| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > lsatcvat3 | Structured version Visualization version GIF version | ||
| Description: A condition implying that a certain subspace is an atom. Part of Lemma 3.2.20 of [PtakPulmannova] p. 68. (atcvat3i 32377 analog.) (Contributed by NM, 11-Jan-2015.) |
| Ref | Expression |
|---|---|
| lsatcvat3.s | ⊢ 𝑆 = (LSubSp‘𝑊) |
| lsatcvat3.p | ⊢ ⊕ = (LSSum‘𝑊) |
| lsatcvat3.a | ⊢ 𝐴 = (LSAtoms‘𝑊) |
| lsatcvat3.w | ⊢ (𝜑 → 𝑊 ∈ LVec) |
| lsatcvat3.u | ⊢ (𝜑 → 𝑈 ∈ 𝑆) |
| lsatcvat3.q | ⊢ (𝜑 → 𝑄 ∈ 𝐴) |
| lsatcvat3.r | ⊢ (𝜑 → 𝑅 ∈ 𝐴) |
| lsatcvat3.n | ⊢ (𝜑 → 𝑄 ≠ 𝑅) |
| lsatcvat3.m | ⊢ (𝜑 → ¬ 𝑅 ⊆ 𝑈) |
| lsatcvat3.l | ⊢ (𝜑 → 𝑄 ⊆ (𝑈 ⊕ 𝑅)) |
| Ref | Expression |
|---|---|
| lsatcvat3 | ⊢ (𝜑 → (𝑈 ∩ (𝑄 ⊕ 𝑅)) ∈ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lsatcvat3.s | . 2 ⊢ 𝑆 = (LSubSp‘𝑊) | |
| 2 | lsatcvat3.p | . 2 ⊢ ⊕ = (LSSum‘𝑊) | |
| 3 | lsatcvat3.a | . 2 ⊢ 𝐴 = (LSAtoms‘𝑊) | |
| 4 | eqid 2735 | . 2 ⊢ ( ⋖L ‘𝑊) = ( ⋖L ‘𝑊) | |
| 5 | lsatcvat3.w | . 2 ⊢ (𝜑 → 𝑊 ∈ LVec) | |
| 6 | lveclmod 21064 | . . . 4 ⊢ (𝑊 ∈ LVec → 𝑊 ∈ LMod) | |
| 7 | 5, 6 | syl 17 | . . 3 ⊢ (𝜑 → 𝑊 ∈ LMod) |
| 8 | lsatcvat3.u | . . 3 ⊢ (𝜑 → 𝑈 ∈ 𝑆) | |
| 9 | lsatcvat3.q | . . . . 5 ⊢ (𝜑 → 𝑄 ∈ 𝐴) | |
| 10 | 1, 3, 7, 9 | lsatlssel 39015 | . . . 4 ⊢ (𝜑 → 𝑄 ∈ 𝑆) |
| 11 | lsatcvat3.r | . . . . 5 ⊢ (𝜑 → 𝑅 ∈ 𝐴) | |
| 12 | 1, 3, 7, 11 | lsatlssel 39015 | . . . 4 ⊢ (𝜑 → 𝑅 ∈ 𝑆) |
| 13 | 1, 2 | lsmcl 21041 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝑄 ∈ 𝑆 ∧ 𝑅 ∈ 𝑆) → (𝑄 ⊕ 𝑅) ∈ 𝑆) |
| 14 | 7, 10, 12, 13 | syl3anc 1373 | . . 3 ⊢ (𝜑 → (𝑄 ⊕ 𝑅) ∈ 𝑆) |
| 15 | 1 | lssincl 20922 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ∧ (𝑄 ⊕ 𝑅) ∈ 𝑆) → (𝑈 ∩ (𝑄 ⊕ 𝑅)) ∈ 𝑆) |
| 16 | 7, 8, 14, 15 | syl3anc 1373 | . 2 ⊢ (𝜑 → (𝑈 ∩ (𝑄 ⊕ 𝑅)) ∈ 𝑆) |
| 17 | lsatcvat3.n | . 2 ⊢ (𝜑 → 𝑄 ≠ 𝑅) | |
| 18 | lsatcvat3.m | . . . . 5 ⊢ (𝜑 → ¬ 𝑅 ⊆ 𝑈) | |
| 19 | 1, 2, 3, 4, 5, 8, 11 | lcv1 39059 | . . . . 5 ⊢ (𝜑 → (¬ 𝑅 ⊆ 𝑈 ↔ 𝑈( ⋖L ‘𝑊)(𝑈 ⊕ 𝑅))) |
| 20 | 18, 19 | mpbid 232 | . . . 4 ⊢ (𝜑 → 𝑈( ⋖L ‘𝑊)(𝑈 ⊕ 𝑅)) |
