Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemn5pre Structured version   Visualization version   GIF version

Theorem cdlemn5pre 36981
Description: Part of proof of Lemma N of [Crawley] p. 121 line 32. (Contributed by NM, 25-Feb-2014.)
Hypotheses
Ref Expression
cdlemn5.b 𝐵 = (Base‘𝐾)
cdlemn5.l = (le‘𝐾)
cdlemn5.j = (join‘𝐾)
cdlemn5.a 𝐴 = (Atoms‘𝐾)
cdlemn5.h 𝐻 = (LHyp‘𝐾)
cdlemn5.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
cdlemn5.s = (LSSum‘𝑈)
cdlemn5.i 𝐼 = ((DIsoB‘𝐾)‘𝑊)
cdlemn5.J 𝐽 = ((DIsoC‘𝐾)‘𝑊)
cdlemn5.p 𝑃 = ((oc‘𝐾)‘𝑊)
cdlemn5.o 𝑂 = (𝑇 ↦ ( I ↾ 𝐵))
cdlemn5.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
cdlemn5.e 𝐸 = ((TEndo‘𝐾)‘𝑊)
cdlemn5.n 𝑁 = (LSpan‘𝑈)
cdlemn5.f 𝐹 = (𝑇 (𝑃) = 𝑄)
cdlemn5.g 𝐺 = (𝑇 (𝑃) = 𝑅)
cdlemn5.m 𝑀 = (𝑇 (𝑄) = 𝑅)
Assertion
Ref Expression
cdlemn5pre (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑋𝐵𝑋 𝑊)) ∧ 𝑅 (𝑄 𝑋)) → (𝐽𝑅) ⊆ ((𝐽𝑄) (𝐼𝑋)))
Distinct variable groups:   ,   𝐴,   𝐵,   ,𝐻   ,𝐾   𝑃,   𝑄,   𝑅,   𝑇,   ,𝑊
Allowed substitution hints:   ()   𝑈()   𝐸()   𝐹()   𝐺()   𝐼()   𝐽()   ()   𝑀()   𝑁()   𝑂()   𝑋()

Proof of Theorem cdlemn5pre
StepHypRef Expression
1 simp1 1159 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑋𝐵𝑋 𝑊)) ∧ 𝑅 (𝑄 𝑋)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
2 simp22 1257 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑋𝐵𝑋 𝑊)) ∧ 𝑅 (𝑄 𝑋)) → (𝑅𝐴 ∧ ¬ 𝑅 𝑊))
3 cdlemn5.l . . . 4 = (le‘𝐾)
4 cdlemn5.a . . . 4 𝐴 = (Atoms‘𝐾)
5 cdlemn5.h . . . 4 𝐻 = (LHyp‘𝐾)
6 cdlemn5.p . . . 4 𝑃 = ((oc‘𝐾)‘𝑊)
7 cdlemn5.t . . . 4 𝑇 = ((LTrn‘𝐾)‘𝑊)
8 cdlemn5.J . . . 4 𝐽 = ((DIsoC‘𝐾)‘𝑊)
9 cdlemn5.u . . . 4 𝑈 = ((DVecH‘𝐾)‘𝑊)
10 cdlemn5.n . . . 4 𝑁 = (LSpan‘𝑈)
11 cdlemn5.g . . . 4 𝐺 = (𝑇 (𝑃) = 𝑅)
123, 4, 5, 6, 7, 8, 9, 10, 11diclspsn 36975 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) → (𝐽𝑅) = (𝑁‘{⟨𝐺, ( I ↾ 𝑇)⟩}))
131, 2, 12syl2anc 575 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑋𝐵𝑋 𝑊)) ∧ 𝑅 (𝑄 𝑋)) → (𝐽𝑅) = (𝑁‘{⟨𝐺, ( I ↾ 𝑇)⟩}))
14 simp21 1256 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑋𝐵𝑋 𝑊)) ∧ 𝑅 (𝑄 𝑋)) → (𝑄𝐴 ∧ ¬ 𝑄 𝑊))
15 cdlemn5.b . . . . . 6 𝐵 = (Base‘𝐾)
16 cdlemn5.o . . . . . 6 𝑂 = (𝑇 ↦ ( I ↾ 𝐵))
17 cdlemn5.f . . . . . 6 𝐹 = (𝑇 (𝑃) = 𝑄)
18 cdlemn5.m . . . . . 6 𝑀 = (𝑇 (𝑄) = 𝑅)
