Proof of Theorem cdlemn5pre
Step | Hyp | Ref
| Expression |
1 | | simp1 1134 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) ∧ 𝑅 ≤ (𝑄 ∨ 𝑋)) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
2 | | simp22 1205 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) ∧ 𝑅 ≤ (𝑄 ∨ 𝑋)) → (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) |
3 | | cdlemn5.l |
. . . 4
⊢ ≤ =
(le‘𝐾) |
4 | | cdlemn5.a |
. . . 4
⊢ 𝐴 = (Atoms‘𝐾) |
5 | | cdlemn5.h |
. . . 4
⊢ 𝐻 = (LHyp‘𝐾) |
6 | | cdlemn5.p |
. . . 4
⊢ 𝑃 = ((oc‘𝐾)‘𝑊) |
7 | | cdlemn5.t |
. . . 4
⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
8 | | cdlemn5.J |
. . . 4
⊢ 𝐽 = ((DIsoC‘𝐾)‘𝑊) |
9 | | cdlemn5.u |
. . . 4
⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
10 | | cdlemn5.n |
. . . 4
⊢ 𝑁 = (LSpan‘𝑈) |
11 | | cdlemn5.g |
. . . 4
⊢ 𝐺 = (℩ℎ ∈ 𝑇 (ℎ‘𝑃) = 𝑅) |
12 | 3, 4, 5, 6, 7, 8, 9, 10, 11 | diclspsn 39135 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) → (𝐽‘𝑅) = (𝑁‘{〈𝐺, ( I ↾ 𝑇)〉})) |
13 | 1, 2, 12 | syl2anc 583 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) ∧ 𝑅 ≤ (𝑄 ∨ 𝑋)) → (𝐽‘𝑅) = (𝑁‘{〈𝐺, ( I ↾ 𝑇)〉})) |
14 | | simp21 1204 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) ∧ 𝑅 ≤ (𝑄 ∨ 𝑋)) → (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) |
15 | | cdlemn5.b |
. . . . . 6
⊢ 𝐵 = (Base‘𝐾) |
16 | | cdlemn5.o |
. . . . . 6
⊢ 𝑂 = (ℎ ∈ 𝑇 ↦ ( I ↾ 𝐵)) |
17 | | cdlemn5.f |
. . . . . 6
⊢ 𝐹 = (℩ℎ ∈ 𝑇 (ℎ‘𝑃) = 𝑄) |
18 | | cdlemn5.m |
. . . . . 6
⊢ 𝑀 = (℩ℎ ∈ 𝑇 (ℎ‘𝑄) = 𝑅) |
19 | | cdlemn5.s |
. . . . . 6
⊢ ⊕ =
(LSSum‘𝑈) |
20 | 15, 3, 4, 6, 5, 7, 16, 9, 17, 11, 18, 10, 19 | cdlemn4a 39140 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) → (𝑁‘{〈𝐺, ( I ↾ 𝑇)〉}) ⊆ ((𝑁‘{〈𝐹, ( I ↾ 𝑇)〉}) ⊕ (𝑁‘{〈𝑀, 𝑂〉}))) |
21 | 1, 14, 2, 20 | syl3anc 1369 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) ∧ 𝑅 ≤ (𝑄 ∨ 𝑋)) → (𝑁‘{〈𝐺, ( I ↾ 𝑇)〉}) ⊆ ((𝑁‘{〈𝐹, ( I ↾ 𝑇)〉}) ⊕ (𝑁‘{〈𝑀, 𝑂〉}))) |
22 | 3, 4, 5, 6, 7, 8, 9, 10, 17 | diclspsn 39135 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → (𝐽‘𝑄) = (𝑁‘{〈𝐹, ( I ↾ 𝑇)〉})) |
23 | 1, 14, 22 | syl2anc 583 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) ∧ 𝑅 ≤ (𝑄 ∨ 𝑋)) → (𝐽‘𝑄) = (𝑁‘{〈𝐹, ( I ↾ 𝑇)〉})) |
24 | 23 | oveq1d 7270 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) ∧ 𝑅 ≤ (𝑄 ∨ 𝑋)) → ((𝐽‘𝑄) ⊕ (𝑁‘{〈𝑀, 𝑂〉})) = ((𝑁‘{〈𝐹, ( I ↾ 𝑇)〉}) ⊕ (𝑁‘{〈𝑀, 𝑂〉}))) |