| 21 | lmodabl 20866 | . . . . . . . . . . 11 ⊢ (𝑊 ∈ LMod → 𝑊 ∈ Abel) | |
| 22 | 7, 21 | syl 17 | . . . . . . . . . 10 ⊢ (𝜑 → 𝑊 ∈ Abel) |
| 23 | 1 | lsssssubg 20915 | . . . . . . . . . . . 12 ⊢ (𝑊 ∈ LMod → 𝑆 ⊆ (SubGrp‘𝑊)) |
| 24 | 7, 23 | syl 17 | . . . . . . . . . . 11 ⊢ (𝜑 → 𝑆 ⊆ (SubGrp‘𝑊)) |
| 25 | 24, 10 | sseldd 3959 | . . . . . . . . . 10 ⊢ (𝜑 → 𝑄 ∈ (SubGrp‘𝑊)) |
| 26 | 24, 12 | sseldd 3959 | . . . . . . . . . 10 ⊢ (𝜑 → 𝑅 ∈ (SubGrp‘𝑊)) |
| 27 | 2 | lsmcom 19839 | . . . . . . . . . 10 ⊢ ((𝑊 ∈ Abel ∧ 𝑄 ∈ (SubGrp‘𝑊) ∧ 𝑅 ∈ (SubGrp‘𝑊)) → (𝑄 ⊕ 𝑅) = (𝑅 ⊕ 𝑄)) |
| 28 | 22, 25, 26, 27 | syl3anc 1373 | . . . . . . . . 9 ⊢ (𝜑 → (𝑄 ⊕ 𝑅) = (𝑅 ⊕ 𝑄)) |
| 29 | 28 | oveq2d 7421 | . . . . . . . 8 ⊢ (𝜑 → (𝑈 ⊕ (𝑄 ⊕ 𝑅)) = (𝑈 ⊕ (𝑅 ⊕ 𝑄))) |
| 30 | 24, 8 | sseldd 3959 | . . . . . . . . 9 ⊢ (𝜑 → 𝑈 ∈ (SubGrp‘𝑊)) |
| 31 | 2 | lsmass 19650 | . . . . . . . . 9 ⊢ ((𝑈 ∈ (SubGrp‘𝑊) ∧ 𝑅 ∈ (SubGrp‘𝑊) ∧ 𝑄 ∈ (SubGrp‘𝑊)) → ((𝑈 ⊕ 𝑅) ⊕ 𝑄) = (𝑈 ⊕ (𝑅 ⊕ 𝑄))) |
| 32 | 30, 26, 25, 31 | syl3anc 1373 | . . . . . . . 8 ⊢ (𝜑 → ((𝑈 ⊕ 𝑅) ⊕ 𝑄) = (𝑈 ⊕ (𝑅 ⊕ 𝑄))) |
| 33 | 29, 32 | eqtr4d 2773 | . . . . . . 7 ⊢ (𝜑 → (𝑈 ⊕ (𝑄 ⊕ 𝑅)) = ((𝑈 ⊕ 𝑅) ⊕ 𝑄)) |
| 34 | 1, 2 | lsmcl 21041 | . . . . . . . . . 10 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ∧ 𝑅 ∈ 𝑆) → (𝑈 ⊕ 𝑅) ∈ 𝑆) |
| 35 | 7, 8, 12, 34 | syl3anc 1373 | . . . . . . . . 9 ⊢ (𝜑 → (𝑈 ⊕ 𝑅) ∈ 𝑆) |
| 36 | 24, 35 | sseldd 3959 | . . . . . . . 8 ⊢ (𝜑 → (𝑈 ⊕ 𝑅) ∈ (SubGrp‘𝑊)) |
| 37 | lsatcvat3.l | . . . . . . . 8 ⊢ (𝜑 → 𝑄 ⊆ (𝑈 ⊕ 𝑅)) | |
| 38 | 2 | lsmless2 19642 | . . . . . . . 8 ⊢ (((𝑈 ⊕ 𝑅) ∈ (SubGrp‘𝑊) ∧ (𝑈 ⊕ 𝑅) ∈ (SubGrp‘𝑊) ∧ 𝑄 ⊆ (𝑈 ⊕ 𝑅)) → ((𝑈 ⊕ 𝑅) ⊕ 𝑄) ⊆ ((𝑈 ⊕ 𝑅) ⊕ (𝑈 ⊕ 𝑅))) |
| 39 | 36, 36, 37, 38 | syl3anc 1373 | . . . . . . 7 ⊢ (𝜑 → ((𝑈 ⊕ 𝑅) ⊕ 𝑄) ⊆ ((𝑈 ⊕ 𝑅) ⊕ (𝑈 ⊕ 𝑅))) |
| 40 | 33, 39 | eqsstrd 3993 | . . . . . 6 ⊢ (𝜑 → (𝑈 ⊕ (𝑄 ⊕ 𝑅)) ⊆ ((𝑈 ⊕ 𝑅) ⊕ (𝑈 ⊕ 𝑅))) |
| 41 | 2 | lsmidm 19644 | . . . . . . 7 ⊢ ((𝑈 ⊕ 𝑅) ∈ (SubGrp‘𝑊) → ((𝑈 ⊕ 𝑅) ⊕ (𝑈 ⊕ 𝑅)) = (𝑈 ⊕ 𝑅)) |
| 42 | 36, 41 | syl 17 | . . . . . 6 ⊢ (𝜑 → ((𝑈 ⊕ 𝑅) ⊕ (𝑈 ⊕ 𝑅)) = (𝑈 ⊕ 𝑅)) |
| 43 | 40, 42 | sseqtrd 3995 | . . . . 5 ⊢ (𝜑 → (𝑈 ⊕ (𝑄 ⊕ 𝑅)) ⊆ (𝑈 ⊕ 𝑅)) |