19 cdlemn5.s . . . . . 6 = (LSSum‘𝑈)
2015, 3, 4, 6, 5, 7, 16, 9, 17, 11, 18, 10, 19cdlemn4a 36980 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) → (𝑁‘{⟨𝐺, ( I ↾ 𝑇)⟩}) ⊆ ((𝑁‘{⟨𝐹, ( I ↾ 𝑇)⟩}) (𝑁‘{⟨𝑀, 𝑂⟩})))
211, 14, 2, 20syl3anc 1483 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑋𝐵𝑋 𝑊)) ∧ 𝑅 (𝑄 𝑋)) → (𝑁‘{⟨𝐺, ( I ↾ 𝑇)⟩}) ⊆ ((𝑁‘{⟨𝐹, ( I ↾ 𝑇)⟩}) (𝑁‘{⟨𝑀, 𝑂⟩})))
223, 4, 5, 6, 7, 8, 9, 10, 17diclspsn 36975 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → (𝐽𝑄) = (𝑁‘{⟨𝐹, ( I ↾ 𝑇)⟩}))
231, 14, 22syl2anc 575 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑋𝐵𝑋 𝑊)) ∧ 𝑅 (𝑄 𝑋)) → (𝐽𝑄) = (𝑁‘{⟨𝐹, ( I ↾ 𝑇)⟩}))
2423oveq1d 6889 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑋𝐵𝑋 𝑊)) ∧ 𝑅 (𝑄 𝑋)) → ((𝐽𝑄) (𝑁‘{⟨𝑀, 𝑂⟩})) = ((𝑁‘{⟨𝐹, ( I ↾ 𝑇)⟩}) (𝑁‘{⟨𝑀, 𝑂⟩})))
2521, 24sseqtr4d 3839 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑋𝐵𝑋 𝑊)) ∧ 𝑅 (𝑄 𝑋)) → (𝑁‘{⟨𝐺, ( I ↾ 𝑇)⟩}) ⊆ ((𝐽𝑄) (𝑁‘{⟨𝑀, 𝑂⟩})))
265, 9, 1dvhlmod 36891 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑋𝐵𝑋 𝑊)) ∧ 𝑅 (𝑄 𝑋)) → 𝑈 ∈ LMod)
27 eqid 2806 . . . . . . 7 (LSubSp‘𝑈) = (LSubSp‘𝑈)
2827lsssssubg 19165 . . . . . 6 (𝑈 ∈ LMod → (LSubSp‘𝑈) ⊆ (SubGrp‘𝑈))
2926, 28syl 17 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑋𝐵𝑋 𝑊)) ∧ 𝑅 (𝑄 𝑋)) → (LSubSp‘𝑈) ⊆ (SubGrp‘𝑈))
303, 4, 5, 9, 8, 27diclss 36974 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → (𝐽𝑄) ∈ (LSubSp‘𝑈))
311, 14, 30syl2anc 575 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑋𝐵𝑋 𝑊)) ∧ 𝑅 (𝑄 𝑋)) → (𝐽𝑄) ∈ (LSubSp‘𝑈))
3229, 31sseldd 3799 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑋𝐵𝑋 𝑊)) ∧ 𝑅 (𝑄 𝑋)) → (𝐽𝑄) ∈ (SubGrp‘𝑈))
33 simp23 1258 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑋𝐵𝑋 𝑊)) ∧ 𝑅 (𝑄 𝑋)) → (𝑋𝐵𝑋 𝑊))
34 cdlemn5.i . . . . . . 7 𝐼 = ((DIsoB‘𝐾)‘𝑊)
3515, 3, 5, 9, 34, 27diblss 36951 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) → (𝐼𝑋) ∈ (LSubSp‘𝑈))
361, 33, 35syl2anc 575 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑋𝐵𝑋 𝑊)) ∧ 𝑅 (𝑄 𝑋)) → (𝐼𝑋) ∈ (LSubSp‘𝑈))
3729, 36sseldd 3799 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑋𝐵𝑋 𝑊)) ∧ 𝑅 (𝑄 𝑋)) → (𝐼𝑋) ∈ (SubGrp‘𝑈))
38 cdlemn5.j . . . . 5 = (join‘𝐾)
39 eqid 2806 . . . . 5 ((trL‘𝐾)‘𝑊) = ((trL‘𝐾)‘𝑊)
