Proof of Theorem cdlemn5pre
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | simp1 1136 | . . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) ∧ 𝑅 ≤ (𝑄 ∨ 𝑋)) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | 
| 2 |  | simp22 1207 | . . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) ∧ 𝑅 ≤ (𝑄 ∨ 𝑋)) → (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) | 
| 3 |  | cdlemn5.l | . . . 4
⊢  ≤ =
(le‘𝐾) | 
| 4 |  | cdlemn5.a | . . . 4
⊢ 𝐴 = (Atoms‘𝐾) | 
| 5 |  | cdlemn5.h | . . . 4
⊢ 𝐻 = (LHyp‘𝐾) | 
| 6 |  | cdlemn5.p | . . . 4
⊢ 𝑃 = ((oc‘𝐾)‘𝑊) | 
| 7 |  | cdlemn5.t | . . . 4
⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | 
| 8 |  | cdlemn5.J | . . . 4
⊢ 𝐽 = ((DIsoC‘𝐾)‘𝑊) | 
| 9 |  | cdlemn5.u | . . . 4
⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | 
| 10 |  | cdlemn5.n | . . . 4
⊢ 𝑁 = (LSpan‘𝑈) | 
| 11 |  | cdlemn5.g | . . . 4
⊢ 𝐺 = (℩ℎ ∈ 𝑇 (ℎ‘𝑃) = 𝑅) | 
| 12 | 3, 4, 5, 6, 7, 8, 9, 10, 11 | diclspsn 41197 | . . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) → (𝐽‘𝑅) = (𝑁‘{〈𝐺, ( I ↾ 𝑇)〉})) | 
| 13 | 1, 2, 12 | syl2anc 584 | . 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) ∧ 𝑅 ≤ (𝑄 ∨ 𝑋)) → (𝐽‘𝑅) = (𝑁‘{〈𝐺, ( I ↾ 𝑇)〉})) | 
| 14 |  | simp21 1206 | . . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) ∧ 𝑅 ≤ (𝑄 ∨ 𝑋)) → (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) | 
| 15 |  | cdlemn5.b | . . . . . 6
⊢ 𝐵 = (Base‘𝐾) | 
| 16 |  | cdlemn5.o | . . . . . 6
⊢ 𝑂 = (ℎ ∈ 𝑇 ↦ ( I ↾ 𝐵)) | 
| 17 |  | cdlemn5.f | . . . . . 6
⊢ 𝐹 = (℩ℎ ∈ 𝑇 (ℎ‘𝑃) = 𝑄) | 
| 18 |  | cdlemn5.m | . . . . . 6
⊢ 𝑀 = (℩ℎ ∈ 𝑇 (ℎ‘𝑄) = 𝑅) | 
| 19 |  | cdlemn5.s | . . . . . 6
⊢  ⊕ =
(LSSum‘𝑈) | 
| 20 | 15, 3, 4, 6, 5, 7, 16, 9, 17, 11, 18, 10, 19 | cdlemn4a 41202 | . . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) → (𝑁‘{〈𝐺, ( I ↾ 𝑇)〉}) ⊆ ((𝑁‘{〈𝐹, ( I ↾ 𝑇)〉}) ⊕ (𝑁‘{〈𝑀, 𝑂〉}))) | 
| 21 | 1, 14, 2, 20 | syl3anc 1372 | . . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) ∧ 𝑅 ≤ (𝑄 ∨ 𝑋)) → (𝑁‘{〈𝐺, ( I ↾ 𝑇)〉}) ⊆ ((𝑁‘{〈𝐹, ( I ↾ 𝑇)〉}) ⊕ (𝑁‘{〈𝑀, 𝑂〉}))) | 
| 22 | 3, 4, 5, 6, 7, 8, 9, 10, 17 | diclspsn 41197 | . . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → (𝐽‘𝑄) = (𝑁‘{〈𝐹, ( I ↾ 𝑇)〉})) | 
| 23 | 1, 14, 22 | syl2anc 584 | . . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) ∧ 𝑅 ≤ (𝑄 ∨ 𝑋)) → (𝐽‘𝑄) = (𝑁‘{〈𝐹, ( I ↾ 𝑇)〉})) | 
| 24 | 23 | oveq1d 7447 | . . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) ∧ 𝑅 ≤ (𝑄 ∨ 𝑋)) → ((𝐽‘𝑄) ⊕ (𝑁‘{〈𝑀, 𝑂〉})) = ((𝑁‘{〈𝐹, ( I ↾ 𝑇)〉}) ⊕ (𝑁‘{〈𝑀, 𝑂〉}))) | 