| 44 | 24, 14 | sseldd 3959 | . . . . . 6 ⊢ (𝜑 → (𝑄 ⊕ 𝑅) ∈ (SubGrp‘𝑊)) |
| 45 | 2 | lsmub2 19639 | . . . . . . 7 ⊢ ((𝑄 ∈ (SubGrp‘𝑊) ∧ 𝑅 ∈ (SubGrp‘𝑊)) → 𝑅 ⊆ (𝑄 ⊕ 𝑅)) |
| 46 | 25, 26, 45 | syl2anc 584 | . . . . . 6 ⊢ (𝜑 → 𝑅 ⊆ (𝑄 ⊕ 𝑅)) |
| 47 | 2 | lsmless2 19642 | . . . . . 6 ⊢ ((𝑈 ∈ (SubGrp‘𝑊) ∧ (𝑄 ⊕ 𝑅) ∈ (SubGrp‘𝑊) ∧ 𝑅 ⊆ (𝑄 ⊕ 𝑅)) → (𝑈 ⊕ 𝑅) ⊆ (𝑈 ⊕ (𝑄 ⊕ 𝑅))) |
| 48 | 30, 44, 46, 47 | syl3anc 1373 | . . . . 5 ⊢ (𝜑 → (𝑈 ⊕ 𝑅) ⊆ (𝑈 ⊕ (𝑄 ⊕ 𝑅))) |
| 49 | 43, 48 | eqssd 3976 | . . . 4 ⊢ (𝜑 → (𝑈 ⊕ (𝑄 ⊕ 𝑅)) = (𝑈 ⊕ 𝑅)) |
| 50 | 20, 49 | breqtrrd 5147 | . . 3 ⊢ (𝜑 → 𝑈( ⋖L ‘𝑊)(𝑈 ⊕ (𝑄 ⊕ 𝑅))) |
| 51 | 1, 2, 4, 7, 8, 14, 50 | lcvexchlem4 39055 | . 2 ⊢ (𝜑 → (𝑈 ∩ (𝑄 ⊕ 𝑅))( ⋖L ‘𝑊)(𝑄 ⊕ 𝑅)) |
| 52 | 1, 2, 3, 4, 5, 16, 9, 11, 17, 51 | lsatcvat2 39069 | 1 ⊢ (𝜑 → (𝑈 ∩ (𝑄 ⊕ 𝑅)) ∈ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1540 ∈ wcel 2108 ≠ wne 2932 ∩ cin 3925 ⊆ wss 3926 class class class wbr 5119 ‘cfv 6531 (class class class)co 7405 SubGrpcsubg 19103 LSSumclsm 19615 Abelcabl 19762 LModclmod 20817 LSubSpclss 20888 LVecclvec 21060 LSAtomsclsa 38992 ⋖L clcv 39036 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-iin 4970 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-1st 7988 df-2nd 7989 df-tpos 8225 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-2o 8481 df-er 8719 df-en 8960 df-dom 8961 df-sdom 8962 df-fin 8963 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-nn 12241 df-2 12303 df-3 12304 df-sets 17183 df-slot 17201 df-ndx 17213 df-base 17229 df-ress 17252 df-plusg 17284 df-mulr 17285 df-0g 17455 df-mre 17598 df-mrc 17599 df-acs 17601 df-mgm 18618 df-sgrp 18697 df-mnd 18713 df-submnd 18762 df-grp 18919 df-minusg 18920 df-sbg 18921 df-subg 19106 df-cntz 19300 df-oppg 19329 df-lsm 19617 df-cmn 19763 df-abl 19764 df-mgp 20101 df-rng 20113 df-ur 20142 df-ring 20195 df-oppr 20297 df-dvdsr 20317 df-unit 20318 df-invr 20348 df-drng 20691 df-lmod 20819 df-lss 20889 df-lsp 20929 df-lvec 21061 df-lsatoms 38994 df-lcv 39037 |
| This theorem is referenced by: l1cvat 39073 |
| Copyright terms: Public domain | W3C validator |