4015, 3, 38, 4, 5, 7, 39, 16, 34, 9, 10, 18cdlemn2a 36977 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑋𝐵𝑋 𝑊)) ∧ 𝑅 (𝑄 𝑋)) → (𝑁‘{⟨𝑀, 𝑂⟩}) ⊆ (𝐼𝑋))
4119lsmless2 18276 . . . 4 (((𝐽𝑄) ∈ (SubGrp‘𝑈) ∧ (𝐼𝑋) ∈ (SubGrp‘𝑈) ∧ (𝑁‘{⟨𝑀, 𝑂⟩}) ⊆ (𝐼𝑋)) → ((𝐽𝑄) (𝑁‘{⟨𝑀, 𝑂⟩})) ⊆ ((𝐽𝑄) (𝐼𝑋)))
4232, 37, 40, 41syl3anc 1483 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑋𝐵𝑋 𝑊)) ∧ 𝑅 (𝑄 𝑋)) → ((𝐽𝑄) (𝑁‘{⟨𝑀, 𝑂⟩})) ⊆ ((𝐽𝑄) (𝐼𝑋)))
4325, 42sstrd 3808 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑋𝐵𝑋 𝑊)) ∧ 𝑅 (𝑄 𝑋)) → (𝑁‘{⟨𝐺, ( I ↾ 𝑇)⟩}) ⊆ ((𝐽𝑄) (𝐼𝑋)))
4413, 43eqsstrd 3836 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑋𝐵𝑋 𝑊)) ∧ 𝑅 (𝑄 𝑋)) → (𝐽𝑅) ⊆ ((𝐽𝑄) (𝐼𝑋)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 384  w3a 1100   = wceq 1637  wcel 2156  wss 3769  {csn 4370  cop 4376   class class class wbr 4844  cmpt 4923   I cid 5218  cres 5313  cfv 6101  crio 6834  (class class class)co 6874  Basecbs 16068  lecple 16160  occoc 16161  joincjn 17149  SubGrpcsubg 17790  LSSumclsm 18250  LModclmod 19067  LSubSpclss 19136  LSpanclspn 19178  Atomscatm 35043  HLchlt 35130  LHypclh 35764  LTrncltrn 35881  trLctrl 35939  TEndoctendo 36533  DVecHcdvh 36859  DIsoBcdib 36919  DIsoCcdic 36953
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1877  ax-4 1894  ax-5 2001  ax-6 2068  ax-7 2104  ax-8 2158  ax-9 2165  ax-10 2185  ax-11 2201  ax-12 2214  ax-13 2420  ax-ext 2784  ax-rep 4964  ax-sep 4975  ax-nul 4983  ax-pow 5035  ax-pr 5096  ax-un 7179  ax-cnex 10277  ax-resscn 10278  ax-1cn 10279  ax-icn 10280  ax-addcl 10281  ax-addrcl 10282  ax-mulcl 10283  ax-mulrcl 10284  ax-mulcom 10285  ax-addass 10286  ax-mulass 10287  ax-distr 10288  ax-i2m1 10289  ax-1ne0 10290  ax-1rid 10291  ax-rnegex 10292  ax-rrecex 10293  ax-cnre 10294  ax-pre-lttri 10295  ax-pre-lttrn 10296  ax-pre-ltadd 10297  ax-pre-mulgt0 10298  ax-riotaBAD 34732
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 866  df-3or 1101  df-3an 1102  df-tru 1641  df-fal 1651  df-ex 1860  df-nf 1864  df-sb 2061  df-eu 2634  df-mo 2635  df-clab 2793  df-cleq 2799  df-clel 2802  df-nfc 2937  df-ne 2979  df-nel 3082  df-ral 3101  df-rex 3102  df-reu 3103  df-rmo 3104  df-rab 3105  df-v 3393  df-sbc 3634  df-csb 3729  df-dif 3772  df-un 3774  df-in 3776  df-ss 3783  df-pss 