| 25 | 21, 24 | sseqtrrd 4020 | . . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) ∧ 𝑅 ≤ (𝑄 ∨ 𝑋)) → (𝑁‘{〈𝐺, ( I ↾ 𝑇)〉}) ⊆ ((𝐽‘𝑄) ⊕ (𝑁‘{〈𝑀, 𝑂〉}))) | 
| 26 | 5, 9, 1 | dvhlmod 41113 | . . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) ∧ 𝑅 ≤ (𝑄 ∨ 𝑋)) → 𝑈 ∈ LMod) | 
| 27 |  | eqid 2736 | . . . . . . 7
⊢
(LSubSp‘𝑈) =
(LSubSp‘𝑈) | 
| 28 | 27 | lsssssubg 20957 | . . . . . 6
⊢ (𝑈 ∈ LMod →
(LSubSp‘𝑈) ⊆
(SubGrp‘𝑈)) | 
| 29 | 26, 28 | syl 17 | . . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) ∧ 𝑅 ≤ (𝑄 ∨ 𝑋)) → (LSubSp‘𝑈) ⊆ (SubGrp‘𝑈)) | 
| 30 | 3, 4, 5, 9, 8, 27 | diclss 41196 | . . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → (𝐽‘𝑄) ∈ (LSubSp‘𝑈)) | 
| 31 | 1, 14, 30 | syl2anc 584 | . . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) ∧ 𝑅 ≤ (𝑄 ∨ 𝑋)) → (𝐽‘𝑄) ∈ (LSubSp‘𝑈)) | 
| 32 | 29, 31 | sseldd 3983 | . . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) ∧ 𝑅 ≤ (𝑄 ∨ 𝑋)) → (𝐽‘𝑄) ∈ (SubGrp‘𝑈)) | 
| 33 |  | simp23 1208 | . . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) ∧ 𝑅 ≤ (𝑄 ∨ 𝑋)) → (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) | 
| 34 |  | cdlemn5.i | . . . . . . 7
⊢ 𝐼 = ((DIsoB‘𝐾)‘𝑊) | 
| 35 | 15, 3, 5, 9, 34, 27 | diblss 41173 | . . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) → (𝐼‘𝑋) ∈ (LSubSp‘𝑈)) | 
| 36 | 1, 33, 35 | syl2anc 584 | . . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) ∧ 𝑅 ≤ (𝑄 ∨ 𝑋)) → (𝐼‘𝑋) ∈ (LSubSp‘𝑈)) | 
| 37 | 29, 36 | sseldd 3983 | . . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) ∧ 𝑅 ≤ (𝑄 ∨ 𝑋)) → (𝐼‘𝑋) ∈ (SubGrp‘𝑈)) | 
| 38 |  | cdlemn5.j | . . . . 5
⊢  ∨ =
(join‘𝐾) | 
| 39 |  | eqid 2736 | . . . . 5
⊢
((trL‘𝐾)‘𝑊) = ((trL‘𝐾)‘𝑊) | 
| 40 | 15, 3, 38, 4, 5, 7,
39, 16, 34, 9, 10, 18 | cdlemn2a 41199 | . . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) ∧ 𝑅 ≤ (𝑄 ∨ 𝑋)) → (𝑁‘{〈𝑀, 𝑂〉}) ⊆ (𝐼‘𝑋)) | 
| 41 | 19 | lsmless2 19680 | . . . 4
⊢ (((𝐽‘𝑄) ∈ (SubGrp‘𝑈) ∧ (𝐼‘𝑋) ∈ (SubGrp‘𝑈) ∧ (𝑁‘{〈𝑀, 𝑂〉}) ⊆ (𝐼‘𝑋)) → ((𝐽‘𝑄) ⊕ (𝑁‘{〈𝑀, 𝑂〉})) ⊆ ((𝐽‘𝑄) ⊕ (𝐼‘𝑋))) | 
| 42 | 32, 37, 40, 41 | syl3anc 1372 | . . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) ∧ 𝑅 ≤ (𝑄 ∨ 𝑋)) → ((𝐽‘𝑄) ⊕ (𝑁‘{〈𝑀, 𝑂〉})) ⊆ ((𝐽‘𝑄) ⊕ (𝐼‘𝑋))) | 
| 43 | 25, 42 | sstrd 3993 | . 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) ∧ 𝑅 ≤ (𝑄 ∨ 𝑋)) → (𝑁‘{〈𝐺, ( I ↾ 𝑇)〉}) ⊆ ((𝐽‘𝑄) ⊕ (𝐼‘𝑋))) | 
| 44 | 13, 43 | eqsstrd 4017 | 1
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) ∧ 𝑅 ≤ (𝑄 ∨ 𝑋)) → (𝐽‘𝑅) ⊆ ((𝐽‘𝑄) ⊕ (𝐼‘𝑋))) |