆ (𝑄 ⊕ 𝑅)) → (𝑈 ⊕ 𝑅) ⊆ (𝑈 ⊕ (𝑄 ⊕ 𝑅))) |
| 48 | 30, 44, 46, 47 | syl3anc 1372 | . . . . 5 ⊢ (𝜑 → (𝑈 ⊕ 𝑅) ⊆ (𝑈 ⊕ (𝑄 ⊕ 𝑅))) |
| 49 | 43, 48 | eqssd 3981 | . . . 4 ⊢ (𝜑 → (𝑈 ⊕ (𝑄 ⊕ 𝑅)) = (𝑈 ⊕ 𝑅)) |
| 50 | 20, 49 | breqtrrd 5151 | . . 3 ⊢ (𝜑 → 𝑈( ⋖L ‘𝑊)(𝑈 ⊕ (𝑄 ⊕ 𝑅))) |
| 51 | 1, 2, 4, 7, 8, 14, 50 | lcvexchlem4 38997 | . 2 ⊢ (𝜑 → (𝑈 ∩ (𝑄 ⊕ 𝑅))( ⋖L ‘𝑊)(𝑄 ⊕ 𝑅)) |
| 52 | 1, 2, 3, 4, 5, 16, 9, 11, 17, 51 | lsatcvat2 39011 | 1 ⊢ (𝜑 → (𝑈 ∩ (𝑄 ⊕ 𝑅)) ∈ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1539 ∈ wcel 2107 ≠ wne 2931 ∩ cin 3930 ⊆ wss 3931 class class class wbr 5123 ‘cfv 6541 (class class class)co 7413 SubGrpcsubg 19107 LSSumclsm 19620 Abelcabl 19767 LModclmod 20826 LSubSpclss 20897 LVecclvec 21069 LSAtomsclsa 38934 ⋖L clcv 38978 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5259 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7737 ax-cnex 11193 ax-resscn 11194 ax-1cn 11195 ax-icn 11196 ax-addcl 11197 ax-addrcl 11198 ax-mulcl 11199 ax-mulrcl 11200 ax-mulcom 11201 ax-addass 11202 ax-mulass 11203 ax-distr 11204 ax-i2m1 11205 ax-1ne0 11206 ax-1rid 11207 ax-rnegex 11208 ax-rrecex 11209 ax-cnre 11210 ax-pre-lttri 11211 ax-pre-lttrn 11212 ax-pre-ltadd 11213 ax-pre-mulgt0 11214 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-int 4927 df-iun 4973 df-iin 4974 df-br 5124 df-opab 5186 df-mpt 5206 df-tr 5240 df-id 5558 df-eprel 5564 df-po 5572 df-so 5573 df-fr 5617 df-we 5619 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-pred 6301 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-riota 7370 df-ov 7416 df-oprab 7417 df-mpo 7418 df-om 7870 df-1st 7996 df-2nd 7997 df-tpos 8233 df-frecs 8288 df-wrecs 8319 df-recs 8393 df-rdg 8432 df-1o 8488 df-2o 8489 df-er 8727 df-en 8968 df-dom 8969 df-sdom 8970 df-fin 8971 df-pnf 11279 df-mnf 11280 df-xr 11281 df-ltxr 11282 df-le 11283 df-sub 11476 df-neg 11477 df-nn 12249 df-2 12311 df-3 12312 df-sets 17183 df-slot 17201 df-ndx 17213 df-base 17230 df-ress 17253 df-plusg 17286 df-mulr 17287 df-0g 17457 df-mre 17600 df-mrc 17601 df-acs 17603 df-mgm 18622 df-sgrp 18701 df-mnd 18717 df-submnd 18766 df-grp 18923 df-minusg 18924 df-sbg 18925 df-subg 19110 df-cntz 19304 df-oppg 19333 df-lsm 19622 df-cmn 19768 df-abl 19769 df-mgp 20106 df-rng 20118 df-ur 20147 df-ring 20200 df-oppr 20302 df-dvdsr 20325 df-unit 20326 df-invr 20356 df-drng 20699 df-lmod 20828 df-lss 20898 df-lsp 20938 df-lvec 21070 df-lsatoms 38936 df-lcv 38979 |
| This theorem is referenced by: l1cvat 39015 |
| Copyright terms: Public domain | W3C validator |