25 | 21, 24 | sseqtrrd 3958 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) ∧ 𝑅 ≤ (𝑄 ∨ 𝑋)) → (𝑁‘{〈𝐺, ( I ↾ 𝑇)〉}) ⊆ ((𝐽‘𝑄) ⊕ (𝑁‘{〈𝑀, 𝑂〉}))) |
26 | 5, 9, 1 | dvhlmod 39051 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) ∧ 𝑅 ≤ (𝑄 ∨ 𝑋)) → 𝑈 ∈ LMod) |
27 | | eqid 2738 |
. . . . . . 7
⊢
(LSubSp‘𝑈) =
(LSubSp‘𝑈) |
28 | 27 | lsssssubg 20135 |
. . . . . 6
⊢ (𝑈 ∈ LMod →
(LSubSp‘𝑈) ⊆
(SubGrp‘𝑈)) |
29 | 26, 28 | syl 17 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) ∧ 𝑅 ≤ (𝑄 ∨ 𝑋)) → (LSubSp‘𝑈) ⊆ (SubGrp‘𝑈)) |
30 | 3, 4, 5, 9, 8, 27 | diclss 39134 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → (𝐽‘𝑄) ∈ (LSubSp‘𝑈)) |
31 | 1, 14, 30 | syl2anc 583 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) ∧ 𝑅 ≤ (𝑄 ∨ 𝑋)) → (𝐽‘𝑄) ∈ (LSubSp‘𝑈)) |
32 | 29, 31 | sseldd 3918 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) ∧ 𝑅 ≤ (𝑄 ∨ 𝑋)) → (𝐽‘𝑄) ∈ (SubGrp‘𝑈)) |
33 | | simp23 1206 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) ∧ 𝑅 ≤ (𝑄 ∨ 𝑋)) → (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) |
34 | | cdlemn5.i |
. . . . . . 7
⊢ 𝐼 = ((DIsoB‘𝐾)‘𝑊) |
35 | 15, 3, 5, 9, 34, 27 | diblss 39111 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) → (𝐼‘𝑋) ∈ (LSubSp‘𝑈)) |
36 | 1, 33, 35 | syl2anc 583 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) ∧ 𝑅 ≤ (𝑄 ∨ 𝑋)) → (𝐼‘𝑋) ∈ (LSubSp‘𝑈)) |
37 | 29, 36 | sseldd 3918 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) ∧ 𝑅 ≤ (𝑄 ∨ 𝑋)) → (𝐼‘𝑋) ∈ (SubGrp‘𝑈)) |
38 | | cdlemn5.j |
. . . . 5
⊢ ∨ =
(join‘𝐾) |
39 | | eqid 2738 |
. . . . 5
⊢
((trL‘𝐾)‘𝑊) = ((trL‘𝐾)‘𝑊) |
40 | 15, 3, 38, 4, 5, 7,
39, 16, 34, 9, 10, 18 | cdlemn2a 39137 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) ∧ 𝑅 ≤ (𝑄 ∨ 𝑋)) → (𝑁‘{〈𝑀, 𝑂〉}) ⊆ (𝐼‘𝑋)) |
41 | 19 | lsmless2 19181 |
. . . 4
⊢ (((𝐽‘𝑄) ∈ (SubGrp‘𝑈) ∧ (𝐼‘𝑋) ∈ (SubGrp‘𝑈) ∧ (𝑁‘{〈𝑀, 𝑂〉}) ⊆ (𝐼‘𝑋)) → ((𝐽‘𝑄) ⊕ (𝑁‘{〈𝑀, 𝑂〉})) ⊆ ((𝐽‘𝑄) ⊕ (𝐼‘𝑋))) |
42 | 32, 37, 40, 41 | syl3anc 1369 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) ∧ 𝑅 ≤ (𝑄 ∨ 𝑋)) → ((𝐽‘𝑄) ⊕ (𝑁‘{〈𝑀, 𝑂〉})) ⊆ ((𝐽‘𝑄) ⊕ (𝐼‘𝑋))) |
43 | 25, 42 | sstrd 3927 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) ∧ 𝑅 ≤ (𝑄 ∨ 𝑋)) → (𝑁‘{〈𝐺, ( I ↾ 𝑇)〉}) ⊆ ((𝐽‘𝑄) ⊕ (𝐼‘𝑋))) |
44 | 13, 43 | eqsstrd 3955 |
1
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) ∧ 𝑅 ≤ (𝑄 ∨ 𝑋)) → (𝐽‘𝑅) ⊆ ((𝐽‘𝑄) ⊕ (𝐼‘𝑋))) |