3785  df-nul 4117  df-if 4280  df-pw 4353  df-sn 4371  df-pr 4373  df-tp 4375  df-op 4377  df-uni 4631  df-int 4670  df-iun 4714  df-iin 4715  df-br 4845  df-opab 4907  df-mpt 4924  df-tr 4947  df-id 5219  df-eprel 5224  df-po 5232  df-so 5233  df-fr 5270  df-we 5272  df-xp 5317  df-rel 5318  df-cnv 5319  df-co 5320  df-dm 5321  df-rn 5322  df-res 5323  df-ima 5324  df-pred 5893  df-ord 5939  df-on 5940  df-lim 5941  df-suc 5942  df-iota 6064  df-fun 6103  df-fn 6104  df-f 6105  df-f1 6106  df-fo 6107  df-f1o 6108  df-fv 6109  df-riota 6835  df-ov 6877  df-oprab 6878  df-mpt2 6879  df-om 7296  df-1st 7398  df-2nd 7399  df-tpos 7587  df-undef 7634  df-wrecs 7642  df-recs 7704  df-rdg 7742  df-1o 7796  df-oadd 7800  df-er 7979  df-map 8094  df-en 8193  df-dom 8194  df-sdom 8195  df-fin 8196  df-pnf 10361  df-mnf 10362  df-xr 10363  df-ltxr 10364  df-le 10365  df-sub 10553  df-neg 10554  df-nn 11306  df-2 11364  df-3 11365  df-4 11366  df-5 11367  df-6 11368  df-n0 11560  df-z 11644  df-uz 11905  df-fz 12550  df-struct 16070  df-ndx 16071  df-slot 16072  df-base 16074  df-sets 16075  df-ress 16076  df-plusg 16166  df-mulr 16167  df-sca 16169  df-vsca 16170  df-0g 16307  df-proset 17133  df-poset 17151  df-plt 17163  df-lub 17179  df-glb 17180  df-join 17181  df-meet 17182  df-p0 17244  df-p1 17245  df-lat 17251  df-clat 17313  df-mgm 17447  df-sgrp 17489  df-mnd 17500  df-submnd 17541  df-grp 17630  df-minusg 17631  df-sbg 17632  df-subg 17793  df-cntz 17951  df-lsm 18252  df-cmn 18396  df-abl 18397  df-mgp 18692  df-ur 18704  df-ring 18751  df-oppr 18825  df-dvdsr 18843  df-unit 18844  df-invr 18874  df-dvr 18885  df-drng 18953  df-lmod 19069  df-lss 19137  df-lsp 19179  df-lvec 19310  df-oposet 34956  df-ol 34958  df-oml 34959  df-covers 35046  df-ats 35047  df-atl 35078  df-cvlat 35102  df-hlat 35131  df-llines 35278  df-lplanes 35279  df-lvols 35280  df-lines 35281  df-psubsp 35283  df-pmap 35284  df-padd 35576  df-lhyp 35768  df-laut 35769  df-ldil 35884  df-ltrn 35885  df-trl 35940  df-tendo 36536  df-edring 36538  df-disoa 36810  df-dvech 36860  df-dib 36920  df-dic 36954
This theorem is referenced by:  cdlemn5  36982
  Copyright terms: Public domain W3C validator